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Chapter 1

More Probability

1.1 More Conditional Probability

This chapter continues the discussion of conditional chances from Chap-
ter 13 of FPP.

Example 1. In a particular city 48% of the voters are Republicans
and 52% are Democrats. And 78% of Democrats are in favor a particular
referendum while only 44% of Republicans are in favor.

� (a). What percentage of voters is in favor of the referendum?

� (b). Among supporters of the referendum, what percentage are Democrats?

Solution.

� (a). There are four kinds of voters: (Dem, Favor), (Dem, Against),
(Rep, Favor) and (Rep, Against). The percentage of voters that is
(Dem, Favor) is 78% of 48% � 37%. Likewise, the percentage of
voters that is:

{ (Dem, Against) = 22% of 48% � 11%,

{ (Rep, Favor) = 44% of 52% � 23%,

{ (Rep, Against) = 56% of 52% � 29%.

So the percentage of voters in favor of the referendum is about 37%+
23% � 60%.

� (b). About 60% of voters support the referendum: 37% Democrats
and 23% Republicans. 37% is what percent of 60%? 37=60 = x=100;
x = 37�100=60� 62%. That's the answer: about 62% of the Favor's
are Democrats.
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4 CHAPTER 1. MORE PROBABILITY

Example 1, part b can be recast as a question about a conditional chance.
(See FPP pages 226-229.) Randomly select a voter. What is the condi-
tional chance that he or she is a Democrat given that he or she is in favor
of the referendum? In other words, what is P(DemjFavor)? The numerical
calculations will be just the same as in the previous solution but we will
think of them as chances for random sampling instead of percentages of
voters.

The Multiplication Rule (FPP, pg. 229) says

P(Dem, Favor) = P(Favor)� P(DemjFavor):

So
P(Dem j Favor) = P(Dem, Favor)=P(Favor)

The numerator is

P(Dem, Favor) = P(Dem)� P(FavorjDem) � 48%� 78% � 37%:

And the denominator is

P(Favor) = P(Dem,Favor) + P(Rep,Favor) � 37%+ 23% � 60%:

So P(DemjFavor) is about 37% / 60%, or about 62%.
Example 1 illustrates a common statistical problem. We know an un-

conditional chance for event A | party a�liation | and a conditional
chance for event B | referendum support | given A. We want to �nd
the conditional chance of A given B | party a�liation given referendum
support. In symbols, we know P(A) and P(BjA); we want to �nd P(AjB).
In symbols the solution is

P (AjB) = P (A and B)=P (B)

= P (A and B)=P (A and B) + P (not A and B)

= P (A) � P (BjA)=(P (A)� P (BjA) + P (not A) � P (Bjnot A))

And the �nal line is in terms of things we know.
Because this sort of problem is so important we examine it in more

detail.
The �rst equality is the Multiplication Rule. The chance that both A

and B happen equals the chance of B times the conditional chance of A
given B. The chance that a randomly selected voter is (Dem, Favor) equals
the chance that the voter is a Democrat times the conditional chance that
she favors the referendum given that she is a Democrat.
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The second equality is just listing all the ways B can happen | B can
happen either with A or with its opposite | and adding the chances. The
chance that the voter is for the referendum is the chance that she is (Dem,
Favor) plus the chance that she is (Rep, Favor).

The third equality is the Multiplication Rule again. P(A and B) equals
P(A) times P(B) given A; and P(not A and B) equals P(not A) times
P(B) given not A. The chance that the voter is (Dem, Favor) equals the
chance she is a Democrat times the chance she is in favor given that she is
a Democrat; and the chance she is (Rep, Favor) equals the chance she is a
Republican times the chance she is in favor given that she is a Republican.

And the result is in terms of things we know:

� P(A) (chance of Democrat, 48%),

� P(not A) (chance of Republican, 52%),

� P(BjA) (chance of Favor given Democrat, 78%), and

� P(Bj not A) (chance of Favor given Republican, 44%).

Bayes' Rule.

P (AjB) = P (A)P (BjA)
P (A)P (BjA) + P (not A)P (Bjnot A)

If you want to know P (AjB), check to see whether you know P (A),
P (BjA) and P (Bjnot A). If you do, use Bayes' rule.

Example 2. (Hypothetical) Suppose the incidence (rate in the popula-
tion at a point in time) of AIDS is 0.2%, or 2 in 1000 people and that a test
to diagnose AIDS will correctly diagnose it in 97% of the people who have
AIDS and correctly diagnose its absence in 99% of the people who do not
have AIDS. If a randomly chosen person tests positive, what is the chance
he has AIDS?

Solution. We want the chance that a randomly selected person has
AIDS, given that he tests positive. Bayes' rule says the chance is

P (AIDS)� P (test positivejAIDS)
P (AIDS)� P (test positivejAIDS) + P (not AIDS)� P (test positivejnot AIDS) ;

which is
0:2%� 97%

0:2%� 97%+ 99:8%� 1%
;

or about 16%.
It may seem surprising that with such an accurate test the chance is

only about 16% that a person who tests positive actually has AIDS, but
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it's correct. Among 100,000 people, about 200 will have AIDS and about
194 of them will test positive. The other approximately 99,800 people will
not have AIDS, and about 998 will test positive. That's about 194 + 998
= 1192 people who test positive. Among the positives, only 194, or about
16%, really have AIDS.

1.2 Probabilities for Degrees of Belief

If it is not known, it has probability.

FPP presents the frequency theory of probability. (See page 221 for
explanation.) In addition to the frequency theory, this supplement also uses
probability to represent degrees of belief. (See Statistics: A Bayesian

Perspective by Don Berry for an introductory book based solely on the
degrees-of-belief interpretation of probability.) It is often necessary for us to
assess a degree of belief about an event which is not repeatable, and which
therefore would not be covered by the frequency theory of probability.

For example, consider the space shuttle Challenger. The shuttle's booster
rockets were constructed in four sections. The joints between the sections
were sealed with O-rings. On the night of January 27, 1986 the Challenger
was on the launch pad, scheduled for a morning 
ight. The temperature
was 31�F, much colder than any previous launch, and the NASA engineers
did not know whether the O-rings would function properly in such cold
weather. With only a bit of simpli�cation, we may say there were two
possible decisions | either launch now or wait for warmer weather. And,
if they launched now, there were two possible outcomes | either success
or disaster. In order to decide whether to launch now, the NASA deci-
sion makers had to estimate the chances of success and disaster. That is,
they had to assess their degree of belief in whether the O-rings would work
properly.

There is no public record of their assessment of the chances. We be-
lieve they made the assessment informally and approximately. Later, sev-
eral statisticians tried to make the assessment more formally and accu-
rately. Their work is described in Chance magazine. (Dalal, Siddhartha,
R., Fowlkes, Edward B., and Hoadley, Bruce, \Lesson Learned from Chal-
lenger: A Statistical Perspective." Chance, 3(2), 1989.). They estimated
the chance of failure at 30� F, as about 16%.

Here are two simpler examples that illustrates the main features.
Example 1. Omar tosses a coin, catches it and looks at it; but does

not show it to Raquel. For Raquel, the chance of Tails on the coin is 50%.
But Omar has seen the coin and knows that it landed Tails. For Omar the
chance of Tails is 100%.
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There are two things to notice. First, Raquel assesses a 50% chance for
an event that is not random. Once the coin has been tossed, its outcome is
no longer a chance event. But for Raquel, a 50% chance of tails still makes
sense because she doesn't know the outcome. The chance doesn't represent
the event. It represents Raquel's belief about the event.

Second, two people can assess di�erent chances for the same event.
Omar and Raquel assess di�erent chances for the coin toss because Omar
has seen the result and Raquel hasn't. Her chance represents her belief and
Omar's represents his. Omar and Raquel assess di�erent chances because
they have di�erent information and di�erent beliefs. And their di�erent
chances represent those di�erences.

Example 2. \Is the Defense Department's share of the national budget

greater than or less than 30%?" Joe doesn't know the answer but thinks
the DOD budget share is right around 30%. He would be willing to bet even
money either way. For Joe the chance is about 50% for each alternative.
But Flavia recalls reading that the DOD budget share is under 20% and is
fairly certain of her recall. She assess the chance for greater than 30% as
about 3% and for less than 30% as about 97%.

Of course, the truth could be ascertained by looking it up. And then
Joe and Flavia would want to change their box models. But, until they
do look it up, Joe and Flavia have di�erent information and di�erent box
models.

And here's an example where the chances aren't so clear.
Example 3. Bettor Z is o�ered a bet on contestant A in a tennis match

at even odds. Z will accept the bet if he believes that A has at least a
50% chance of winning. The tennis match is not a chance event. It will be
determined by skill, strength and state of mind, among other things. And
it is not an event that can be repeated many times to see how often A wins.
It is a one shot, non-random occurence. Yet the \chance that A wins" is
still a useful concept, at least for Z who must assess whether it is greater
than 50%. Of course Bettor Y, who o�ered the bet at even odds, may have
di�erent beliefs and assess the chances di�erently.

1.3 Assessing Probabilities for Beliefs

It is sometimes useful to use a box model to represent a person's beliefs.
How is the box model constructed? One way is to think carefully in a struc-
tured way about one's beliefs. In Statistics: A Bayesian Perspective

Don Berry describes this process.

To measure one's degree of belief requires a scale, just like
any other measurement. For degrees of belief the scale is a
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calibration experiment. The assessor | let's take it to be
you | must be able to imagine an experiment with equally
likely outcomes. To decide whether outcomes are equally likely,
suppose you get to choose any one of the possible outcomes. I
promise to pay you $100 should the experiment result in the
outcome you choose. Outcomes in the set are equally likely for

you if you are indi�erent among them. . . . .

For example, suppose I o�er to pay you $100 if you call the
roll of a six-sided die correctly. If you are indi�erent as to which
one you call, then the six sides are equally likely for you.

There are many candidates for calibration experiments. . . . .
One possibility is . . . selecting a chip from a bowl that contains
chips of the same size and shape.

. . . I will use chip-from-bowl experiments to calibrate. . . . the
chips are equally likely, each having probability 1 divided by the
number of chips in the bowl.

Consider a speci�c setting. I would like to know your prob-
ability that average adult male emperor penguins weigh more
than 50 lb | call this event A. Since I cannot obtain answers to
my questions directly from you, I will guess them. My guesses
will be wrong for many readers. Some of you know more about
penguins than do others, and some of you may even be penguin
experts. You should follow along in any case, but use your ac-
tual answers to modify what I say in a way that I hope will be
clear to you.

A bowl contains a green chip and a red chip . . . . I o�er
you the choice of getting $100 if a chip selected from the bowl
is green and $100 if A is true (that is, if average adult male
emperor penguins do weight more than 50 lb.). If you choose to
select from the bowl and the chip is red or if you choose A and it
turns out that A is not true, then you receive nothing. You say
you prefer A. Since you chose A over an event of probability 1

2
,

I interpret this as saying that your probability of A is at least
1

2
.

Consider a new bowl, . . . : three green chips and one red chip.
Again, you may choose between $100 if a chip selected from the
bowl is green and $100 if A is true. Now you prefer the chip.
Taken together, your two answers mean that 1

2
� P (A) � 3

4
.

. . . . We proceed in this way, . . . , until we know P (A) su�ciently
accurately.
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1.4 Exercises

1. Suppose 43% of a population favors a referendum. Of those that
favor the referendum, 74% are Democrats. Of those that do not
favor the referendum, 27% are Democrats. What is the chance that
a randomly selected voter is a Democrat? What is the chance that
a randomly selected voter is a Democrat who favors the referendum?
Given that a person is Democrat, what is the chance he or she favors
the referendum?

2. (Hypothetical) The advertisers of a home pregnancy test say that
based on their clinical trials on a large random sample of women, the
test is 99% accurate. Assume the following: a) if a women is pregnant
the test accurately reports she is pregnant 99.5% of the time b) if a
woman is not pregnant the test accurately reports that she is not
pregnant 98.5% of the time, c) 5% of all women that buy a home
pregnancy test are pregnant. If a woman buys a test kit, and the
test is positive, what are the chances she is pregnant? If a woman
buys a test kit, and the test is negative, what are the chances she is
pregnant?

3. Design a chip-from-bowl experiment to assess several friend's beliefs
that the earth has been visited by extraterrestrial life.
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Chapter 2

Which Box Model?

2.1 Statistical Hypotheses

Data are arriving according to a chance process. We don't know what the
correct box model is. To learn about the chance process we look for box
models that do a good job of explaining the data. There are two steps:

� Make a list of possible box models;

� See how well each box model explains the data.

A statistical hypothesis is a box model. The hypothesis says two things. It
says the data are like draws from a box. And it says what tickets are in
the box.

Example 1. Thumbtack. Problem 1 of Exercise Set B on page 449 of
FPP says \A thumbtack is thrown in the air. It lands either point up or
point down." One person proposes a box model with two tickets | one
U and one D. That's a simple hypothesis. Another person proposes a box
model with three tickets | one U and two D's. That's another simple
hypothesis. The �rst hypothesis is correct if the chance of U is equal to
50%; the second is correct if the chance of U is equal to 33%. We don't
know whether either hypothesis is correct.

Example 2. Psychic. A card is dealt from a standard deck. A psychic
claims to be able to guess the suit with 80% accuracy. The psychic's box
model has four 1's and one 0. A skeptic's box model has one 1 and three
0's. These are two simple hypotheses.

Where do statistical hypotheses come from? Good hypotheses represent
sensible statements about the chance process generating the data. In Ex-
amples 1 and 2 the data are classifying and counting either Ups and Downs

11



12 CHAPTER 2. WHICH BOX MODEL?

or Corrects and Incorrects. FPP, page 301 says \If you have to classify
and count the draws, put 0's and 1's on the tickets." What's unknown is
the chance of success. So statistical hypotheses are boxes with di�erent
percentages of 0's and 1's, representing di�erent chances of success.

Example 3. The Slater School. An article written by Paul Brodeur
(The New Yorker, ????) describes the Slater School, an elementary school
in California where 8 out of 145 female teachers, about 5.5%, had contracted
cancer of the reproductive system. The school was near some high tension
power lines and there was concern among the teachers that the power lines
were contributing to the high cancer rate.

Is contracting cancer a chance process? From a scienti�c perspective
the answer is not clear. We don't know why some women get cancer and
others don't. It might be chance or it might not. But from a statistical per-
spective we can imagine randomly selecting a woman from the population
and observing whether she contracts cancer. What population? The pop-
ulation of women similar to the Slater teachers. Can we actually perform
this experiment? No. The Slater teachers are not selected randomly.

A national cancer registry indicates that about 3% of women nationally,
of an age typical of the Slater teachers, develop cancer of the reproductive
system.

One statistical hypothesis is that female teachers at the Slater school
develop cancer at the same rate as women nationally. According to this hy-
pothesis, whether a particular female teacher develops cancer is like drawing
from a box with three 1's and ninety-seven 0's. If this hypothesis were true,
we would expect about 0:03� 145 � 4 reproductive cancers to have devel-
oped among the 145 female teachers at Slater. The four \extra" cancers
would just be due to chance variation.

Three other statistical hypotheses say that a particular female teacher
at Slater developing a reproductive cancer is like drawing from a box with

� four 1's and ninety-six 0's or

� �ve 1's and ninety-�ve 0's or

� six 1's and ninety-four 0's.

Why these three hypotheses and not others? Because (a), learning the
cancer rate to the nearest percentage point is accurate enough and (b), a
cancer rate of 6% is twice the national average and it's unlikely that the
underlying rate at Slater is higher than that. So these hypotheses will
su�ce, unless further investigation suggests otherwise.

Later in this supplement we will see how strongly the data support each
of the four hypotheses.
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In the three examples so far, the data have been like draws from a 0-1
box. They were classifying and counting the number of Ups and Downs
for the thumbtacks, the number of rights and wrongs for the psychics, or
the number of cancers for the Slater teachers. But not all data are like
draws from a 0-1 box. Another important case is when the data follow
the normal curve. In fact, FPP say \It is a remarkable fact that many
histograms follow the normal curve." This can happen when either

� the data are like draws from Gauss' error box and the numbers in the
error box follow the normal curve, or

� the data are a random sample from a population that follows the
normal curve.

Example 4. Weight Loss Drug. A study evaluated the e�ectiveness
of a weight loss drug. The quantity of interest is the average weight loss
among people who use the drug. The weight of 1000 participants was taken
before and after taking the drug for 8 weeks. Changes in weight followed
the normal curve and ranged from +2 to -22. The average change was
-10 and the SD of the sample was 3. Suppose that prior to the study, a
previous 'pilot' study reported an average of -12 with an SE of 1. Based
on these results your prior belief could be represented by a normal curve
with an average of -12 and a SD of 1. This means that apriori, 2/3 of your
probability was on values of the average between -17 to -7, 1/6 on values
less than -17 and 1/6 on values greater than -7. Only about 1% of your
apriori probability was on values of the average that re
ects no change or
weight gain.

What is your belief about the average weight loss after the study? Com-
bining your prior belief with the data requires calculus, but calculus shows
that after observing the data your belief will look like a normal curve. The
new distribution will be somewhere between your priori belief and the av-
erage you observed in the sample. The variability in your prior beliefs and
the variability in the sample will determine precisely where your new beliefs
will fall. After you observe the data and apply Bayes Rule the distribution
of the average weight loss will follow a normal curve. When the sample size
is large, the normal curve will be centered around

1
prior SD2

1
prior SD2 +

n
sample SD2

�prior avg+
n

sample SD2

1
prior SD2 +

n
sample SD2

�sample avg:
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The normal curve will have an SD

1r
1

prior SD2 +
n

sample SD2

:

If the sample size is small, adjustments must be made. In the weight loss
example, the normal curve will be centerd around

1
12

1
12

+ 1000
32

� -12 +
1000
32

1
12

+ 1000
32

� -10 = �10:02;

and the normal curve will have an SD of

1q
1
12

+ 1000
32

= :09:

After updating prior beliefs with the information provided by the data, the
distribution is called the posterior distribution. Figure 2 shows prior and
posterior distributions for the weight loss example.
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Figure 2.1: 2. Prior and Posterior Distributions for Average

Weight Loss
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2.2 Statistical Evidence

To learn about a chance process we see how well each statistical hypothesis
explains the data. Each statistical hypothesis represents a di�erent theory
about the chance process and we evaluate theories by seeing how well they
explain the data.

Example 1. Thumbtack, continued. Recall Example 1 of Chap-
ter 2.1. There are two hypotheses about the chance a thumbtack lands Up
when tossed: one says it's 50%, the other says 33.3%. We toss the thumb-
tack four times and get 2 Ups and 2 Downs. That seems to support the
�rst hypothesis. But there are only four tosses so the evidence isn't very
strong. Or is it? Can we say how strong the evidence is?

Use the binomial formula (FPP Chapter 15, Section 2) to calculate the
chance of 2 Ups and 2 Downs. According to the �rst hypothesis it's

4!

2!2!
0:520:52 = 0:375:

According to the second it's 0.296. So the �rst hypothesis does explain
the data better. It's the ratio 0:375=0:296 � 1:3 that matters. The �rst
hypothesis explains the data about 1.3 times better than the second. The
data support the �rst hypothesis over the second by a ratio of about 1.3 to
1. That's not much.

Example 2. Psychic, continued. Recall Example 2 of Chapter 2.1.
There are two hypotheses about the chance a psyhic can guess the suit of
a card randomly chosen from a standard deck: one says it's 80%, the other
says 25%. The psychic makes 100 trials and guesses 30 correctly. How
strong is the evidence for deciding between the two hypotheses?

The data are like the sum of 100 draws from a 0-1 box. The �rst
hypothesis says the expected number correct is 80 and the SE is 4. 100
draws are a lot so the Normal approximation applies (FPP, Chap. 18).
The chance of getting exactly 30 correct is about the area under the Normal
curve from (29:5� 80)=4 � �12:6 to (30:5� 80)=4 � �12:4. That area is
miniscule.

The second hypothesis says the expected number is 25 and the SE is
about 4.33. So the chance of exactly 30 correct is like the area under the
Normal curve from (29:5� 25)=4:33� 1:04 to (30:5� 25)=4:33� 1:27. The
area is about 5%. It's the ratio that's important: 5% compared to almost
0%. The second hypothesis explains the data much better than the �rst.
The data support the skeptic, not the psychic, by extremely large odds.

Example 3. Slater school, continued. Recall Example 3 of Chap-
ter 2.1. 8 out of 145 women developed reproductive cancer. Four statistical
hypotheses say the cancer rate is:
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� (a) 3%,

� (b) 4%,

� (c) 5% and

� (d) 6%.

What does the evidence say? The Normal approximation applies.

� Hypothesis (a) says the expected number of cancers is 3% of 145 =
4.35 and the SE is

p
145� 0:03� 0:97 � 2. So the chance of exactly 8

cancers is like the area under the Normal curve from (7:5�4:35)=2 �
1:57 to (8:5� 4:35)=2 � 2:07. The area is about 4%.

� Hypothesis (b) says the expected number of cancers is 4% of 145
= 5.80 and the SE is

p
145� 0:04� 0:96 � 2:4. So the chance of

exactly 8 cancers is like the area under the Normal curve from (7:5�
5:80)=2:4 � 0:71 to (8:5� 5:80)=2:4 � 1:13. The area is about 11%.

� Hypothesis (c) says the expected number of cancers is 5% of 145
= 7.25 and the SE is

p
145� 0:05� 0:95 � 2:6. So the chance of

exactly 8 cancers is like the area under the Normal curve from (7:5�
7:25)=2:6 � 0:10 to (8:5� 7:25)=2:6 � 0:48. The area is about 14%.

� Hypothesis (d) says the expected number of cancers is 6% of 145
= 8.70 and the SE is

p
145� 0:06� 0:94 � 2:9. So the chance of

exactly 8 cancers is like the area under the Normal curve from (7:5�
8:70)=2:9 � �0:41 to (8:5 � 8:70)=2:9 � �0:07. The area is about
13%.

The data support the four hypotheses in the ratio of about 4 to 11 to 14
to 13. That's moderate, but not overwhelming evidence against hypothesis
(a).

Does this mean that high tension power lines are causing excess cancers
among Slater teachers? No. The statistical analysis can only shed light on
whether the cancer rate at Slater is higher than the national average. It
does not tell us about possible causes of the excess cancer.

Does the analysis provide evidence that there is some hidden factor, pos-
sibly power lines, leading to a higher cancer rate at Slater? Not necessarily.
The rate at Slater is higher than the national average, and the analysis says
the discrepancy is moderately di�cult to explain by chance. But there are
plenty of other possible explanations besides chance. The Slater teachers
are not selected randomly; they are probably di�erent in many ways from
the women who go into the national average. A more thorough analysis
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would look for di�erences that might explain the increased cancer rate. And
it would take account of other studies of the relationship between power
lines and cancer.

2.3 Reassessing the Chances

Evidence or data causes us to revise our beliefs. And therefore it causes
us to reassess the chances. Most people are used to revising their beliefs
or opinions casually and might even think they do a good job of it. But
research has shown time and time again that most people revise their beliefs
irrationally. This section shows how to revise beliefs and reassess chances
correctly, according to the laws of probability. The tool is Bayes' Theorem.

For example, a patient thinks she might have a particular disease and
consults a doctor. Based on symptoms, history, prevalence, etc., the doctor
forms an opinion and assesses the chance that the patient has the disease.
Next, the doctor orders a test. But tests aren't perfect. Usually, patients
with the disease test positive; but, sometimes they test negative. And
usually, patients without the disease test negative; but sometimes they
test positive. When the patient tests positive that is evidence, but not
conclusive, that she has the disease. The doctor forms an updated opinion
and reassesses the chance.

Because the test was positive, the new chance will be more than the
old one. But how much more? That's the point where peoples' judgement
tends to be faulty and where we need probability to help us. The doc-
tor knows P (Disease), the chance this patient has Disease; that's what he
assessed initially. He also knows P (+jDisease), the conditional chance of
a positive test among people who have the disease and P (+jno Disease),
the conditional chance of a positive test among people who don't have the
disease. He wants P (Diseasej+), the conditional chance this patient has
the disease given her positive test. This is a case for Bayes' theorem.

We've already seen just such an example in the AIDS example of Sec-
tion 1.1. There, the incidence of AIDS was 0.2 of 1%. Let's take that as
the doctor's initial assessment of the chance that this particular patient has
AIDS. When she tested positive we saw that the revised assessment should
be only about 16%.

Example. The Slater School, continued. Recall Example 1 of Chap-
ter 1.3 about a high rate of reproductive cancer among female teachers at
the Slater school. There were four statistical hypotheses: that the repro-
ductive cancer rate among female teachers was (a), 3%, (b), 4%, (c), 5%
or (d), 6%. I wanted to assess my chances for each of these four hypothe-
ses accounting both for what I already knew about power lines and cancer
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and for the evidence from Slater school itself. My plan was to assess the
chances without considering the evidence from Slater, and then revise the
assessment using Bayes' Theorem.

To begin, I considered the chance that high tension power lines con-
tributed to the reproductive cancer rate. I had read some articles about
epidemiological studies showing that proximity to high tension lines was
correlated with cancer. But I had also read the statements of highly re-
spected physicists and biologists that the electric and magnetic �elds pro-
duced by high tension lines were so small that they could not have any
biological e�ect. I wasn't sure which side was correct and I found the
epidemiological studies and the statements of the physicists and botanists
about equally compelling. So I assessed the chance of hypothesis (a), the
Slater rate is 3%, as about 50%.

Now, supposing high tension lines do increase cancer, how much can
they increase it? A rate of 6% meant that about 50% of all reproductive
cancers would be due to the high tension lines. I thought the e�ect of
high tension power lines was unlikely to be that high. So my chance for
hypothesis (d) was fairly small. In fact, I assessed it as about 10%. I also
thought that hypothesis (b) was slightly more plausible than hypothesis
(c). After a bit more thought I assessed the chance of (b) as about 22%
and the chance of (c) as about 18%.

These were my initial assessments:

P (A) � 50%; P (B) � 22%; P (C) � 18%; and P (D) � 10%:

In Section 2.2 we computed

P (8 cancersjA) � 4%

P (8 cancersjB) � 11%

P (8 cancersjC) � 14%

P (8 cancersjD) � 13%

I wanted my revised assessments, i.e. P (Aj8 cancers), P (Bj8 cancers),
P (Cj8 cancers), and P (Dj8 cancers). Bayes' theorem gives the answer.

P (Aj8 cancers) � 25%

P (Bj8 cancers) � 27%

P (Cj8 cancers) � 31%

P (Dj8 cancers) � 17%
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2.4 Inference

In this chapter we've been using data to help distinguish between di�erent
box models. The process is called inference. Here's a summary of inference
when we're distinguishing between 0-1 boxes. It applies when

� the data are like draws from a box,

� the box is a 0-1 box, and

� we don't know the proportions of 0's and 1's that belong in the box.

We want to learn about the proportions of 0's and 1's. The procedure is:

1. Propose some hypotheses; that is, propose box models with di�erent
proportions of 0's and 1's. In our examples, this is the number of U's
and D's for the thumbtack, the number of 0's and 1's for the psychic,
or the number of 0's and 1's for the Slater School. How many should
you propose; and which ones? There's no set answer. In the Slater
example we proposed four hypotheses with di�erent proportions that

(a) were di�erent enough from each other to represent scienti�cally
important di�erences, and

(b) spanned the range of reasonable proportions,

2. Calculate how well each hypothesis explains the data. Because the
data are like classifying and counting the draws from a 0-1 box, the
binomial formula applies. That's what we used in the thumbtack
example. When the sample size is large, the normal approximation is
easier and accurate. We used it in the psychic and Slater examples.

This step says how well each hypothesis explains the data and, what
is the same thing, how strongly the data support each hypothesis.
Sometimes that's all that's necessary. But sometimes we also want to
reevaluate the chances. That's where the remaining steps come in.

3. Assess the a priori chances of the di�erent hypotheses, that is, the
chances you would assign each box model without considering the
data at hand. We did that for the AIDS and Slater examples.

4. Use Bayes' Theorem to reassess the chances. The reassessed chances
tell us how likely each hypothesis is in the light of both the data and
everything else we know.
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The previous procedure applies when the data are like draws from a 0-1
box and we are trying to learn about the proportion of 1's. But sometimes
the data are not like draws from a 0-1 box. Another important case is
when the data follow the normal curve. In this case we usually want to
learn about the expected value of the chance process governing the data.

[examples here]

2.5 Odds And The Strength of Evidence

The odds of A, for some event A, means the ratio of two chances: the chance
that A happens divided by the chance that A doesn't happen.

Odds of A =
chance of A

chance of not A
:

Odds and chances are two ways of saying the same thing. If we know
the odds we can compute the chances and if we know the chances we can
compute the odds.

If odds =
3

4
;

then

chance =
3

3 + 4
:

If chance =
7

8
;

then

odds =
7

1
:

Let's look more closely at how to reassess chances using the AIDS test
(Sections 1.1, 2.2) as an example. What was the strength of evidence? The
conditional chance of a positive test, given that the patient has AIDS, is
97%. And the conditional chance of a positive test, given that the patient
does not have AIDS, is 1%. It's the ratio that matters: 97%=1% = 97.
The hypothesis that the patient has AIDS explains the test result about 97
times better than the hypothesis that the patient does not have AIDS.

The doctor originally assessed the chance of AIDS as 0.2 of 1%. The
odds were 0:2=99:8 � 0:002. The reassesed chance accounting for the diag-
nostic test was about 16%. The new odds are 16=84 � 0:19. Look at the
ratio.

new odds

old odds
� 0:19

0:002
� 95 � strength of evidence:
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It's not just a coincidence that the ratio of new odds to old odds is
approximately equal to the strength of evidence. It's a mathematical ne-
cessity. For any event A and data D,

new odds of A

old odds of A
=

new chance of A� old chance of not A

new chance of not A� old chance of A

=
old chance of A� P (DjA)� old chance of not A

old chance of not A� P (Djnot A)� old chance of A

=
P (DjA)

P (Djnot A) ;

which is the strength of the evidence. The �rst line follows from the de�-
nition of odds; the second from Bayes' Theorem.

We've just shown that the ratio of new odds to old odds is the strength
of evidence. Another way to put it is new odds of A = old odds of A �
strength of evidence. If we had carried out the computations more accu-
rately we would have this equality hold exactly in the AIDS example.

Statisticians have another name for the strength of evidence. They call
it the Bayes' factor. Odds depend on how the chances are assessed. Two
people might assess the chances di�erently, and have di�erent odds. But
the Bayes' factor is the same for both of them. And they both revise their
odds the same way: by multiplying the old odds times the Bayes' factor.
The Bayes' factor summarizes the evidence in a way that depends only on
the data, not on how di�erent people assess the chances.

If the conditional chances P (DjA) and P (Djnot A) are about the same
then the Bayes' factor is about 1, the two hypotheses explain the data about
equally well, and the new odds are about the same as the old odds. On
the other hand, if P (DjA) is much bigger than P (Djnot A) then the Bayes'
factor is very large, A explains the data much better than not A and the
new odds are much bigger than the old odds.

2.6 Exercises

1. Suppose the evidence from the Slater School had been 27 cancers out
of 450 teachers. What would my revised chances be?

2. Suppose the evidence from the Slater School had been 8 cancers out
of 145 teachers, but my original chances had been .8, .1, .05, .05 for
hypotheses A, B, C, and D, respectively. What would my revised
chances be?

3. You have been told by one student that a particular professor always
grades in a way that 70% of the students get As and 30% get lower
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grades. Another student insists that the professor gives 30% As and
70% lower grades. You trust the opinion of both students equally.
The professor tells you one of the two students is correct but will
not tell you which one. Hence you give prior probability of 50% to
each student being correct. You then get a random sample of 10
students that have taken this professor's class and you �nd out their
grades. In your sample, 6 received an A grade. What is your posterior
probability that the professor gives 70% As? What is your posterior
probability that the professor gives 30% As?

4. In the weight loss example of section 2.1, what is the prior probability
that the average weight loss is less than 10 pounds? (i.e. average >
-10) What is the posterior probability that the average weight loss is
less than 10 pounds?
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Chapter 3

Making Decisions

3.1 Actions and Utilities

We are often faced with the problem of making a decision. There are at
least two possible choices or actions ; if there were only one, there would be
no decision. And we don't know what the outcome of the decision will be;
if we did, there would be no problem.

Recall the space shuttle Challenger from Section 1.2. The shuttle was on
the launch pad. NASA had two possible actions: launch now and postpone.
And the outcome of launch now was unknown; either the O-ring would
work, or it wouldn't.

The outcomes were unknown because the state of the world was un-
known. To simplify, we can picture the O-ring as either supple (
exible
enough to work properly) or sti� (not su�ciently 
exible). It is useful to
make a table such as Table 3.1. The possible states are listed across the
top; the possible actions are listed down the left. The entries in the ta-
ble are utilities. If NASA decides to postpone, the outcome is moderately
positive because the O-ring works (for the postponed launch) but there is
a cost of delay. If NASA decides to launch now, and the O-ring is supple,
the result is very positive. That's the best possible outcome. On the other
hand, if NASA decides to launch now, and the O-ring is sti�, the result is
very negative. That's the best possible outcome. And that's what actually
happened.

L. J. Savage was . . . . Here's what he says. . . . . The classic example of
utilities is the rain-umbrella example, shown in Table 3.1. A person going
out for a walk is deciding whether to carry an umbrella. There are two
possible decisions , or actions . The person could either carry the umbrella,

25
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O-ring supple O-ring sti�

Launch Now very positive very negative
Postpone moderately positive moderately positive

Table 3.1: The Challenger

Rain No Rain
Carry Umbrella slightly positive moderately positive
Leave Umbrella very negative very positive

Table 3.2: Umbrella Problem

or leave it home. The actions are shown down the left side of the table.
There are also two possible truths , or states of nature. Either it will rain,
or it won't. The states are shown along the top of the table.

The entries in the table are the utilities of all possible combinations of
actions and states of nature. Utility means value, or worth. The utility
of the combination (Carry Umbrella, Rain) is slightly positive because, al-
though the person will enjoy the walk, the rain will keep him from enjoying
it very much. The utility of (Carry Umbrella, No Rain) is moderately posi-
tive because the person will enjoy the walk but will have the inconvenience
of carrying the umbrella. The utility of (Leave Umbrella, Rain) is very
negative because the person gets wet and has a miserable time. And the
utility of (Leave Umbrella, No Rain) is very high, because the person will
enjoy the walk without any inconvenience.

The ultimate purpose of writing down the utilities is to help make deci-
sions. In many cases, the utilities only need to be assessed approximately;
and a table such as Table 3.1 is su�cient. In other cases it is necessary to
assess utilities more accurately. Table 3.1 is an example of how one person
might assess the utilites more accurately. These utilities are speci�c to the
person making the decision. You and I may have di�erent utilities for the
four possible combinations.

A statistics instructor announces at the beginning of the term that there
will be six pop quizzes during the term. One student taking the class is
deciding how to spend the evening | either studying or attending a classical
music concert. (In our experience, these are the only two activities that

Rain No Rain
Carry Umbrella 5 15
Leave Umbrella -30 20
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Quiz Tomorrow No Quiz
Study very positive 0
Concert very negative small positive

students report doing in the evenings.) If she studies, she will miss the
concert. But, if she goes to the concert and there is a quiz tomorrow,
disaster! Table 3.1 shows her utilities. Everyone would agree that Statistics
ismuch more important than music. So the utility of (Study, Quiz) is very
positive while the utility of (Concert, Quiz) is very negative. We must
concede that some people �nd pleasure in music; so the utility of (Concert,
No Quiz) is slightly positive. Her decision will depend on exactly how she
assesses her utilities, and on how she assesses the chance of a quiz tomorrow.

[examples with real numbers?] [mastectomy, or other cancer treatment
example?] [public policy example?] [example with di�erent utilities for
di�erent people?]

3.2 Decisions

Consider again the rain-umbrella example for the walker who �lled in Ta-
ble 3.1. Also, the walker has a box model for the occurence of rain. The
box model might come from a professional weather forecaster or it might
be made subjectively by the walker. Let's say he estimates the chances of
rain as 30%. How should he decide whether to carry the umbrella?

If he has accurately assessed his utilities then carrying an umbrella is
like drawing from a box in which 30% of the tickets are marked 5 and 70%
are marked 15. The average of the box is 30%� 5 + 70%� 15 = 12. And
leaving the umbrella at home is like drawing from a box in which 30% of
the tickets are marked -30 and 70% are marked 20. The average of the box
is 30%��30 + 70%� 20 = 5. Because it has a higher average, he should
prefer the �rst box. He should carry the umbrella.

The rain-umbrella decision is an example of the formal way decisions
can be made in any situation. The ingredients are

� a list of actions

� a list of states of nature

� a box model for the states of nature

� utilities for each combination of action and state of nature.

With these ingredients, the procedure is
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Quiz Tomorrow No Quiz
Study 10 0
Concert -10 2

1. For each action, make a box model. The numbers on the tickets
are the utilities for all combinations of that action with any state of
nature. These are the numbers in one row of the utility table | the
row corresponding to that action. The percentages of the di�erent
kinds of tickets are the chances of the di�erent states of nature.

2. For each action, calculate the average of the box model.

3. Select the action with the largest average.

Here's how it would work for the student deciding between studying
Statistics and attending a concert. (See Chapter ??). The ingredients are

� A list of actions. In this case the actions are Study and Attend Con-

cert .

� A list of states of nature. These are Quiz Tomorrow and No Quiz .

� A box model for the states. Let's say that the student judges the
chance of Quiz Tomorrow to be 30%.

� Utilities. Suppose the student agrees in spirit with Table 3.1 and
speci�es the speci�c numbers in Table 3.2.

She would follow this procedure.

1. She makes two box models | one for Study and one for Attend Con-

cert . The box model for Study has two kinds of tickets. 30% of the
tickets are 10's; 70% are 0's. The box model for Attend Concert has
30% -10's and 70% 2's.

2. The average of the Study box is 30%�10+70%�0 = 3. The average
of the Attend Concert box is 30%��10 + 70%� 2 = �1:6.

3. She chooses the action with the highest average. Naturally, because
we're constructing the examples, she chooses to study.

Here's how it would work in the space shuttle example. Just to get
started, we've �lled in some numbers in Table 3.1 to get the utilities in
Table 3.2. The two numbers in the Postpone row are equal because what
happens at the postponed launch does not depend on whether the O-ring is
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O-ring works O-ring fails
Launch Now 1,000 -100,000
Postpone 900 900

working today. In other words, it does not depend on which state of nature
(of the two in the utility table) is true. The utility for (Postpone, O-
ring works) is a little less than the utility for (Launch Now, O-ring works)
to re
ect the cost and inconvenience of postponement. And the cost of
(Launch Now, O-ring fails) re
ects the disasterous result of a crash.

The one missing ingredient so far is the box model for the states of
nature. Let's suppose for the moment that the chance of O-ring fails is
about 10%.

The procedure says to make two box models | one for Launch Now and
one for Postpone. The one for Launch Now has two types of tickets. Some
are marked 1,000; the rest are marked -100,000. Those are the utilities on
the Launch Now row. And the procedure also gives the percentages of each
kind of ticket. 10% of the tickets are 1,000's, because the chance of O-ring
works is 10%. And 90% of the tickets are -100,000, because the chance of
O-ring fails is 90%.

On the other hand, the box for Postpone has only one kind of ticket.
They are all marked 900.

The average of the Launch Now box is 10%�1; 000+90%��100; 000=
�89; 900. And the average of the Postpone box is 900. The correct decision
is to choose the box with the larger average. And that means, assuming we
have correctly speci�ed the chances and utilities, the correct decision is to
postpone the launch.

3.2.1 Sensitivity

(In this section we explain sensitivity to utilities, chances and a�ne trans-
formations of utilities.)

In formal decision making there is always the question of how accurately
the utilities and chances have been assessed and whether the decision would
change if they are assessed slightly di�erently. In the shuttle example it is
easy to calculate how di�erent the chances and utilities would have to be
in order to change the decision. For example, how low would the chance of
O-ring fails have to be before the correct decision is Launch Now?

Let x% stand for the chance of O-ring works . Then the average of the
Launch Now box is x%�1; 000+(100�x)%��100; 000 = x%�101; 000�
100; 000. And the average of the Postpone box is 900. The decision is
borderline if the two averages are equal. That means x% � 101; 000 �
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100; 000 = 900, or x% = 100; 900=101; 000 � 0:999, or about 99.9%. In
other words, the correct decision is Postpone, unless we believe that the
chance of O-ring fails is less that 0.1%.

We can make a similar calculation for the utilities. Let u be the utility
of (Launch Now, O-ring fails), and leave the other utilities as they are.
Then the average of the Launch Now box is 10%� 1; 000+ 90%� u. And
the average of the Postpone box is still 900. The decision is borderline if
the two averages are equal. That means 10%� 1; 000 + 90%� u = 900 or
u = (900� 1; 000)=90% � �111. In other words, the decision is borderline
if the cost of (Launch Now, O-ring fails) is just a little bit more than the
cost of postponement.

We see that the decision to postpone the launch is correct over a wide
range of utilities and chances of failure. As long as Table 3.2 is a reasonable
approximation of the true utilities, and 10% is a reasonable estimate of the
chance of failure, then the correct decision is clearly to postpone the launch.

3.3 Exercises

1.

2.

3.
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Chapter 5

Case Study

5.1 GUSTO

The following case study was adapted from "The Mathematics of Making
Up Your Mind" by Will Hively, Discover, May, 1996. The data was taken
from \Placing Trials in Context Using Bayesian Analysis: GUSTO Revis-
ited by Reverand Bayes" by James Brophy and Lawrence Joseph, Journal
of the American Medical Association, Vol. 273, 1996.

A clinical trial was conducted to compare two treatments for heart
attacks{streptokinase and tissue plasminogen activator (t-PA). Cardiolo-
gists agree that both drugs work well: more than 90% of all patients who
receive either medication survive. Where they disagree is on which of the
drugs they should used. In one large study of about 20,000 patients, strep-
tokinase did slightly (less than 1%) better. In another study of about 30,000
patients, t-PA did slightly (less than 1%) better. The cost of t-PA is $1,530
per use while the cost of streptokinase is $220. In Canada and Europe,
most doctors give streptokinase. In the US, most doctors give t-PA.

A few years ago, Genentech, t-PA's manufacturer, joined with 4 other
companies in sponsoring a third clinical trial with over 40,000 patients{
called GUSTO (Global Utilization of Streptokinase and Tissue Plasminogen
Activator in Occluded Arteries). GUSTO organizers said that if they could
show that the t-PA survival rate was 1than the streptokinase survival rate,
then t-PA should be considered clinically superior. A 1% di�erence may
seem small, but in cardiology it can mean a lot - perhaps as many as
5,000 lives per year. The results published in 1993 found 92.7% survival
for streptokinase and 93.7% survival for t-PA. Published with the results
was a test of the null hypothesis that the survival rate on streptokinase was

33
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equal to the survival rate on t-PA. The observed signi�cance level (p-value)
showed that there was .001, or 1 in 1,000 chance that t-PA would perform
at least this much better if it was merely as good as streptokinase.

Lawrence Joseph (statistician) and cardiologist James Brody did not
buy the results. They conducted an analysis of the data using Bayes the-
orem to combine the results of previous trials with the results from the
GUSTO study. They also calculate results starting with beliefs that placed
equal weight on the superiority of each drug. They calculated two proba-
bilities. The �rst was the probability the survival rate on t-PA was greater
than the survival rate on streptokinase given the data. This probability
was close to 1. Even starting from beliefs that gave some advantage to
streptokinase, Bayes rule showed that the probability that the survival rate
for t-PA was greater than the survival rate for streptokinase was near 1.
There is no controversy on that point. However, a second calculation is
necessary. The organizers of the trial said that di�erences of at least 1%
showed clinical superiority, di�erences less than 1% did not. This is like
saying that if t-PA reduces the death rate by at least 1% then it is worth
the extra $1,310 per use. Joseph and Brody calculated the probability that
the di�erence in the survival rates of the two drugs was greater than or
equal to 1%. They made this calculation even with beliefs that ignored
the previous study which found streptokinase more e�ective. That is they
stacked the deck in favor of t-PA. Even so, given the GUSTO data, the
probability that the di�erence in survival rates was greater than or equal
to 1% was only 50%. As a comparison, Joseph and Brody used prior beliefs
that weighted the two previous studies equally with GUSTO. Under this
prior Bayes Rule gives probability for t-PA's clinical superiority as nearly
0actually be weighted less than the two earlier studies as it was not a blind
trial. Physicians knew which drug they were giving, and patients who got
t-PA 'apparently' were 1coronary bypass operation as well.

At the time of publication Brophy rated the chances of t-PA's being
clinically superior to streptokinase as "no better than 5 or 10%." At that
rate, t-PA would save about one more life among every 250 heart attack
victims. To justify using t-PA, that person's life must be worth $327,500,
the extra cost of giving t-PA to all 250 patients.

5.2 Exercises

1. Using normal approximations calculate the p-value for the null hy-
pothesis of no treatment di�erence for each of the three studies sep-
arately. Then calculate this p-value for all three studies combined.
Write one paragraph summarizing the results. What might explain
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Trial Agent Sample Size No. (%) of Deaths
Trial 1 SK 13780 1455 (10.6%)

t-PA 13746 1418 (10.3%)
Trial 2 SK 10396 929 (8.9%)

t-PA 10372 993 (9.6%)
Trial 3 SK 20173 1473 (7.3%)

t-PA 10343 652 (6.3%)

the con
icting results between the studies?

2. If apriori our beliefs about the treatment di�erence are represented
by a '
at prior' (i.e. all possible values are equally believable), then
after observing the data, the probability distribution of the treatment
di�erence is approximately a normal curve centered at the observed
treatment di�erence with a SD equal to the standard error of the
di�erence. Using such a prior, calculate the probability that t-PA
has at least a 1% lower mortality rate than streptokinase in each
study separately. Then calculate the same probability using the data
from all three trials combined. Write one paragraph summarizing the
results. What do you conclude about the GUSTO investigators' claim
that t-PA is superior?

3. You are the head of Genentech. You want a market for your drug
t-PA. Using the statistical evidence above, write one paragraph jus-
tifying why clinicians should treat with t-PA, third-party payers (i.e.
insurance companies, Medicare, ...) should cover the cost, and con-
sumers should demand its use.

4. You are the head of an insurance agency. You must decide whether
you are going to cover the cost of t-PA rather than streptokinase
in your insurance policy. Make a decision, and using the statistical
evidence above, write one paragraph justifying your decision.

5. You are the mother/father of a child (age 12) with leukemia. Your
child has gone through all standard therapies and the only hope is for
a new experimental treatment that costs $327,500 and has a survival
rate of 1 in 250 among young children with leukemia. You know
insurance companies have to make choices. They can't a�ord covering
both t-PA and your child's treatment. Using the statistical evidence
above, write an argument to your insurance company as to why they
should opt to pay your child 's medical bill rather than cover t-PA
treatment for the next 250 heart attack victims (average age=70).


