
Survival Data
STA 102: Introduction to Biostatistics

Yue Jiang

November 11, 2020

The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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Survival data

In many studies, the outcome of interest is the amount of time
from an initial observation until the occurrence of some event of
interest, e.g.

I Time from transplant surgery until new organ failure

I Time to death in a pancreatic cancer trial

I Time to menopause

I Time to divorce

I Time to receipt of PhD

Typically, the event of interest is called a failure (even if it is a
good thing). The time interval between a starting point and the
failure is known as the survival time and is often represented by t.
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Survival data

Certain aspects of survival data make data analysis particularly
challenging.
I Typically, not all the individuals are observed until their times

of failure
I An organ transplant recipient may die in an automobile

accident before the new organ fails
I A PhD student may withdraw from the program to start a

multi-billion dollar health company
I Not everyone gets divorced
I A pancreatic cancer patient may move to Fiji instead of

choosing to undergo further treatment

I In this case, an observation is said to be censored at the last
point of contact with the patient.
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Study time and patient time
It is important to distinguish between study time and patient time.

I A study may start enrolling patients in September and
continue until all 500 patients have been enrolled

I This is likely to take months or years

I Time is typically converted to patient time (time between
enrollment and failure or censoring) before analysis
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Survival function

The distribution of survival times is characterized by the survival
function, represented by S(t). For a continuous random variable T ,

S(t) = P(T > t),

and S(t) represents the proportion of individuals who have not yet
failed.

The graph of S(t) versus t is called a survival curve. The survival
curve shows the proportion of survivors at any given time. It is
non-increasing, with S(0) = 1 and limt→∞ S(t) = 0.
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Simple example

A small study enrolls 10 patients, whose outcomes are below:

Patient Event Time (x) Event Type

1 4.5 Death
2 7.5 Death
3 8.5 Censored
4 11.5 Death
5 13.5 Censored
6 15.5 Death
7 16.6 Death
8 17.5 Censored
9 19.5 Death

10 21.5 Censored

How do we estimate the survival curve for these data?
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Kaplan-Meier estimate
Perhaps the most popular estimate of a survival curve is the
Kaplan-Meier or product-limit estimate. This method is actually
fairly intuitive.

First, define the following quantities.
I Yt : # at risk of failure at time t (i.e., those who did not fail

before t and those who were not censored before t)
I dt : # who fail at time t
I qt = dt

Yt
: estimated probability of failing at time t

I S(t): cumulative probability of surviving beyond time t,
estimated as

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

I The
∏

symbol is for multiplication: e.g.,
∏3

i=1 xi = x1x2x3

and
∏5

i=1 i = 1× 2× 3× 4× 5.
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How is that intuitive?

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

At each time t, the probability of surviving is just 1− P(failing).
Before there are any failures in the data, our estimated Ŝ(t) = 1.
At the time of the first failure, this probability falls below 1 and is
simply one minus the probability of failing at that time, or
1− #failures

#at risk .

After the first failure, things get more complicated. At the time of
the second failure, you can calculate 1− #failures

#at risk , but this doesn’t
provide the whole picture, as someone else has already died. In
fact, this is the conditional probability of surviving now that you’ve
made it past the time of the first failure.
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How is that intuitive?

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

How do you then calculate the total (unconditional) probability of
survival? That is just the product of the probability of surviving
past the first failure times the conditional probability of surviving
beyond the second failure given that you made it past the first:

P(survived past first and second times)

= P(survive past first time)P(survive past second time|survived past first time)

=

(
1− #failures, failure time 1

#at risk of failing, failure time 1

)(
1− #failures, failure time 2

#at risk of failing, failure time 2

)
If someone is censored, they are no longer at risk of failing at the next failure

time and are taken out of the calculation.
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Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0
4.5 1 0
7.5 1 0
8.5 0 1

11.5 1 0
13.5 0 1
15.5 1 0
16.5 1 0
17.5 0 1
19.5 1 0
21.5 0 1
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Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0 10 1
4.5 1 0
7.5 1 0
8.5 0 1

11.5 1 0
13.5 0 1
15.5 1 0
16.5 1 0
17.5 0 1
19.5 1 0
21.5 0 1
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Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0 10 1
4.5 1 0 9 1− 1

10
= 0.9

7.5 1 0
8.5 0 1

11.5 1 0
13.5 0 1
15.5 1 0
16.5 1 0
17.5 0 1
19.5 1 0
21.5 0 1

STA 102: Introduction to Biostatistics Department of Statistical Science, Duke University

Yue Jiang Survival Data Slide 12



Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0 10 1
4.5 1 0 9 0.9
7.5 1 0 8 0.9× (1− 1

9
) = 0.8

8.5 0 1
11.5 1 0
13.5 0 1
15.5 1 0
16.5 1 0
17.5 0 1
19.5 1 0
21.5 0 1
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Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0 10 1
4.5 1 0 9 0.9
7.5 1 0 8 0.8
8.5 0 1 7 0.8× (1− 0

8
) = 0.8

11.5 1 0
13.5 0 1
15.5 1 0
16.5 1 0
17.5 0 1
19.5 1 0
21.5 0 1
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Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0 10 1
4.5 1 0 9 0.9
7.5 1 0 8 0.8
8.5 0 1 7 0.8

11.5 1 0 6 0.8× (1− 1
7
) = 0.69

13.5 0 1
15.5 1 0
16.5 1 0
17.5 0 1
19.5 1 0
21.5 0 1
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Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0 10 1
4.5 1 0 9 0.9
7.5 1 0 8 0.8
8.5 0 1 7 0.8

11.5 1 0 6 0.69
13.5 0 1 5 0.69
15.5 1 0
16.5 1 0
17.5 0 1
19.5 1 0
21.5 0 1
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Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0 10 1
4.5 1 0 9 0.9
7.5 1 0 8 0.8
8.5 0 1 7 0.8

11.5 1 0 6 0.69
13.5 0 1 5 0.69
15.5 1 0 4 0.69× (1− 1

5
) = 0.552

16.5 1 0
17.5 0 1
19.5 1 0
21.5 0 1
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Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0 10 1
4.5 1 0 9 0.9
7.5 1 0 8 0.8
8.5 0 1 7 0.8

11.5 1 0 6 0.69
13.5 0 1 5 0.69
15.5 1 0 4 0.552
16.5 1 0 3 0.414
17.5 0 1 2 0.414
19.5 1 0 1 0.414× (1− 1

2
) = 0.207

21.5 0 1

STA 102: Introduction to Biostatistics Department of Statistical Science, Duke University

Yue Jiang Survival Data Slide 18



Calculating the Kaplan-Meier estimate

Ŝ(t) =
∏
ti≤t

(
1− dti

Yti

)
.

t # Failed (dt) # Censored # Left (Yt+1) Ŝ(t)

0.0 0 0 10 1
4.5 1 0 9 0.9
7.5 1 0 8 0.8
8.5 0 1 7 0.8

11.5 1 0 6 0.69
13.5 0 1 5 0.69
15.5 1 0 4 0.552
16.5 1 0 3 0.414
17.5 0 1 2 0.414
19.5 1 0 1 0.207
21.5 0 1 0 0.207

What would Ŝ(21.5) be if the last observation were a failure
instead of censored?
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KM estimate

In between failure times, the KM estimate does not change but is
constant. This gives the estimated survival function its step-like
appearance (we call this type of function a step function).
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Tumors in children, 2012 Neuro-oncology

ATCT is an imaging-based biomarker of tumor prognosis

I Which biomarker values are
associated with the best
survival?

I Which values are associated
with the worst survival?

I What is the median survival
time in the group with the
smallest ATCT values?

I If a child is in the group with
the largest ATCT values,
what is his/her estimated
5-year survival probability?
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Log-rank test

How do we determine whether the difference in survival curves is
statistically significant?

The log-rank test is quite intuitive. The idea behind it is to
construct a 2× 2 contingency table by group (assuming two
groups; can be extended) at each time t at which a failure occurs.
Then, these tables are combined in a specific way
(Mantel-Haenszel) For this test, the null hypothesis is that the
survival curves in the two groups are the same, e.g.:

H0 : S1(t) = S2(t).

The test statistic follows a χ2
1 distribution under the null

hypothesis (if two groups).

STA 102: Introduction to Biostatistics Department of Statistical Science, Duke University

Yue Jiang Survival Data Slide 22



Survival vs. hazard

I Survival function
S(t) = P(T > t)

I Hazard function

h(t) = lim
∆t→0+

P(t ≤ T < t + ∆t|T ≥ t)

∆t

Instantaneous failure rate for observations, conditionally on already
having survived to time t

I Not a probability (assuming continuous T )

I Non-negative and unbounded for all t

I One-to-one relationship between the survival and hazard
functions (knowing one tells you exactly what the other is)
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The Cox proportional hazard model

Note: for your reference only – this will not be assessed on HW or
on the exam!

I By far the most commonly used regression model for survival
data

I Flexible handling of covariates, with attractive interpretation

I Fairly easy to fit and widely implemented

I Assumes that there is a constant hazard ratio for two different
subjects at all times. This may not always be satisfied!
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Interpretation of Cox model estimates
Note: for your reference only – this will not be assessed on HW or
on the exam!

hz(t) = h0(t) exp(β1X1 + β2X2 + · · ·+ βpXp)

I Each βj parameter is the log hazard ratio for a one-unit
increase in the associated predictor, holding all other
predictors constant

I Exponentiating, exp(βj) is the hazard ratio between two
individuals who values of Xj differ by one unit, holding all
other predictors constant

I h0(t) is the baseline hazard, assumed common to all subjects

Note the similarity in spirit to interpretations from logistic
regression. Positive β̂ (or exp(β̂) > 1) implies greater relative
hazard
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