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The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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Models for binary outcomes

Suppose we have a binary outcome (e.g., Y = 1 if a condition is
satisfied and Y = 0 if not) and predictors on a variety of scales.

If the predictors are discrete and the binary outcomes are
independent, we can use the Bernoulli distribution for individual
0-1 data or the binomial distribution for grouped data that are
counts of successes in each group.
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Models for binary outcomes

Let’s suppose we want to model P(Y = 1).

One strategy might be to simply fit a linear regression model to
the probabilities. E.g., model

P(Y = 1)i = β0 + β1x1i + · · ·+ βpxpi + εi .
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Primary biliary cirrhosis

The Mayo Clinic conducted a trial for primary biliary cirrhosis,
comparing the drug D-penicillamine vs. placebo. Patients were
followed for a specified duration, and their status at the end of
follow-up (whether they died) was recorded.

Researchers are interested in predicting whether a patient died
based on the following variables:

I ascites: whether the patient had ascites (1 = yes, 0 = no)

I bilirubin: serum bilirubin in mg/dL

I stage: histologic stage of disease (ordinal categorical variable
with stages 1, 2, 3, and 4)
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What can go wrong?

Suppose we fit the following model:

P(Y = 1)i = β0 + β1(ascites)i + β2(bilirubin)i + β3(stage = 2)i +
β4(stage = 3)i + β5(stage = 4)i + εi

What can go wrong?
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What can go wrong?

−1.0

−0.5

0.0

0.5

0.0 0.5 1.0 1.5
Predicted

R
es

id
ua

l

Residual plot

STA 102: Introduction to Biostatistics Department of Statistical Science, Duke University

Yue Jiang Logistic Regression Slide 6



What can go wrong?

Additionally, as a probability, pi must be in the interval [0, 1], but
there is nothing in the model that enforces this constraint, so that
you could be estimating probabilities that are negative or that are
greater than 1!
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From probabilities to log-odds

Suppose the probability of an event is p

Then the odds that the event occurs is p
1−p

Taking the (natural) log of the odds, we have the logit of p: the
log-odds:

logit(p) = log

(
p

1− p

)
.

Note that although p is constrained to lie between 0 and 1, the
logit of p is unconstrained - it can be anything from −∞ to ∞

STA 102: Introduction to Biostatistics Department of Statistical Science, Duke University

Yue Jiang Logistic Regression Slide 8



Logistic regression model

Let’s create a model for the logit of p:

logit(pi ) = β0 + β1x1i + · · ·+ βpxpi

This is a linear model for a transformation of the outcome of
interest, and is also equivalent to

pi =
exp(β0 + β1x1i + · · ·+ βpxpi )

1 + exp(β0 + β1x1i + · · ·+ βpxpi )
.

The expression on the right is called a logistic function and cannot
yield a value that is negative or a value that is > 1. Fitting a
model of this form is known as logistic regression.
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Logistic regression

logit(pi ) = log

(
pi

1− pi

)
= β0 + β1x1i + · · ·+ βpxpi

Negative logits represent probabilities less than one-half, and
positive logits represent probabilities above one-half.
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Interpreting parameters in logistic regression

Typically we interpret functions of parameters in logistic regression
rather than the parameters themselves. For the simple model

log

(
pi

1− pi

)
= β0 + β1x1,

we note that the probability that Y = 1 when X = 0 is

exp(β0)

1 + exp(β0)
.
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Interpreting parameters in logistic regression

Suppose that X is a binary (0/1) variable (e.g., X = 1 for males
and 0 for non-males). In this case, we interpret exp(β1) as the
odds ratio (OR) of the response for the two possible levels of X .
For X on other scales, exp(β1) is interpreted as the odds ratio of
the response comparing two values of X one unit apart.

Why? The log odds of response for X = 1 is given by β0 + β1, and
the log odds of response for X = 0 is β0. So the odds ratio of
response comparing X = 1 to X = 0 is given by
exp(β0+β1)
exp(β0)

= exp(β1).

In a multiple logistic regression model with more than one
predictor, this OR is interpreted conditionally on values of other
variables (i.e., controlling for them).
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Back to the PBC data

Fitting a logistic regression model, we obtain

Est. SE p-value

(Intercept) -3.14 1.05 0.003
ascites 2.87 1.07 0.007
bilirubin 0.31 0.06 < 0.001
stage = 2 1.25 1.10 0.253
stage = 3 1.72 1.07 0.109
stage = 4 2.17 1.08 0.044

Remember, this is for the linear effect on the log-odds (the logit).
How might we interpret these coefficients as odds ratios?
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Back to the PBC data
Remember, we are interested in the probability that a patient died
during follow-up (a “success”). We are predicting the log-odds of
this event happening.

I The β̂ corresponding to ascites was 2.87. Thus, the odds ratio
for dying is exp(2.87) ≈ 17.6. That is, patients with ascites
have 17.6 times the odds of dying compared to patients that
do not, holding all other variables constant.

I The β̂ corresponding to bilirubin was 0.31. Thus, the odds
ratio for dying for a patient with 1 additional mg/dL serum
bilirubin compared to another is exp(0.31) ≈ 1.36, holding all
other variables constant.

I The baseline stage was 1. The β̂ corresponding to stage 3 was
1.72. Thus, patients in stage 3 have approximately 5.58 times
the odds of dying compared to patients that do not, holding
all other variables constant.
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Predicted probabilities
There is a one-to-one relationship between p and logit(p). So, if
we predict logit(p), we can “back-transform” to get back to a
predicted probability.

For instance, suppose a patient does not have ascites, has a
bilirubin level of 5 mg/dL, and is a stage 2 patient.

Their predicted log-odds are

−3.14 + 0.31× 5 + 1.25 = −0.34

Thus, the predicted probability of dying for this individual is

exp(−0.34)

1 + exp(−0.34)
= 0.42.

(see slide 11 if you don’t know where this expression came from).
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Hypothesis tests in logistic regression

Generally, we wish to know whether the OR = 1 or equivalently,
whether the logit of p (a β coefficient) = 0. To test H0 : βj = 0,
we can compare the ratio of a parameter estimate to its standard
error using the standard normal distribution (reason we use Z
instead of t is a bit technical).
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Confidence intervals in logistic regression

Confidence intervals for the effects on the logit scale,

β̂j ± z?1−α/2 × ŜE (β̂j),

are typically translated into confidence intervals for ORs by
exponentiating the lower and upper confidence limits:(

exp
(
β̂j − z?1−α/2 × ŜE (β̂j)

)
, exp

(
β̂j + z?1−α/2 × ŜE (β̂j)

))
.

Don’t worry about the computational details for now, just know
that in order to get a confidence interval for ORs, the
“back-transformation” must be performed.
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