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 Mixtures of g Priors for Bayesian Variable Selection
 Feng Liang, Rui Paulo, German Molina, Merlise A. Clyde, and Jim O. Berger

 Zellner's g prior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues.
 In this article we study mixtures of g priors as an alternative to default g priors that resolve many of the problems with the original
 formulation while maintaining the computational tractability that has made the g prior so popular. We present theoretical properties of
 the mixture g priors and provide real and simulated examples to compare the mixture formulation with fixed g priors, empirical Bayes
 approaches, and other default procedures.

 KEY WORDS: AIC; Bayesian model averaging; BIC; Cauchy; Empirical Bayes; Gaussian hypergeometric functions; Model selection;
 Zellner-Siow priors.

 1. INTRODUCTION

 The problem of variable selection or subset selection in lin
 ear models is pervasive in statistical practice; see George (2000)
 and Miller (2001). We consider model choice in the canoni
 cal regression problem with response vector Y = (y\,..., yn)T
 normally distributed with mean vector p ? (?i\,..., \in)T and
 covariance \n/(p, where 0 is a precision parameter (the inverse
 of the usual variance) and \n is an n x n identity matrix. Given a

 set of potential predictor variables Xi,..., Xp, we assume that
 the mean vector p is in the span of ln, X\,..., Xp, where ln is
 a vector of l's of length n. The model choice problem involves
 selecting a subset of predictor variables that places additional
 restrictions on the subspace that contains the mean. We index
 the model space by y, a p -dimensional vector of indicators with

 Yj = 1, meaning that Xj is included in the set of predictor vari
 ables, and with Yj = 0> meaning that Xy is excluded. Under
 model Ady, p may be expressed in vector form as

 My'. [I ? \na -\~Xy?y,

 where a is an intercept that is common to all models, Xy rep
 resents the n x py design matrix under model Ady, and ?y is
 the py -dimensional vector of nonzero regression coefficients.

 The Bayesian approach to model selection and model un
 certainty involves specifying priors on the unknowns 0y =
 (a,?y,(/)) g Gy in each model and, in turn, updating prior
 probabilities of models p(A/iy) to obtain posterior probabili
 ties of each model:

 <KA ^ P(My)P(Y\My) p(My\Y) = ?
 2lyP(My)p(Y\My)

 A key component in the posterior model probabilities is the
 marginal likelihood of the data under model A*iy :

 L p(Y\My)= p<y\0y,My)p{Oy\My)dOy
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 obtained by integrating the likelihood with respect to the prior

 distribution for model-specific parameters 0y.
 Whereas Bayesian variable selection has a long history (Zell

 ner 1971, sec 10.4; Learner 1978a,b; Mitchell and Beauchamp
 1988), the advent of Markov chain Monte Carlo methods cat
 alyzed Bayesian model selection and averaging in regression
 models (George and McCulloch 1993, 1997; Geweke 1996;
 Smith and Kohn 1996; Raftery, Madigan, and Hoeting 1997;
 Hoeting, Madigan, Raftery, and Volinsky 1999; Clyde and
 George 2004). Prior density choice for Bayesian model se
 lection and model averaging, however, remains an open area
 (Berger and Pericchi 2001; Clyde and George 2004). Subjec
 tive elicitation of priors for model-specific coefficients is of
 ten precluded, particularly in high-dimensional model spaces,
 such as in nonparametric regression using spline and wavelet
 bases. Thus, it is often necessary to resort to specification of
 priors using some formal method (Kass and Wasserman 1996;
 Berger and Pericchi 2001). In general, the use of improper pri
 ors for model-specific parameters is not permitted in the context
 of model selection, as improper priors are determined only up
 to an arbitrary multiplicative constant. In inference for a given

 model, these arbitrary multiplicative constants cancel in the
 posterior distribution of the model-specific parameters. How
 ever, these constants remain in marginal likelihoods leading to
 indeterminate model probabilities and Bayes factors (Jeffreys
 1961; Berger and Pericchi 2001). To avoid indeterminacies in

 posterior model probabilities, proper priors for ?y under each
 model are usually required.

 Conventional proper priors for variable selection in the nor
 mal linear model have been based on the conjugate Normal
 Gamma family for 0y or limiting versions, allowing closed
 form calculations of all marginal likelihoods (George and

 McCulloch 1997; Raftery et al. 1997; Berger and Pericchi
 2001). Zellner's (1986) g prior for ?y,

 ?y\(?,My-NU^iXTyXy)-l\ (1)
 has been widely adopted because of its computational efficiency
 in evaluating marginal likelihoods and model search and, per
 haps most important, because of its simple, understandable in
 terpretation as arising from the analysis of a conceptual sam
 ple generated using the same design matrix X as employed
 in the current sample (Zellner 1986; Smith and Kohn 1996;

 George and McCulloch 1997; Fern?ndez, Ley, and Steel 2001).

 ? 2008 American Statistical Association
 Journal of the American Statistical Association

 March 2008, Vol. 103, No. 481, Review Article
 DOI 10.1198/016214507000001337

 410

This content downloaded from 152.3.43.23 on Mon, 06 Nov 2017 15:20:30 UTC
All use subject to http://about.jstor.org/terms



 Liang et al.: g Priors for Bayesian Variable Selection 411

 George and Foster (2000) showed how g could be calibrated
 based on many popular model selection criteria, such as the
 Akaike information criterion (AIC), the Bayesian information
 criterion (BIC), and the risk information criterion (RIC). To
 avoid the difficulty of preselecting g, while providing adap
 tive estimates, George and Foster (2000) and Clyde and George
 (2000) proposed and developed empirical Bayes (EB) methods
 using a common (global) estimate of g from the marginal like
 lihood of g. Motivated by information theory, Hansen and Yu
 (2001) developed related approaches that use model-specific
 (local EB) estimates of g. These EB approaches provide au
 tomatic prior specifications that lead to model selection crite
 ria that bridge the AIC and BIC and provide nonlinear, rather
 than linear, shrinkage of model coefficients while still maintain
 ing the computational convenience of the g-prior formulation.

 As many Bayesians are critical of empirical Bayes methods on
 the grounds that they do not correspond to solutions based on
 Bayesian or formal Bayesian procedures, a natural alternative to
 data-based EB priors are fully Bayes specifications that place a
 prior on g. While Zellner (1986) suggested that a prior on g
 should be introduced and g could be integrated out, this ap
 proach has not taken hold in practice, primarily for perceived
 computational difficulties.

 In this article we explore fully Bayes approaches using mix
 tures of g priors. As calculation of marginal likelihoods us
 ing a mixture of g priors involves only a one-dimensional in
 tegral, this approach provides the attractive computational so
 lutions that made the original g priors popular while providing
 robustness to misspecification of g. The Zellner-Siow (1980)
 Cauchy priors can be viewed as a special case of mixtures of
 g priors. Perhaps because Cauchy priors do not permit closed
 form expressions of marginal likelihoods, they have not been
 adopted widely in the model choice community. Representing
 the Zellner-Siow Cauchy prior as a scale mixture of g pri
 ors, we develop a new approximation to Bayes factors that al
 lows simple, tractable expressions for posterior model probabil
 ities. We also present a new family of priors for g, the hyper-g
 prior family, which leads to closed-form marginal likelihoods
 in terms of the Gaussian hypergeometric function. Both the
 Cauchy and the hyper-g priors provide similar computational
 efficiency, adaptivity, and nonlinear shrinkage found in EB pro
 cedures. The same family of priors has also been independently
 proposed and studied by Cui and George (2007) for Bayesian
 variable selection where they focus on the case of known error
 variance.

 This article is organized as follows. In Section 2 we review
 Zellner's g prior, with suggested specifications for g from the
 literature, and discuss some of the paradoxes associated with
 fixed g priors. In Section 3 we present mixtures of g priors. Mo
 tivated by Jeffrey's; desiderata for the properties of Bayes fac
 tors, we specify conditions on the prior distribution for g that re
 solve the Bayes factor paradoxes associated with fixed g priors.

 We discuss theoretical properties of the Zellner-Siow Cauchy
 and hyper-g priors and other asymptotic properties of posteri
 ors in Section 4. To investigate small-sample performance, we
 compare the Zellner-Siow Cauchy and hyper-g priors to other
 approaches in a simulation study (Sec. 5) and in examples from
 the literature (Sec. 6). Finally, in Section 7 we conclude with
 recommendations for priors for the variable selection problem
 and unresolved issues.

 2. ZELLNER'S g PRIORS

 In constructing a family of priors for a Gaussian regression
 model Y = X? + , Zellner (1986) suggested a particular form
 of the conjugate Normal-Gamma family, namely, a g prior:

 1
 /?((/>) ex -  ?\c/>^N^?a,^(XTX)-xy

 where the prior mean ?a is taken as the anticipated value of ?
 based on imaginary data and the prior covariance matrix of ?
 is a scalar multiple g of the Fisher information matrix, which
 depends on the observed data through the design matrix X.
 In the context of hypothesis testing with Hq : ? ? ?o versus

 H\ : ? e Rk, Zellner suggested setting ?a ? ?0 in the g prior
 for ? under H\ and derived expressions for the Bayes factor for
 testing H\ versus Hq.

 While Zellner (1986) derived Bayes factors using g priors for
 testing precise hypotheses, he did not explicitly consider nested

 models, where the null hypothesis restricts the values for a sub
 vector of ?. We (as have others) adapt Zellner's g prior for test
 ing nested hypotheses by placing a flat prior on the regression
 coefficients that are common to both models and using the g
 prior for the regression parameters that are only in the more
 complex model. This is the strategy used by Zellner and Siow
 (1980) in the context of other priors. While such an approach
 leads to coherent prior specifications for a pair of hypotheses,
 variable selection in regression models is essentially a multiple
 hypothesis-testing problem, leading to many nonnested com
 parisons. In the Bayesian solution the posterior probabilities of
 models can be expressed through the Bayes factor for pairs of
 hypotheses, namely,

 p(My)B?[My : Mb]
 Y,y> P(My>)mMy> : Mb]'

 P(My\Y) = ^ ,/; ' r4,?^?, (2)
 where the Bayes factor, BF[Alj/ : Mb], for comparing each of
 A\y to a base model Mb is given by

 m^r ka ka i PY?\My)
 BF[My : Mb] = ,VIAA p(Y\Mb)

 To define the Bayes factor of any two models My and My ,
 we utilize the "encompassing" approach of Zellner and Siow
 (1980) and define the Bayes factor for comparing any two mod

 els M.y and My' to be

 wm ka ^ BF{Mr : Mb) BF(Aav : Mv>) =-.
 y y) BF(My>:Mb)

 In principle, the choice of the base model Mb is completely
 arbitrary as long as the priors for the parameters of each model
 are specified separately and do not depend on the comparison
 being made. However, because the definition of common pa
 rameters changes with the choice of the base model, improper
 priors for common parameters in conjunction with g priors on
 the remaining parameters lead to expressions for Bayes factors
 that do depend on the choice of the base model. The null model
 and the full model are the only two choices for Mb which make

 each pair, My and Mb, a pair of nested models. We will re
 fer to the choice of the base model being Mn (the null model)
 as the null-based approach. Similarly the full-based approach
 utilizes A4 f (the full model) as the base model.
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 2.1 Null-Based Bayes Factors

 In the null-based approach to calculating Bayes factors and

 model probabilities, we compare each model M,y with the null
 model M,n through the hypotheses Hq : ?y =0 and H\ : ?y e
 Wpy. Without loss of generality, we may assume that the
 columns of Xy have been centered, so that lTXy = 0, in which
 case the intercept a may be regarded as a common parameter to

 both Aiy and Alw- This, along with arguments based on or
 thogonal parameterizations and invariance to scale and location
 transformations (Jeffreys 1961; Eaton 1989; Berger, Pericchi,
 and Varshavsky 1998), has led to the adoption of

 p(a,<l>\My) = ]-, (3)

 ?y\(P,My -NU,^iXTyXy)-]\ (4)
 as a default prior specification for a, ?y, and 0 under M,y.

 Most references to g priors in the variable selection literature
 refer to the previous version (Clyde and George 2000; George
 and Foster 2000; Berger and Pericchi 2001; Fern?ndez et al.
 2001; Hansen and Yu 2001). Continuing with this tradition, we
 will also refer to the priors in (3)-(4) simply as Zellner's g prior.

 A major advantage of Zellner's g prior is the computational
 efficiency due to the closed-form expression of all marginal
 likelihoods. Under (3)-(4), the marginal likelihood is given by

 p(Y|My,g)=r(^,~11))/g||Y-Y|r<"-') n ^/n

 {l + g)(n-\-pr)/2
 X[l+g(l-/?2)](?-l)/2' ( }

 where R2 is the ordinary coefficient of determination of re

 gression model A4y. Though the marginal of the null model
 /?(Y|.A4yv) does not involve the hyperparameter g, it can be
 obtained as a special case of (5) with R2 = 0 and py = 0. The
 resulting Bayes factor for comparing any model Aiy to the null
 model is

 BF[M>, : MN]

 = (1 + g)in-pr-W{l + g{{ _ R2)r(n-l)/2m (fi)

 2.2 Full-Based Bayes Factors

 For comparing model Aiy with covariates Xy to the full
 model, we will partition the design matrix associated with the

 full model as X = [1, Xy,X-y], so that the full model Mp,
 written in partitioned form, is represented as

 MF : Y = la + Xy?y -f- X_y?_y + e,

 where X_y refers to the columns of X excluded in model Aiy.

 Model Aiy corresponds to the hypothesis Hcj\?_y =0, while
 the hypothesis H\ :?_y eRp~py corresponds to the full model

 A4f, where common parameters a and ?y are unrestricted un
 der both models. For comparing these two models, we assume
 (without loss of generality) that the full model has been parame

 terized in a block-orthogonal fashion such that lT[Xy, X-y] =

 0 and X^X_y = O, in order to justify treating a and ?y as com
 mon parameters to both models (Zellner and Siow 1980). This
 leads to the following g priors for the full-based Bayes factors:

 My\ p(a,(p,?y)cx-, 0

 MF: p(a,qb,?y)cx-, (7) 0

 j8_yi0-N(a4(x?yx_yr

 with the resulting Bayes factor for comparing any model My
 to the full model given by

 BF[My :MF]

 V+8? -(n-p-\)/2  1+8  Rl
 (n-py-\)/2

 , (8)

 where R2 and R2F are the usual coefficients of the determination
 of models My and Mp, respectively.

 It should be noted that, unlike the null-based approach, the
 full-based approach does not lead to a coherent prior specifi
 cation for the full model, because the prior distribution (7) for

 ? in M f depends on My, which changes with each model
 comparison. Nonetheless, posterior probabilities (2) can still be
 formally defined using the Bayes factor with respect to the full
 model (8). A similar formulation, where the prior on the full
 model depends on which hypothesis is being tested, has also
 been adapted by Casella and Moreno (2006) in the context of
 intrinsic Bayes factors. Their rationale is that the full model is
 the scientific "null" and that all models should be judged against
 it. Because in most of the literature g priors refer to the null
 based approach, in the rest of this article, we will mainly focus
 on the null-based g prior and its alternatives unless specified
 otherwise.

 2.3 Paradoxes of g Priors

 The simplicity of the g-prior formulation is that just one hy
 perparameter g needs to be specified. Because g acts as a di
 mensionality penalty, the choice of g is critical. As a result,
 Bayes factors for model selection with fixed choices of g may
 exhibit some undesirable features, as discussed next.

 Bartlett's Paradox. For inference under a given model, the
 posterior can be reasonable even if g is chosen very large in
 an effort to be noninformative. In model selection, however,

 this is generally a bad idea. In fact, in the limiting case when
 g -> oo while n and py are fixed, the Bayes factor (6) for com
 paring My to Mn will go to 0. That is, large spread of the
 prior induced by the noninformative choice of g has the un
 intended consequence of forcing the Bayes factor to favor the
 null model, the smallest model, regardless of the information in
 the data. Such a phenomenon has been noted in Bartlett (1957)
 and is often referred to as "Bartlett's paradox," which was well
 understood and discussed by Jeffreys (1961).

 Information Paradox. Suppose, in comparing the null
 model and a particular model My, we have overwhelming in
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 formation supporting J\Ay. For example, suppose \\?y ||2 goes
 to oo, so that R2 -> 1, or, equivalently, the usual F statistic
 goes to oo with both n and py fixed. In any conventional sense,
 one would expect that Aiy should receive high posterior proba
 bility and that the Bayes factor BF(.M), : A?n) would go to oo
 as the information against A4yv accumulates. However, in this
 situation, the Bayes factor (6) with a fixed choice of g tends to
 a constant (1 + g)in-pY-\)/2 as R2 _^ { (Kellner 1986; Berger
 and Pericchi 2001). Because this paradox is related to the lim
 iting behavior of the Bayes factor as information accumulates,

 we will refer to it as the "information paradox."

 2.4 Choices of g

 Under uniform prior model probabilities, the choice of g ef
 fectively controls model selection, with large g typically con
 centrating the prior on parsimonious models with a few large
 coefficients, whereas small g tends to concentrate the prior on
 saturated models with small coefficients (George and Foster
 2000). Recommendations for g have included the following:

 Unit information prior. Kass and Wasserman (1995) rec
 ommended choosing priors with the amount of informa
 tion about the parameter equal to the amount of informa
 tion contained in one observation. For regular parametric
 families, the "amount of information" is defined through
 Fisher information. In the normal regression case, the unit
 information prior corresponds to taking g = n, leading to
 Bayes factors that behave like the BIC.
 Risk inflation criterion. Foster and George (1994) cali
 brated priors for model selection based on the RIC and
 recommended the use of g = p2 from a minimax perspec
 tive.

 Benchmark prior. Fern?ndez et al. (2001) did a thorough
 study on various choices of g with dependence on the
 sample size n or the model dimension p and concluded
 with the recommendation to take g = max(?, p2). We re
 fer to their "benchmark prior" specification as "BRIC" as
 it bridges BIC and RIC.
 Local empirical Bayes. The local EB approach can be
 viewed as estimating a separate g for each model. Using
 the marginal likelihood after integrating out all parameters
 given in (5), an EB estimate of g is the maximum (mar
 ginal) likelihood estimate constrained to be nonnegative,
 which turns out to be

 gfL = max{Fy-l,0}, (9)
 where

 F,  K/Py
 7 (l-R2)/(n-l-py)

 is the usual F statistic for testing ?y = 0. An asymptotic
 SE (standard error) based on the observed information for

 gyBL is straightforward to derive.
 Global empirical Bayes. The global EB procedure as
 sumes one common g for all models and borrows strength
 from all models by estimating g from the marginal likeli
 hood of the data, averaged over all models,

 ~EBG V- lKA N (l+g)C-P,-')/2 s =argmax> p(Aiv)-~?:?T-T-.
 ?>0 Y y;[l+g(l-4)]<?-l>/2

 (10)

 In general, this marginal likelihood is not tractable and
 does not provide a closed-form solution for gEBG, al
 though numerical optimization may be used (George and
 Foster 2000). Here we propose an EM algorithm based on
 treating both the model indicator and the precision 0 as
 latent data. The E step consists of the following expecta
 tions:

 ?[0('} \My,Y,g{l)]
 n- 1

 llY-YlPd-dCO/d+gd-)))^)'
 P(Y\My,g^)

 (11)

 E[My\Y,g^] = Ey>PW\My,g^)
 p{l\My\Y),

 evaluated at the current estimate of g and where the mar

 ginal likelihood p(Y\My, g) is based on (5). After sim
 plification, the marginal maximum likelihood estimate of
 g from the M step is

 ^,,+1>=maxjj]p(l")(Aly|Y) * y

 R2y/EyPii)(My\Y)py/ t
 X (\-(g^/(\+g^))R2)/(n-\) '

 (12)
 where the terms inside the summation can be viewed as

 a weighted Bayesian F statistic. The global EB estimate
 of g, gEBG, is the estimate of g from (12) after conver
 gence. A side benefit of the EM algorithm is that the global
 EB posterior model probabilities are obtained from ( 11 ) at
 convergence. When the dimension of the model space pro
 hibits enumeration, the global EB estimates may be based
 on a subset of models obtained, for example, using sto
 chastic search and sampling from the local EB posterior.
 One may obtain an asymptotic SE using the method of
 Louis (1982) with output from the EM algorithm or deriv
 ing the information directly.

 The unit information prior, risk inflation criterion, and bench
 mark prior do not resolve the information paradox for fixed n
 and p because the choices of g are fixed values not depending
 on the information in the data. However, the two EB approaches
 do have the desirable behavior as stated later.

 Theorem L In the setting of the information paradox with
 2
 y fixed n, p < n, and R2 ?> 1, the Bayes factor (6) for comparing

 My to Mn goes to oo under either the local or the global EB
 estimate of g.

 Proof It is easy to check that the Bayes factor (6) with g ?
 gEBL goes to oo when R2 goes to 1. It implies that the maxi
 mum of the right side of (10) also goes to oo, and so does the

 leading term BFfAly : Mn] with g = gEBG.

 The EB priors provide a resolution of the information para
 dox that arises when using a fixed g in the g priors. One may
 view the marginal maximum likelihood estimate of g as a pos
 terior mode under a uniform (improper) prior distribution for g.
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 Rather than using a plug-in estimate to eliminate g, a natural
 alternative is the integrated marginal likelihood under a proper
 prior on g. Consequently, a prior on g leads to a mixture of
 g priors for the coefficients ?y, which typically provides more
 robust inference. In the next section we explore various mix
 ing distributions that maintain the computational convenience
 of the original g prior and have attractive theoretical properties
 as in the EB approaches.

 3. MIXTURES OF g PRIORS

 Letting Ti ig) (which may depend on n) denote the prior on g,

 the marginal likelihood of the data p(Y\M,y) is proportional to
 / OO

 BF[My : MN] = (1 + g)("-i-^)/2 Jo

 x[\ + {\-Rl)gT{n-X),27t{g)dg (13)
 in the null-based approach. Similar expressions for the full
 based approach can be obtained using (8). Under selection of
 a model My ^ M/v, the posterior mean of /?, E[fi\Aiy, Y],
 is

 E[/i|My,Y] = l?? + E  1  My, Y XJ ypy,

 where ? and ?y are the ordinary least squares estimates of a
 and ?, respectively, under model Ady. Under the fixed g prior,
 the posterior mean for ?y under a selected model is a linear
 shrinkage estimator with a fixed shrinkage factor g/(l + g);
 thus mixtures of g priors allow adaptive data-dependent shrink
 age. The optimal (Bayes) estimate of ?i under squared error loss
 is the posterior mean under model averaging given by

 E[|?|Y] = lna+ J2 P(My\Y)

 xE
 1+8 My,  XyjSy, (14)

 which provides multiple nonlinear adaptive shrinkage through
 the expectation of the linear shrinkage factor and through the
 posterior model probabilities. Because g appears not only in
 Bayes factors and model probabilities but also in posterior
 means and predictions, the choice of prior on g should ideally
 allow for tractable computations for all these quantities.
 While tractable calculation of marginal likelihoods and pre

 dictions is desirable, more important, we would like priors that
 lead to consistent model selection and have desirable risk prop

 erties. We explore in detail two fully Bayesian approaches:
 Zellner-Siow's Cauchy prior (Zellner and Siow 1980), which
 is obtained using an Inverse-Gamma prior on g, and the hyper
 g prior, which is an extension of the Strawderman (1971) prior
 to the regression context.

 3.1 Zellner-Siow Priors

 In the context of hypothesis testing regarding a univariate
 normal mean, Jeffreys (1961) rejected normal priors essentially
 for reasons related to the Bayes factor paradoxes described ear
 lier and found that the Cauchy prior was the simplest prior to
 satisfy basic consistency requirements for hypothesis testing.
 Zellner and Siow (1980) introduced multivariate Cauchy priors

 on the regression coefficients as suitable multivariate extensions
 to Jeffreys's work on the univariate normal mean problem. If
 the two models under comparison are nested, the Zellner-Siow
 strategy is to place a flat prior on common coefficients and a
 Cauchy prior on the remaining parameters. For example, in the
 null-based approach, the prior on (a, 0) is given by (3) and

 ?a i^ ripy/2)  !/2/ X?Xy \-Pvl2

 a multivariate Cauchy centered at the null model, ?y = 0, with
 precision suggested by the form of the unit Fisher information
 matrix.

 Arguably, one of the reasons why the Zellner-Siow prior
 has never become quite as popular as the g prior in Bayesian
 variable selection is the fact that closed-form expressions for
 marginal likelihoods are not available. Zellner and Siow (1980)
 derived approximations to the marginal likelihoods by directly
 approximating the integral over Rpy with respect to the mul
 tivariate Cauchy prior. However, as the model dimensionality
 increases, the accuracy of the approximation degrades.

 It is well known that a Cauchy distribution can be ex
 pressed as a scale mixture of normals. The Zellner-Siow
 priors can be represented as a mixture of g priors with an
 Inv-Gamma(l/2, n/2) prior on g, namely,

 Jt(?y\cP)CX J N(?y\0,^(XTyXy)'Xy(g)dg, (15)
 with

 ,te)_?-vV,/a... r(i/2)
 One may take advantage of the mixture of g -prior represen

 tation (15) to first integrate out 0y given g, leaving a one
 dimensional integral over g as in (13), which is independent
 of the model dimension. This one-dimensional integral can be
 carried out using standard numerical integration techniques or
 using a Laplace approximation. The Laplace approximation
 involves expanding the unnormalized marginal posterior den
 sity of g about its mode and leads to tractable calculations for
 approximating marginal likelihoods as the marginal posterior
 mode of g is a solution to a cubic equation. Furthermore, the
 posterior expectation of g/(I +g), necessary for prediction, can
 also be approximated using the same form of Laplace approxi
 mation, and again the associated mode is the solution to a cubic
 equation. Details can be found in Appendix A and are imple
 mented in an R package available from the authors.

 3.2 Hyper-gf Priors

 As an alternative to the Zellner-Siow prior for the model
 choice problem, we introduce a family of priors on g :

 7t(g) = ^(l+g)-a/\ g>0, (16)
 which is a proper distribution for a > 2. This family of priors in
 cludes priors used by Strawderman (1971) to provide improved
 mean square risk over ordinary maximum likelihood estimates
 in the normal means problem. These priors have also been stud
 ied by Cui and George (2007) for the problem of variable selec
 tion in the case of known error variance.
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 When a < 2 the prior nig) ex (1 + g)~a^2 is improper; both
 the reference prior and the Jeffreys prior correspond to a = 2.

 When 1 < a < 2 we will see that the marginal density, given
 below in (17), is finite, so that the corresponding posterior dis
 tribution is proper. Even though the choice of 1 < a < 2 leads
 to proper posterior distributions, because g is not included in
 the null model, the issue of arbitrary constants of proportional

 ity leads to indeterminate Bayes factors. For this reason we will
 limit attention to the prior in (16) with a > 2.
 More insight on hyperparameter specification can be ob

 tained by instead considering the corresponding prior on the
 shrinkage factor g/(l + g), where

 Betal 1, - - 1 1 + S V 2
 which is a Beta distribution with mean 2?a. For a = 4 the prior
 on the shrinkage factor is uniform. Values of a greater than 4
 tend to put more mass on shrinkage values near 0, which is un
 desirable a priori. Taking a = 3 places most of the mass near 1,
 with the prior probability that the shrinkage factor is greater
 than .80 equal to .45. We will work with a = 3 and a = 4 for
 future examples, although any choice 2 < a < 4 may be reason
 able.

 An advantage of the hyper-g prior is that the posterior distri
 bution of g given a model is available in closed form:

 pig\Y,My)~ Fy
 22Fliin-l)/2,l;ipy+a)/2;RJ)

 X (1 + g){n-\-Py-a)/2{l + (1 _ R2)g]-(n-l)/2^

 where 2F\ (a, b; c; z) in the normalizing constant is the Gauss
 ian hypergeometric function (Abramowitz and Stegun 1970,
 sec. 15). The integral representing 2F\ia, b\ c; z) is convergent
 for real \z\ < 1 with c > b > 0 and for z = =L 1 only if c > a + b
 and b > 0. As the normalizing constant in the prior on g is also
 a special case of the 2F\ function with z ? 0, we refer to this
 family of prior distributions as the hyper-g priors.

 The Gaussian hypergeometric function appears in many
 quantities of interest. The normalizing constant in the posterior
 for g leads to the null-based Bayes factor

 _ 9 roo
 BF[My :MN] = ?- (1 + g)in-\-Py-a)? ? Jo

 x[\+(\-R2y)gT(n-X)l2dg
 a ? 2

 py -\-a ? 2

 (n ? 1 Pv+fl 9\
 -?,\;!fZ?-RJj, (17)

 which can be easily evaluated. The posterior mean of g under

 Aiy is given by

 %|M,,Y]
 2 2fi((n-l)/2,2;?v+a)/2;/tf)

 py+a-4 2F,((? - l)/2,1; (Py +a)/2; Rj) '
 (18)

 which is finite if a > 3. Likewise, the expected value of the
 shrinkage factor under each model can also be expressed using
 the 2^1 function:

 E  Y,My 1+g

 _ ! g(l + g)(n-l-p?-a)/2-l[l + (\ - R2y)/g]-(n-l)/2dg
 f(\ + g)("-l-^-?)/2[l + (1 _ R2)g]-(n~l)/2dg

 2 2Fi((w-l)/2,2;(py+a)/2+l;/tf)
 ~ Py+a 2Fi((n-l)/2,l;(py+a)/2;Ry) '

 (19)

 which unlike the ordinary g prior leads to nonlinear data
 dependent shrinkage.

 While subroutines in the Cephes library (http://www.netlib.
 org/cephes) are available for evaluating Gaussian hypergeomet
 ric functions, numerical overflow is problematic for moderate to
 large n and large R2. Similar numerical difficulties with the 2^1
 have been encountered by Butler and Wood (2002), who devel
 oped a Laplace approximation to the integral representation

 r(c) rl tb-x(\-ty-b-x 2Fl(a,b;c;z) =-?- /-dt. (20) r(b)r(c-b)J0 (\-tz)a
 Because the Laplace approximation involves an integral with
 respect to a normal kernel, we prefer to develop the expansion
 after a change of variables to x = log(g), carrying out the inte
 gration over the entire real line. This avoids issues with modes
 on the boundary (as in the local empirical Bayes solution) and
 leads to an improved normal approximation to the integral as
 the variable of integration is no longer restricted. Details of the
 fully exponential Laplace approximations (Tierney and Kadane
 1986) of order 0(n~x) to the expression (17) and of order
 0(n~2) for the ratios in (18) and (19) are given in Appendix A.

 4. CONSISTENCY

 So far in this article we have considered several alternatives

 to fixed g priors: local and global empirical Bayes, Zellner
 Siow priors, and hyper-g priors. In this section we investigate
 the theoretical properties of mixtures of g priors. In particular,
 three aspects of consistency are considered here: (1) the "infor
 mation paradox" where R2 -? 1 as described in Section 2.3,
 (2) the asymptotic consistency of model posterior probabili
 ties where n -> 00 as considered in Fern?ndez et al. (2001),
 and (3) the asymptotic consistency for prediction. While agree
 ing that no model is ever completely true, many (ourselves in
 cluded) do feel it is useful to study the behavior of procedures
 under the assumption of a true model.

 4.1 Information Paradox

 A general result providing conditions under which mixtures
 of g priors resolve the information paradox is given next.

 Theorem 2. To resolve the information paradox for all n and
 p < n, it suffices to have

 / OO

 / (l+g)*-l-Py>/Z7t(g)dg = 00 Vpy<P. Jo
 ^n-\-py)/27

 In the case of minimal sample size (i.e., n = p + 2), it suffices

 to have /0??(1 + g)l/27t(g) dg = 00.
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 Proof The integrand function in the Bayes factor (13)
 is a monotonie increasing function of R2. Therefore, when

 R2 goes to 1, it goes to /(l + g)(n~l~Py)/2nig)dg by the
 monotone convergence theorem. So the nonintegrability of
 (1 + g)^n~l~Py^2nig) is a sufficient and necessary condition
 for resolving the "information paradox." The result for the case
 with minimal sample size is straightforward.

 It is easy to check that the Zellner-Siow prior satisfies this
 condition. For the hyper-g prior, there is an additional con
 straint that a < n ? py + 1, which, in the case of the mini

 mal sample size, suggests that we take 2 < a < 3. As a fixed g
 prior corresponds to the special case of a degenerate prior that
 is a point mass at a selected value of g, it is clear that no fixed
 choice of g < oo will resolve the paradox.

 4.2 Model Selection Consistency

 The following definition of posterior model consistency for
 model choice is considered in Fern?ndez et al. (2001), namely,

 plim^ p(My |Y) = 1 when A4y is the true model, (21)

 where "plim" denotes convergence in probability and the prob
 ability measure here is the sampling distribution under the as

 sumed true model A4y. By the relationship between posterior
 probabilities and Bayes factors (2), the consistency property
 (21) is equivalent to

 prim? BF[My :My] = 0 for all My ^ My.

 For any model My' that does not contain the true model M^,
 we will assume that

 ?lXlil-Py)Xy?y lim -^^----? = by g (0, oo), (22) n^oo n

 where Py is the projection matrix onto the span of Xy. Under
 this assumption, Fern?ndez et al. (2001) have shown that con
 sistency holds for BRIC and BIC. Here we consider the case for
 mixtures of g priors and the empirical Bayes approaches.

 Theorem 3. Assume (22) holds. When the true model is not

 the null model (i.e., My ^ M/v), posterior probabilities under
 empirical Bayes, Zellner-Siow priors, and hyper-g priors are

 consistent for model selection; when My = Mm, consistency
 still holds true for the Zellner-Siow prior, but does not hold for
 the hyper-g or local and global empirical Bayes.

 The proof is given in Appendix B. A key feature in the con
 sistency of posterior model probabilities under the null model
 with the Zellner-Siow prior is that the prior on g depends on
 the sample size n ; this is not the case in the EB or hyper-g pri
 ors. The inconsistency under the null model of the EB prior has
 been noted by George and Foster (2000). Looking at the proof
 of Theorem 3, one can see that while the EB and hyper-g pri
 ors are not consistent in the sense of (21) under the null model,

 the null model will still be the highest probability model, even
 though its posterior probability is bounded away from 1. Thus,
 the priors will be consistent in a weaker sense for the problem
 of model selection under a 0-1 loss.

 The lack of consistency under the null model motivates a
 modification of the hyper-g prior, which we refer to as the
 hyper-g/rc prior:

 a-2( g\-a/2

 where the normalizing constant for the prior is another special
 case of the Gaussian hypergeometric family. While no analytic
 expressions are available for the distribution or various expec
 tations (this form of the prior is not closed under sampling),
 it is straightforward to approximate quantities of interest using
 Laplace approximations as detailed in Appendix A.

 4.3 Prediction Consistency

 In practice, prediction sometimes is of more interest than un
 covering the true model. Given the observed data (Y, X\,

 Xp) and a new vector of predictors x* eRp, we would like to
 predict the corresponding response Y*. In the Bayesian frame
 work, the optimal point estimator (under squared error loss) for
 T* is the Bayesian model averaging (BMA) prediction given by

 Y^a + ^/?yPiMyW)
 y

 x ??? -^-7T(g\My,Y)dg. (23) Jo l+?
 The local and global EB estimators can be obtained by replac
 ing 7t(g\My,Y) by a degenerate distribution with point mass
 at gEBL and gEBG, respectively. When the true sampling distrib

 ution is known, that is, (My ,a,?y, 0) are known, it is optimal
 (under squared error loss) to predict T* by its mean. Therefore,
 we call Y* consistent under prediction if

 plim? F?* = EF* = a + x* T?y,

 where plim denotes convergence in probability and the prob
 ability measure here is the sampling distribution under model

 My.
 Theorem 4. The BMA estimators Y* in (23) under empiri

 cal Bayes, the hyper-g, hyper-g/rc, and Zellner-Siow priors are
 consistent under prediction.

 Proof. When My ? Mn, by the consistency of least
 squares estimators, we have \\?y\\ -> 0, so the consistency of
 the BMA estimators follows.

 When My t? Mn, by Theorem 3, 7t(My\Y) goes to 1 in
 probability. Using the consistency of the least squares estima
 tors, it suffices to show that

 plim, f?? -^-jT(g\My,Y)dg = \. (24) Jo i + g
 The preceding integral can be rewritten as

 ? (g/(l+g))L(g)7T(g)dg
 Jo?? F(g)7T(g)dg

 where L(g) = (1 +g)~^/2[l - Rlj^]~in~l)/2 is maximized
 at gEBL given by (9). Applying a Laplace approximation to the
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 denominator and numerator of the preceding ratio along the
 lines of (B.7), we have

 ?EBL

 / Jo
 y i. .,1

 -n(g\My,Y)dg = T^K\l + 0
 It is clear that g^BL goes to oo in probability under My, and,
 hence, we can conclude that the limit in (24) is equal to 1, as
 we desired. The consistency of the local empirical Bayes pro
 cedures is a direct consequence. Because gEBG is of the same
 order as gEBL, the consistency of the global empirical Bayes
 follows.

 We have shown that Zellner-Siow and hyper-g?n priors are
 consistent for model selection under a 0-1 loss for any assumed
 true model. Additionally, the hyper-g priors and EB procedures
 are also consistent for model selection for all models except the
 null model. However, all of the mixture of g priors and EB pro
 cedures are consistent for prediction under squared error loss.
 Because the asymptotic results do not provide any discrimina
 tion among the different methods, we conducted a simulation
 study to compare mixture of g priors with empirical Bayes and
 other default model selection procedures.

 5. SIMULATION STUDY

 We generated data for the simulation study as Y = \na +
 X? + e, with e ? N(0, In/0), 0 = 1, a = 2, and sample size
 n = 100. Following Cui and George (2007), we set XrX = lp
 but took p = 15 so that all models may be enumerated, thus
 avoiding extra Monte Carlo variation due to stochastic search
 of the model space. For a model of size py, we generated ?y as

 N(0, g/(plPy) and set the remaining components of ? to 0. We
 used g = 5, 25 as in Cui and George (2007), representing weak
 and strong signal-to-noise ratios.
 We used squared error loss

 MSE(m)= \\X?-X?im)\\2,

 where ? is the estimator of ? using method m, which may
 entail both selection and shrinkage. We compared the 10 meth
 ods listed in Table 1. Among them, the theoretical mean squared
 errors (MSEs) for the oracle and full methods are known to
 be py + 1 and p + 1, respectively. For each Bayesian method,
 we considered the following criteria for model choice: selection
 of the highest posterior probability model (HPM), selection of

 Table 1. Description of the 10 methods used in the simulation
 study and examples

 Oracle Ordinary least squares using the true model
 Full Ordinary least squares under the full model
 BIC Bayesian information criterion
 AIC Akaike information criterion

 BRIC g prior with g = max(n, p2)
 EB-L Local EB estimate of g in g prior
 EB-G Global EB estimate of g in g prior
 ZS-N Base model in Bayes factor taken as the null model;

 Cauchy prior for ?y and uniform prior on (a, log(0))
 ZS-F Base model in Bayes factor taken as the full model;

 Cauchy prior for ?(-y) and uniform prior for i?y, a, log(0))
 HG3 Hyper-g prior with a = 3

 the median probability model (MPM), which is defined as the
 model where a variable is included if the marginal inclusion
 probability pi?j / 0| Y) > 1/2 (Barbieri and Berger 2004), and
 Bayesian model averaging (BMA). In both HPM and MPM, the

 point estimate is the posterior mean of ?y under the selected
 model. For BIC, the log marginal for model My is defined as

 \ogpiY\My) = ~{n logia2) + py login)}, (25)

 where a2 = RSS^/rc is the maximum likelihood estimator
 (MLE) of a2 under model M,y. These marginals are used for
 calculating posterior model probabilities for determining HPM
 and MPM and for calculating quantities under model averag
 ing. For AIC, the penalty for model complexity in the log mar

 ginal is taken as 2py rather than py login) as in (25) for BIC.
 For both AIC and BIC, the point estimate of ?y is the ordinary
 least squares (OLS) estimate under model My. Uniform prior
 probabilities on models were used throughout.

 For each value of g and py ? 0, 1,..., 15, we generated Y
 and calculated the MSE under each method. For each combina

 tion of method, g and true model size py, this was replicated
 1,000 times, and the average MSE was reported.

 Average MSE results from the simulation study are shown in

 Figure 1. For py > 0, MSE results for the two EB procedures,
 the Zellner-Siow (ZS) null-based approach, and the hyper-g
 priors are virtually identical, outperforming other default speci
 fications for a wide range of model sizes (to simplify the figure,

 only the hyper-g with a = 3 is pictured as the other hyper-g
 results are indistinguishable from it). While the ZS full-based
 procedure performs better than the other fully Bayes procedures
 when the full model generates the data, overall it is intermedi
 ate between AIC and BIC. Differences between the fully Bayes
 and other procedures are most striking under the null model.
 Despite the theoretical asymptotic inconsistency of the global
 EB procedure for model selection, it is the best overall under
 the null model. This may be partly explained by the fact that
 the estimate of g "borrows" strength from all models and is

 more likely to estimate g as 0 when the null is true. However,
 with model averaging, we see that the local EB and the hyper-g
 prior do almost as well as the global EB procedure.

 Interestingly, we found that all of the fully Bayes mixture g
 priors do as well as the global EB with model selection, except
 under the null model, whereas Cui and George (2007) found
 that the global EB outperformed fully Bayes procedures (un
 der the assumption of known 0). We have used a uniform prior
 on the model space (for both the EB and the fully Bayes pro
 cedures), whereas Cui and George (2007) placed independent
 Bernoulli^) priors on variable inclusion and compared EB es
 timates of a) with fully Bayes procedures that place a uniform
 prior on co. While we have not addressed prior distributions over

 models, this is an important aspect and may explain some of the
 difference in findings. Additionally, the simulations in Cui and
 George (2007) are for the p ? n case. Although we show that
 fully Bayes procedures are consistent as n -> oo for fixed p,
 additional study of their theoretical properties is necessary for
 the situation when p is close to the sample size.
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 Highest Probability Model
 9=5

 Highest Probability Model
 g=25

 5 10
 Number of Predictors in True Model

 5 10
 Number of Predictors in True Model

 Median Probability Model
 g=5

 Median Probability Model
 g=25

 5 10
 Number of Predictors in True Model

 5 10
 Number of Predictors in True Model

 Bayesian Model Averaging
 g=5

 Bayesian Model Averaging
 g=25

 5 10
 Number of Predictors in True Model

 5 10
 Number of Predictors in True Model

 Figure 1. Average MSE from 1,000 simulations for each method with p ? 15 and n = 100 using the oracle (-), AIC (k), BIC ( ), BRIC ( ),
 EB-local (D), EB-global (o), hyper-g with a = 3 (+), Zellner-Siow null (x), Zellner-Siow full (o), and full model (- -).

 6. EXAMPLES WITH REAL DATA

 In this section we explore the small-sample properties of the

 two mixture g priors on real dataseis and contrast our results

 using other model selection procedures such as AIC, BIC, the

 benchmark prior (BRIC), EB-local, and EB-global.

 6.1 Crime Data

 Raftery et al. (1997) used the crime data of Vandaele (1978)

 as an illustration of Bayesian model averaging in linear regres

 sion. The cross-sectional data comprise aggregate measures of

 the crime rate for 47 states and include 15 explanatory vari
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 ables, leading to 215 = 36,768 potential regression models. The
 prior distributions used by Raftery et al. (1997) are in the con
 jugate Normal-Inv-Gamma family, but their use requires speci
 fication of several hyperparameters. Fern?ndez et al. (2001) re
 visited the crime data using g priors and explored the choice
 of g on model choice. Using the benchmark prior, which is a
 compromise between BIC and RIC (g = max{rc, p2} = 152),
 Fern?ndez et al. (2001) came to roughly the same conclusions
 regarding model choice and variable importance as Raftery
 et al. (1997). We continue along these lines by investigating
 how the mixture g priors affect variable importance. As in the
 earlier analyses of these data, all variables, except the indica
 tor variable, have been log-transformed. The data are avail
 able in the R library MASS under UScrime, and all calcula
 tions have been done with the R package BAS available from
 http://www. stat. duke. edu/^clyde/BAS.

 Table 2 illustrates the effect of 10 prior choices on the mar
 ginal inclusion probabilities and the median probability model.
 BRIC is equivalent to the benchmark prior of Fern?ndez et al.
 (2001) and in this case corresponds to RIC (g = 152). [Our re
 sults may differ slightly from those of Fern?ndez et al. 2001,
 who used Markov chain Monte Carlo (MCMC) to sample high
 probability models and estimate quantities based on ergodic av
 erages, while we enumerate the model space and calculate all
 quantities analytically.] BRIC leads to the most parsimonious
 model and is more conservative than BIC (g ^ 47) or any of
 the other approaches in terms of variable inclusion with mar
 ginal inclusion probabilities shrunk toward 0. In contrast to the
 predetermined values of g in BRIC, the global EB estimate of g
 is 19.5 (SE = 11.2), while the local EB for g under the highest
 probability model is 24.3 (SE = 13.6), dramatically lower than
 g under BRIC. The fully Bayesian mixture g priors HG3, HG4,
 and ZS-null all lead to very similar marginal inclusion probabil
 ities as the data-based adaptive empirical Bayes approaches EB
 global and EB-local. These all lead to the same median proba
 bility model. As is often the case, here the marginal inclusion
 probabilities under AIC are larger, leading to the inclusion of
 two additional variables in the AIC median probability model
 compared to the median probability model under the mixture g
 priors and the EB priors.

 6.2 Ozone

 Our last example uses the ground-level ozone data analyzed
 by Breiman and Friedman (1985) and, more recently, by Miller
 (2001) and Casella and Moreno (2006). The dataset consists of
 daily measurements of the maximum ozone concentration near
 Los Angeles and eight meteorological variables (a description
 of the variables is given in App. C). Following Miller (2001)
 and Casella and Moreno (2006), we examine regression mod
 els using the eight meteorological variables, plus interactions
 and squares, leading to 44 possible predictors. Enumeration of
 all possible models is not feasible, so instead we use stochas
 tic search to identify the highest probability models using the
 R package BAS. We compared the different procedures on the
 basis of out-of-sample predictive accuracy by taking a random
 split (50/50) of the data and reserving half for calculating the
 average prediction error (root mean squared error; RMSE) un
 der each method, where

 E,ey(iW,)2
 ny

 V is the validation set, ny is the number of observations in
 the validation set iny = 165), and Y? is the predicted mean
 for Y i under the highest probability model. From Table 3, the
 two EB procedures, BIC, and HG (a = 4) all identify the same
 model. The ZS procedure with the full-based Bayes factors and
 AIC lead to selection of the most complex models with 11 and
 18 variables, respectively. While the hyper-g prior with a = 3
 has the smallest RMSE, overall the differences in RMSE are
 not enough to suggest that any method dominates the others in
 terms of prediction. Based on their theoretical properties, we
 continue to recommend the mixtures of g priors, such as the
 hyper-g prior with a = 3.

 7. DISCUSSION

 In this article we have shown how mixtures of g priors may
 resolve several consistency issues that arise with fixed g pri
 ors, while still providing computational tractability. Both real
 and simulated examples have demonstrated that the mixture g

 RMSE(M)

 Table 2. Marginal inclusion probabilities for each variable under 10 prior scenarios

 BRIC  HG-n  HG3  HG4  EB-L  EB-G  ZS-N  ZS-F  BIC  AIC

 log(AGE)
 S
 log(Ed)
 log(ExO)
 log(Exl)
 log(LF)
 log(M)
 log(N)
 log(NW)
 log(Ul)
 log(U2)
 log(W)
 log(X)
 log(prison)
 log(time)

 .75
 .15
 .95
 .66
 .39
 .08
 .09
 .23
 .51
 .11
 .45
 .18
 .99
 .78
 .19

 .85
 .27
 .97
 .66
 .45
 .20
 .20
 .37
 .69
 .25
 .61
 .35

 1.00
 .89
 .37

 .84
 .29
 .97
 .66
 .47
 .23
 .23
 .39
 .69
 .27
 .61
 .38
 .99
 .89
 .38

 .84
 .31
 .96
 .66
 .47
 .24
 .24
 .39
 .68
 .28
 .61
 .39
 .99
 .89
 .39

 .85
 .29
 .97
 .67
 .46
 .22
 .22
 .39
 .70
 .27
 .62
 .38

 1.00
 .90
 .39

 .86
 .29
 .97
 .67
 .46
 .21
 .22
 .38
 .70
 .27
 .62
 .38

 1.00
 .90
 .38

 .85
 .27
 .97
 .67
 .45
 .20
 .20
 .37
 .69
 .25
 .61
 .36

 1.00
 .90
 .37

 36
 97
 68
 50
 30
 30
 46
 75
 35
 68
 47
 99
 92
 47

 .91
 .23
 .99
 .69
 .40
 .16
 .17
 .36
 .78
 .23
 .70
 .36

 1.00
 .95
 .41

 .36
 1.00
 .74
 .47
 .34
 .39
 .57
 .92
 .41
 .86
 .64

 1.00
 .99
 .65

 NOTE: The median probability model includes variables where the marginal inclusion probability is greater than or equal to 1/2.
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 Table 3. Out-of-sample prediction errors for the ozone data with the
 highest probability model using linear, quadratic, and interactions of

 the eight meteorological variables under each of the priors

 Prior M* R2 pM* RMSE(M*)
 HG3 hum, ibh, dpg, ibt, .762 7 4.4

 ibh.dpg, hum.ibt, ibh.ibt

 HG4 ibh, dpg, ibt, dpg2, ibt2, hum.ibh .757 6 4.5
 HG-n ibh, dpg, ibt, dpg2, ibt2, hum.ibh .757 6 4.5
 ZS-N ibh, dpg, ibt, dpg2, ibt2, hum.ibh .757 6 4.5
 ZS-F hum, ibh, dpg, ibt, hum2, ibt2, .780 11 4.4

 vh.temp, vh.ibh, temp.dpg,
 ibh.dpg, hum.ibt

 AIC hum, ibh, dpg, ibt, hum2, ibt2, .798 18 4.6
 vh.wind, vh.ibh, wind.ibh, vh.dgp,
 ibh.dpg, vh.ibt, wind.ibt,
 humid.ibt, wind.vis, dpg.vis

 BIC ibh, dpg, ibt, dpg2, ibt2, hum.ibh .757 6 4.5
 BRIC dpg, ibt, hum.ibt .715 3 4.6
 EB-L ibh, dpg, ibt, dpg2, ibt2, hum.ibh .757 6 4.5
 EB-G ibh, dpg, ibt, dpg2, ibt2, hum.ibh .757 6 4.5
 NOTE: RMSE is the square root of the mean of the squared prediction errors on the vali
 dation set using predictions from the highest probability model.

 priors perform as well as or better than other default choices.
 Because the global EB procedure must be approximated when
 the model space is too large to enumerate, the mixture g priors
 such as the Zellner-Siow Cauchy prior or the hyper-g priors
 provide excellent alternatives in terms of adaptivity and shrink
 age properties and robustness to misspecification of g, and still
 permit fast marginal likelihood calculations, a necessary feature
 for exploring high-dimensional model spaces.

 Priors on the model space are also critical in model selection
 and deserve more attention. Many Bayesian variable selection
 implementations place independent Bernoulli ico) priors on vari
 able inclusion. Setting co ? 1/2 corresponds to a uniform prior
 on the model space, which we have used throughout. Alterna
 tively, one may specify a hierarchical model over the model
 space by placing a prior on co and take a fully Bayesian or EB
 approach. For example, Cui and George (2007) use a uniform
 prior on co, which induces a uniform prior over the model size
 and, therefore, favors models with small or large sizes, and con
 trast this to EB estimates of co. Other types of priors include di
 lution priors (George 1999), which "dilute" probabilities across
 neighborhood of similar models, and priors that correct the so
 called "selection effect" in choice among many models (Jef
 freys 1961; Zellner and Min 1997).

 While we have assumed that Xy is full rank, the g-prior for
 mulation may be extended to the non-full-rank setting such as
 in analysis of variance (ANOVA) models by replacing the in

 verse of XyXy in the g prior with a generalized inverse and py
 by the rank of the projection matrix. Because marginal likeli
 hood calculations depend only on properties of the projection
 on the space spanned by Xy (which is unique), results will not
 depend on the choice of generalized inverse. For the hyper-g
 priors, the rank py must be less than in ? 3 ? a) in order for
 the Gaussian hypergeometric function to be finite and poste
 rior distributions to be proper. For the Zellner-Siow priors, we
 require py < n ? 2. For the p > n setting, proper posterior dis
 tributions can be ensured by placing zero prior probability on

 models of rank greater than or equal to (n ? 3 ? a) or (n ? 2)
 for the hyper-g and Zellner-Siow priors, respectively. In the
 small-/? setting, this is not an unreasonable restriction.

 For the large-/?, small-/? setting, independent priors on re
 gression coefficients have become popular for inducing shrink
 age (Wolfe, Godsill, and Ng 2004; Johnstone and Silverman
 2005). Many of these priors are represented as scale mixtures
 of normals and, therefore, may be thought of as scale mixtures
 of independent g priors. In conjunction with point masses at 0,
 these independent g priors also induce sparsity without restrict
 ing a priori the number of variables in the model; however, the
 induced prior distribution of the mean is no longer invariant
 to the choice of basis for a given model. Furthermore, closed
 form solutions for marginal likelihoods are no longer available
 and Monte Carlo methods must be used to explore both model
 spaces and parameter spaces. While beyond the scope of this ar
 ticle, an unresolved and interesting issue is the recommendation
 of multivariate versus independent mixtures of g priors.

 APPENDIX A: LAPLACE APPROXIMATIONS
 TO BAYES FACTORS

 Here, we provide details of Laplace approximations to the integral
 (13) and to posterior expectations of g/(\ + g) under the Zellner-Siow
 and hyper-g priors.

 For integrals of the form J0 exp(h(6))d6, we make repeated use
 of the fully exponential Laplace approximation (Tierney and Kadane
 1986), based on expanding a smooth unimodal function h(9) in a Tay
 lor series expansion about 6, the mode of h. The Laplace approxima
 tion leads to an 0(n~x) approximation to the integral,

 / exp(h(0))d6 y/2n?hh(0), (A.l) Jq
 where

 \-d2h(6) T1/2
 0=01

 (A.2) dQ?

 Write L(g) = (1 + g)("-^-1)/2fl + (1 - fl?)gr(/I~1)/2 for the
 (marginal) likelihood of g. For positive functions f(g), let h\(g) =
 log(/(g)) + log(L(g)) + log(7i(g)). Define also h2(g) = \og(L(g)) +
 log(7i(g)). The expected value of f(g) is obtained as the ratio of two
 Laplace approximations:

 ? exp(hi(g))dg chx exp(?i(gi)) nf(g)\My,Y):
 f??exp(h2(g))dg oh2 exp(h2(g2)) '

 where g\ and g2 are the modes of h\(g) and h2(g), respectively, and
 &?1? and (7/j2 are defined as in (A.2) using h\(g) and h2(g)?instead of
 h(0)?evaluated at their respective modes. The Laplace approximation
 to the integral in the denominator is exactly the required expression for

 the Bayes factor in (13). Using a Laplace approximation to estimate
 both the numerator and the denominator integrals leads to an 0(n )
 approximation to E(f(g)\My, Y) (Tierney and Kadane 1986).

 A.1 Laplace Approximations With Zellner-Siow Priors

 For the Zellner-Siow prior, the univariate integral for the marginal

 likelihood in (13) and, more generally, for E[gfl(l + g)b]\Y, M,y] is
 given by

 poo poo
 / exp(h(g))dg= (i+g)(n-Pr-l+2b)/2 Jo Jo

 X [1 + (1 - R2)g]Hn-l)/2ga-3/2e-nK2g) ^

 where the marginal likelihood corresponds to a = b ? 0 and the nu
 merator of the expected value of the shrinkage factor corresponds to
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 setting a = 1, b = ? 1. The mode, g/7, is provided by the solution to
 the cubic equation

 -{\-R2y)(py+3-2(a-b))g3

 + [n-py+2b-4 + 2(a + b-(\- a){\ - R^))]g2

 + [nil - R2y) + 2a - 3]g + n = 0, (A.3)
 with second derivative

 d2h(g) IT in- 1)(1 -R2) n-py-\ 3-2a 2n
 dg2 2  (l+g(l-/?2))2 d+g)2 g2 g3

 We next show that there is a unique, positive mode for h ig) in the
 interior of the parameter space. In general, there are three (possibly
 complex) roots, available in closed form, for the solution to (A.3) (see
 Abramowitz and Stegun 1970, p. 17). For the marginal likelihood (a =
 b = 0) and numerator of the expected value of the shrinkage factor
 (a = 1, b = ? 1 ), it is clear that

 r dh(g) n a v dh^) ft lim -> 0 and hm - < 0, g-?0 dg g^oo dg
 and because h ig) is continuous in 9\+, there exists at least one pos
 itive (real) solution in the interior of the parameter space. The fol
 lowing argument shows that there exists only one positive solution: If
 (A.3) has more than one real solution, then all three solutions are real.

 From (A.3), we know that the product of the three solutions is equal to

 n/[i\ ? Ry)ipy + 3) ? 2(a ? b)], which is positive for the functions
 of interest. Because we already know that one of the solutions is posi
 tive, the other two have to be both negative or both positive. However,
 the latter cannot occur because (A.3) implies that the summation of all
 pair products of the three solutions is negative.

 A.2 Laplace Approximations With Hyper-g Priors

 For the hyper-g prior, the integrand function exp(/zj ig)) = Lig) x
 nig) is maximized at g equal to

 / tf/ipy+a) gy =max-1,0
 \i\-R2)lin-\-py-a)

 For a=0, this is equivalent to the local EB estimate of g. While this
 provides excellent agreement for large n and R2 near 1, when gy = 0
 the usual large-sample Laplace approximation to the integral is not
 valid because the maximizer is a boundary point.

 There are several alternatives to the standard Laplace approxima
 tion. One approach when the mode is on the boundary is to use
 a Laplace approximation over the expanded parameter space as in
 Pauler, Wakefield, and Kass (1999). The likelihood function, Lig),
 is well defined over an extended parameter space g > ? 1 with max
 imizer of the function h2ig) over the expanded support given by

 gy = Ry/ipy +fl)/(l - Ry)/in ? 1 - py - a) - 1. However, this

 gives worse behavior than the original approximation when Ry is
 small, that is, when gy = 0.

 To avoid problems with the boundary, we instead apply the Laplace
 approximation after a change of variables to r = log g in approximat
 ing all the integrals related with hyper-g priors, including the Bayes
 factor (17), the posterior expectation of g in (18), and the posterior
 shrinkage factor (14). These integrals can all be expressed as in the
 following general form:

 / OO

 J gfc-1(l+g)C-1-^-?)/2[1+(1_?2)gr(?~l)/2^)
 where b is some constant; for example, the Bayes factor (17) corre
 sponds to b = 1. With the transformation g = eT, the preceding inte
 gral is equal to

 ?  e(*-?)r(1+cT)(n-l-pJ,-a)/2[1+(1_/j2)eTr(n-l)/2eTdTi

 where the extra eT comes from the Jacobian of the transformation of

 variables. Denote the logarithm of the integrand function by h(x). Set
 ting hf(x) = 0 gives a quadratic equation in eT :

 (2b - Py - a)(\ - R2y)e2x

 + [4b-py -a + R2y(n- 1 - 2b)2b]eT + 2b = 0.
 It is easy to check that only one of the roots is positive, which is given
 by

 ei = (([4b - py - a + R2(n - \ - ab)]2 - %b(2b - py - a)

 x (1 - R2y)){/2 -\\b - py - a + R2(n - \ - ab)])

 / (2(ab-Py-a)(\-R2y)).
 The corresponding variance &? in (A.2) is equal to

 -h"d)
 n ? 1 ? py ? a

 (\-R2y)eT

 (l+er)2
 1

 2[1 + (1-jr2)^t]2J

 A.3 Laplace Approximations With Hyper-g/n Priors

 The integrals can be expressed in the following general form:

 i??/-1(l+^-1-^)/2 JO

 [l + (l-*2)g]-(n-l)/2(1 +
 -a/2

 where b is some constant; for example, the Bayes factor (17) corre
 sponds to b = 1. With the transformation g ? eT, the preceding inte
 gral is equal to

 /: ^T(l+eT)("-1-Py)/2

 ?2, rn-(n-l)/2 x[ii(i-^Tin'i;/zl i +
 -a/2

 dr.

 Denote the logarithm of the integrand function by h(x). Its derivative
 is equal to

 dh(x) eT
 2??^- =2b + (n-l-py) dz  \+eT

 (n-\)  (l-RJ)eT  eT/n
 1 +eT In l + (l-fl?)??T

 Setting h'(x) =0 gives a cubic equation in eT :

 2bn + (2b-py - a)(\ - RJ)e3z

 + {[(1 - R2y)(Py - ab) - RJ]n + R2y + py

 + (2-R2)(a-2b))e2x

 + n[R2y (n-l)-py- a/n + 2b(l/n + 2 - R2y)]eT.
 The second derivative of h is given by

 dZh(T) 2-^? = ?a dr2  (\+neT) T^2  (n-\)  (\-R2y)eT
 (\ + (\-R2)e*)2

 + (n - py - 1) (l + er)2'
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 APPENDIX B: PROOF FOR THEOREM 3

 We first cite some preliminary results from Fern?ndez et al. (2001)

 without proof. Under the assumed true model My,

 1. If Aiy is nested within or equal to a model A4y', then

 RSSy/ 1 plim -- = 7. (B.l) n->oo n (p

 2. For any model My< that does not contain My, under assump
 tion (22),

 RSSy^ 1 plim -^ = ^^, (B.2) h->oo n (p + by>

 where RSSj, = (1 ? Ry)\\Y ? Y||2 is the residual sum of squares.

 Case 1 : My ^ M?\?
 We first show that the consistency result holds true for the local EB

 estimate. For any model My< such that My> D My / 0, because
 R2, goes to some constant strictly between 0 and 1 in probability, we
 have

 r rI/py' i
 (l+op(l)) (B.3) jEBL. 5y>  L(i-^,)/(?_i_v)

 and

 BFEBL[My' : MN]
 f i \in ? \ ? Pv')/2 p l in-i-pyy fyJ/

 ~ (l - R2 \^n-x~Py')/2 in-X)^-^/1 \ y)
 (B.4)

 p
 where the notation Xn ? Yn means that Xn/Yn goes to some nonzero
 constant in probability. Therefore,

 P 1 /RSSv/w\"/2
 BFEBL[^:My]~-??F^(s??^) . (B.5)

 Consider the following three situations:

 a. My H My / 0 and My <? My. Applying (B.l) and (22),
 we have

 fRSSy/n\"/2 ( \/4> W? plim --- = hm -

 which converges to 0 (in probability) exponentially fast with respect

 to n since by is a positive constant. Therefore, no matter what value
 py - py takes, the Bayes factor (B.5) goes to 0 (in probability).
 b. My ? My. By the result in Fern?ndez et al. (2001), (RSSy/

 RSSj,/)w/ converges in distribution to exp(x5 ,_p /2). Combining
 this result with the fact that the first term goes to 0 (because py > py),
 we have that the Bayes factor converges to 0.

 c. My n My ? 0. In this case we have nR2, converging in dis

 tribution to Xp //(I + $by), where by is defined in (B.2). Because

 i\+z)(n-l-py')/2
 BFebllAV : MN] = ?-^??-??

 <(l-?2/r("-D/2,

 we have BFeblLMj,' : M?y] ? Opil). On the other hand, because
 R2 goes to a constant strictly between 0 and 1, by (B.4) we have

 BFebllM,, : MN] -in- \rPy/2H ~ R$rn/2,
 where the second term goes to oo exponentially fast. So the Bayes
 factor goes to 0 in probability.

 Next, we show the consistency result for the global EB approach.
 Recall that

 ?EBG = argmax^p(My/)BF[My/:Mtf].
 ?>0 y>

 Our result for the local EB estimate implies that maximizing the right

 side is equivalent to maximizing BF[.Mj/ : Mj^]. So gEBG will be of
 the same order as gSBL = Op(n). Consequently, the global empirical
 Bayes approach is asymptotically equivalent to the unit information
 prior (BIC), and the consistency result follows.

 Finally, we prove the consistency result for three mixtures of g pri
 ors: Zellner-Siow priors, hyper-g priors, and hyper-g/n priors. Recall
 that for a 7i(g)-mixture g prior,

 BVAMy:MN]

 = J L(g)7T(g)dg

 -/(
 >2

 -(n-l)/2  JT(g) 1-^77- - 277?dg- (B-6) y !+?/ (l+g^W2
 A variation on the Laplace approximation uses the MLE and the square
 root of the reciprocal of the observed Fisher information as opposed
 to the posterior mode and to (A.l). The relative error is still 0(\/n)
 (Kass and Raftery 1995). As such, we can write (B.6) as

 BYAMr,My]

 =^iBFEBL[M^'^](1+0w)' (B-7)
 where

 -d2L
 SEBL

 -1/2

 is similar to (A.2). When My> H My ^ 0, R2, converges in probabil
 ity to a constant strictly between 0 and 1, so we have that the first two

 terms are bounded in probability [because <5y ? Op(n), 7t(g^,) =
 0P(n~3/2) for the Zellner-Siow prior; 7r(gEBL) = Op(n~al2) for

 the hyper-g prior; and 7r(gE?L) = Op(\) for the hyper-g/rc prior].

 In light of the consistency for the local empirical Bayes approach,
 we have established consistency in these circumstances in the mixture
 case.

 When My' n My ? 0, following the same reasoning used for the
 local EB estimate in this case, we have that nR2, converges in distrib

 ution to Xp , /(I + (pby). Then, when n is large, we have

 BFn[My> : MN] < zxp(CXl ,)(1 +0 [-^ n dg

 <2cxp(CX2Pyf), (B.8)
 where C is some constant. Therefore, it does not go to 00. On the other

 hand, we have that BF^ [My : M^] goes to 00 using an approxima
 tion as in (B.7). Therefore, B?n[My : My] -> 0.

 Case 2: My = Mn
 Both the local and the global empirical Bayes approaches are not

 consistent in this situation. For any nonnull model My>, we have

 that R2, goes to 0 and gyr ? max(Fp ,n_\^p , - 1,0), where
 Fp lM_\_p , denotes a random variable with an F distribution with

 degrees of freedom py> and n ? 1 ? py. This F -distributed random

 variable converges in distribution to Xp ,IPy'-> and, hence, gy> =
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 Op(l). Therefore, because BF[My : MN] > (1 + gy)~Py/2,
 BF[A4y/ : Al/vl cannot go to 0. The argument for the global em
 pirical Bayes approach is similar.

 Hyper-g priors are not consistent in this situation either. Indeed,
 because

 BFjrlMy : MN] > J (1 + g)~^/27r(g)dg,
 no proper prior that does not depend on n can lead to consistency under
 the null. However, the first inequality in (B.8) shows that if the preced
 ing integral vanishes as n goes to oo, then we achieve consistency. The
 prior on g must, therefore, depend on n. It is now easy to show that
 both the Zellner-Siow and hyper-g/n priors lead to consistency under
 the null.

 APPENDIX C: OZONE DATA

 Variables used in the ozone pollution example:

 ozone Daily ozone concentration (maximum 1-hour average, parts
 per million) at Upland, CA

 vh Vandenburg 500-millibar-pressure height (m)
 wind Wind speed (mph) at Los Angeles International Airport

 (LAX)
 hum Humidity (%) at LAX
 temp Sandburg Air Force Base temperature (?F)
 ibh Inversion base height at LAX
 ibt Inversion base temperature at LAX
 dpg Daggett pressure gradient (mmHg) from LAX to Daggett, CA
 vis Visibility (miles) at LAX

 [Received December 2006. Revised August 2007.]
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