
Linear Regression (2)
STA 102: Introduction to Biostatistics

Yue Jiang

The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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Back to Lab 01...
Last time we examined the regression of obesity percentage on
adequate exercise percentage.
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Do we think this is the only factor that can help us predict obesity
percentage?
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Multiple regression
The multiple regression model extends the simple linear regression
model by incorporating more than one explanatory variable. The
assumptions are similar to those of the simple linear regression
model. This type of model is often called a multivariable (not
multivariate) model.

A multiple regression model is often used to control for
confounders or predictors that explain important variability in the
response. Example:
I Knowing that a state has above average adequate exercise

percentage might tell you something about the obesity
percentage

I However, if you also knew the state’s smoking rate, you might
be able to predict obesity percentage more accurately

I If you also know that state’s HDI category, you might be able
to do better still!
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Multiple regression

The model is given by yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi + εi ,
where

I p is the total number of predictor or explanatory variables

I yi is the outcome (dependent variable) of interest

I β0 is the intercept parameter

I β1, β2, · · · , βp are the slope parameters

I x1i , x2i , · · · , xpi are predictor variables

I εi is the error (like the βs, it is not observed)

I Assumptions are essentially the same as in simple linear
regression

I Interpretations are conditional on other covariates in
model (more next)
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Multiple regression

Consider the model Obesityi = β0 + β1Exercisei + β2Smokingi + εi .
The parameter interpretations are below.

I β0 represents the expected obesity percentage for a state with
a value of 0 for all other predictors (i.e., adequate exercise and
smoking % of 0)

I β1 represents the expected increase in obesity percentage for a
1 percentage point increase in adequate exercise, holding all
other variables constant

I β2 represents the expected increase in obesity percentage for a
1 percentage point increase in smoking, holding all other
variables constant
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Multiple regression
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Multiple regression

Obesityi = β0 + β1Exercisei + β2Smokingi + εi .

I β̂0 = 36.1

I β̂1 = −0.31

I β̂2 = 0.54

How might we interpret these estimates?
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Hypotheses of interest

Hypotheses of interest may include the following:

I H0 : β1 = β2 = 0 vs. H1 : at least one of β1 or β2 is not 0.
This tests whether any of the predictors have any association
together with the outcome and is called an overall or group
test.

I H0 : β1 = 0 vs. H1 : β1 6= 0. This tests whether exercise % is
associated with obesity %, controlling for smoking %.

I H0 : β2 = 0 vs. H1 : β2 6= 0. This tests whether smoking % is
associated with obesity %, controlling for exercise %.
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Overall F test

The overall F test tests the hypothesis
H0 : β1 = β2 = · · · = βp = 0 (all non-intercept parameters are 0).
This is a test of whether any of our predictors are related to the
response. This is an F test like those we used in ANOVA and has
numerator df equal to the number of parameters being tested (p),
and denominator df equal to the total sample size minus the
number of mean parameters in the model (n − p − 1 because the
intercept is also a parameter).

In the CDC data, our p-value for the overall F test is < 0.0001 and
we conclude that at least one predictor is statistically significantly
related to obesity percentage.
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Particular predictors

We can also test parameters individually, as we did in simple linear
regression. For instance, the p-value corresponding to β̂1 was
significant at the α = 0.05 level in this dataset. Thus, we reject H0

and conclude that exercise % is related to obesity % after
controlling for smoking %.

We can also use the standard error to construct confidence
intervals. For instance, SE1 = 0.06. Thus, at the same smoking
%, a state with one percentage point exercise % higher than
another would be expected to have an obesity % that is -0.31
(-0.43, -0.19) greater (i.e., 0.31 percentage points less) than
another.
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R2

In our model, R2 = 0.7546, suggesting that about 75% of the
variability in obesity percentage can be explained by our model.

However, unadjusted R2 can never decrease when variables are
added to a model, even if they are useless.

Thus, we can use adjusted R2 ≤ R2, where the adjustment is
made to account for the number of predictors.

The adjusted R2 incorporates a penalty for each additional variable
in a model, so that the adjusted R2 will go down if a new variable
does not improve prediction much, and it will go up if the new
variable does improve prediction, conditional on the other variables
already in the model.
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Dummy variables

In regression settings, we can account for categorical variables by
creating dummy variables, which are indicator variables for certain
conditions happening. For instance, there are three categories of
HDI in the dataset: bottom ten, middle, and top ten.

When considering categorical variables, one variable is taken to be
the baseline or reference value. All other categories will be
compared to it.

STA 102: Introduction to Biostatistics Department of Statistical Science, Duke University

Yue Jiang Linear Regression (2) Slide 12



Dummy variables

Suppose the ”top ten” category is taken to be the referent value.
Then we can create two dummy variables:

I HDI == Middle: 1 if this condition is true; 0 otherwise

I HDI == Bottom Ten: 1 if this condition is true; 0 otherwise
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Dummy variable interpretation

Consider the model Obesityi = β0 + β1(HDI ==
Middle)i + β2(HDI == BottomTen)i + εi . The parameter
interpretations are below.

I β0 represents the expected obesity percentage for a state with
0 for the two dummy variables. That is, in the top ten HDI

I β1 represents the expected difference in obesity percentage for
a state in the middle HDI category, compared to the top ten

I β2 represents the expected difference in obesity percentage for
a state in the bottom ten HDI category, compared to the top
ten
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Dummy variable interpretation

Ôbesity i = β̂0 + β̂1(HDI == Middle)i + β̂2(HDI == BottomTen)i

How might you interpret the following estimates?

I β̂0 = 34.4

I β̂1 = −4.8

I β̂2 = −8.1
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Interaction effects

Sometimes, the effect of one variable depends on the value of
another. For example, the effect of exercise % on obesity may be
different for smokers vs. non-smokers. To model such a
relationship (often called effect modification because one variable
modifies the effect of another), we create an interaction term.

This is created simply by multiplying two predictors x1 and x2 to
create a new predictor, x1x2. When interaction terms are in a
model, interpretations can become tricky.
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Interaction

We can see whether the effect of exercise on obesity is modified by
smoking as follows. First we create an interaction term by
multiplying the predictors. The model is then

Obesityi = β0+β1Exercisei +β2Smokingi +β3ExerciseiSmokingi +εi
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Interaction

I β̂0 = 38.6

I β̂1 = −0.36

I β̂2 = 0.41

I β̂3 = 0.03

How do we interpret these estimates?
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Interpretation of interactions
For a given exercise (ex) and smoking (sm) percentage, our
predicted obesity (ob) percentage is

ôbi = β̂0 + β̂1exi + β̂2smi + β̂3exi smi

and for a state at the same smoking % but 1 percentage point
higher in exercise %, the predicted obesity percentage is

ôbi ′ = β̂0 + β̂1(exi + 1) + β̂2(smi ) + β̂3(exi + 1)smi

= β̂0 + β̂iexi + β̂1 + β̂2smi + β̂3exi smi + β̂3smi .

Subtracting, we have ôbi ′ − ôbi = β̂1 + β̂3smi , which is the
expected change in obesity % for a 1% change in exercise %.

The relationship of exercise and obesity depends on the level of
smoking in that state.
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Collinearity

One common problem in multiple regression is collinearity, which
occurs when multiple highly correlated variables are used as
predictors. In this case, the model can become unstable (often
seen as standard errors that get huge and lead to huge confidence
interval estimates), and it can be hard to assess the impact of the
predictors.
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Diagnosing collinearity

If nothing is predictive, we have some clues:

1. Individual predictors are significant in simple linear regression
models,

2. but standard errors and interval estimates are huge,

3. and the overall F test is significant

A significant overall F test with no significant individual variable
test is a typical sign of collinearity. We can check out the
correlations among the three predictors.
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Collinearity

There is no fixed criterion for correlation to exclude a variable for
collinearity. It is possible to construct examples where the
correlation is very high, but collinearity is not a problem because
the information about the outcome in the two variables is different.
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