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Multiple Regression by Matrix Algebra

I For simple linear regression, we showed

I how to compute MLE β̂ = (XtX)−1Xty.

I how to prove unbiasedness, E (β̂ | X) = β, and to derive
Var(β̂ | X) = σ2(XtX)−1.

I expressions for predicted values ŷ = Xβ̂ and residuals
r = y − Xβ̂ = (I− X(XtX)−1Xt)y.

I But most regressions use more than one explanatory variable.
How can matrix algebra help for multiple regression?



Multiple Linear Regression Model

I Model for multiple linear regression with independent
observations:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi , εi ∼ N(0, σ2).

I We can write this as

yi =
(
1 xi1 xi2 . . . xip

)


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β2
.
.
.
βp




+ εi , εi ∼ N(0, σ2).



Multiple Linear Regression in Matrix Form

I Let xi =



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xi2
.
.
.
xip


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, β =


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.
.
βp




.

I Then, yi = xtiβ + εi , εi ∼ N(0, σ2).



A More Compact Version of the Model

I We can write this even more compactly. Let

X =




1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
. . . . . . .
. . . . . . .
. . . . . . .
1 xn1 xn2 . . . xnp




y =




y1
y2
.
.
.
yn




ε =




ε1
ε2
.
.
.
εn




I Then, y = Xβ + ε, where each εi ∼ N(0, σ2) independently.



Writing Model as a Probability Density Function

I We can write the linear model as the p.d.f.,

f (y | x,β, σ2) = N(xtβ, σ2)

.

I Writing out the pdf, we have

f (y | x,β, σ2) =
1√

2πσ2
exp(−(y − xtβ)2/2σ2).

I This matches the expression that we used for simple linear
regression!



Maximum Likelihood Estimates, Predicted Values,
Residuals

I MLE: could take p + 2 partial derivatives of likelihood (with
respect to β0, . . . , βp, σ

2). But that would be awful!

I We can use the same logic and derivations as done for simple
linear regression, but with (p + 1) > 2 explanatory variables!

I Thus, the matrix expressions for the MLE, the predicted
values, and the residuals are EXACTLY the same as what we
derived previously and summarized on the first slide.



Variances of Maximum Likelihood Estimates, Predicted
Values, Residuals

I So are the matrix expressions for theoretical variances!

I Var(β̂ | X) = σ2(XtX)−1.

I Var(ŷnew ,avg | X, xnew ) = σ2xtnew (XtX)−1xnew .

I Var(ŷnew ,ind | X, xnew ) = σ2(1 + xtnew (XtX)−1xnew ).

I Estimate σ2 using an unbiased estimator,
RSE 2 = (y − Xβ̂)t(y − Xβ̂)/(n − (p + 1)).

I We will show that we match the answers from the lm function
in R.



Properties of MLE, Predicted Values, Residuals

I Expected values using matrix expressions are identical to what
we did previously!

I E (β̂ | X) = β, so MLE for β is unbiased.

I E (ŷ | X) = Xβ.

I E (r | X) = 0.

I As are variances!

I Var(r | X) = σ2(I− X(XtX)−1Xt).



What actually is a “linear model” anyway?

Which of the following (if any) depict a relationship that can be
considered a “linear regression model”?

1. yi = β0 + β1xi1 + β2x
2
i1 + β3xi2 + ϵi

2. yi = β1xi1 + β2xi2 + β3xi1xi2 + ϵi

3. yi = β0 +
β1xi1

β2xi2+β3xi3
+ ϵi

4. yi = β0 + β1x
(xi2+xi3)
i1 + ϵi

5. yi = β0 + β1 sin(xi1 + β2xi2) + β3xi3 + ϵi

6. yi = exp(β0 + β1xi1 + β2xi2 + β3xi3) + ϵi

7. yi = β1x
(xi2+β2xi3)
i1 + ϵi

8. yi = β0 + β1 cos(xi1) + β2 sin(xi2) + β3x
1/2
i3 + ϵi

9. yi = β1e
xi1 + β2e

xi2 + ϵi

10. yi = β0 + β1e
β2xi1 + β3xi2 + ϵi



Linear regression models

Linear regression models are linear in the parameters. That is, for a
given observation Yi :

Yi = β0 + β1f1(Xi1) + β2f2(Xi2) + · · ·+ βpfp(Xip) + ϵi

The functions f1, · · · fp may themselves be non-linear, but as long
as the β are linear in y, we have a linear regression model.

▶ Why would we want to use any function such that fk(u) ̸= u?

▶ What about y = exp(β0 + β1x1 + β2x2 + β3x3)?



Transforming predictors

Still technically a ”linear regression model”:

yi = β0 + β1xi1 + β2x
2
i1 + ϵi



Example: linear model interpretations

Let’s consider some various regression functions (most of them
linear). What happens when x1 changes in some various models?

∂

∂x1
(β0 + β1x1 + β2x2 + β3x3) = β1

∂

∂x1

(
β0 + β1x1 + β2x

2
1 + β3x2

)
= β1 + 2β2x1

∂

∂x1
(β0 + β1x1 + β2x2 + β3x1x2) = β1 + β3x2

∂

∂x2
(β0 + β1x1 + β2x2 + β3x1x2) = β2 + β3x1



That other model

y = exp(β0 + β1x1 + β2x2 + β3x3)

log(y) = β0 + β1x1 + β2x2 + β3x3

Although the RHS is a linear function of β, we do not have a linear
model for y ; it is linear in log(y).

This type of model (i.e., a linear relationship between β and an
invertible function of y) is known as a generalized linear model
(well, technically with the conditional expectation of Y , but more
on that later), and we will study this class of model in a few
lectures.



Example: linear model interpretations

Let’s focus on the “interaction model”

yi = β0 + β1xi1 + β2xi2 + β3xi1xi3 + ϵi

▶ What might we expect from a change in either of the
predictor variables?

▶ How might we use this intuition to interpret a model with
these so-called “interaction terms”?



Unpacking the design matrix



y1
...
yn




︸ ︷︷ ︸
y

=



1 x11 · · · x1p
...

...
. . .

...
1 xn1 · · · xnp




︸ ︷︷ ︸
X




β0
β1
...
βp




︸ ︷︷ ︸
β

+



ϵ1
...
ϵn




︸ ︷︷ ︸
ϵ

▶ X is sometimes called the design matrix.

▶ How might you include a categorical predictor with k levels in
a design matrix?



Dummy coding of categorical variables

Suppose we are trying to predict the amount of sleep a Duke
student gets based on whether they are in Pratt (vs. non-Pratt;
these are the only two options). Consider the following model:

Sleepi = β0 + β11(Pratti = “Yes”) + β21(Pratti = “No”)

In-class exercise:

▶ Write out the design matrix for this hypothesized linear model.

▶ Demonstrate that the design matrix is not of full column rank
(that is, affirmatively provide one of the columns in terms of
the others).

▶ Use this intuition to explain why when we include categorical
predictors, we cannot include both indicators for every level of
the variable and an intercept.



R, RStudio, etc.



Matrix operations in R

▶ as.matrix() function sets an object as a matrix object in R

▶ %*% is the matrix multiplication operation (e.g., A %*% B for
two matrices A and B)

▶ t() function takes the transpose of a matrix

▶ solve() function inverts a matrix



Matrix operations in R

▶ install.packages("palmerpenguins")

▶ library(palmerpenguins)

▶ head(penguins)



A basic regression model

(Body mass)i = β0 + β1(Flipper length)i + β2(Bill length)i + ϵi

▶ β̂0 = -5736.897; β̂1 = 48.145; β̂2 = 6.047

▶ Recover these estimates from the dataset directly using
matrix operations.


