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PREFACE <=0>
Introduction Welcome to the S-PLUS Guide to Statistics. 

This book is designed as a reference tool for S-PLUS users wanting to use the
powerful statistical techniques in S-PLUS. The Guide to Statistics covers a wide
range of statistical and mathematical modeling; no one user is likely to tap all
of these resources since advanced topics such as survival analysis and time
series are complete fields of study in themselves. 

All examples in this guide are run using input through the Commands
window—the traditional method of accessing the power of S-PLUS. Many of
the functions can also be run through the Statistics menu and dialogs
available in the graphical user interface. We hope you will find this book a
valuable aid for exploring both the theory and practice of statistical
modeling.

On-line version This Guide is also available on-line, through the On-line Manuals entry of
the main Help menu. It can be viewed using Adobe Acrobat Reader, which is
included with S-PLUS.
The on-line version is identical in content to the printed one, but with some
particular advantages. First, you can cut-and-paste example S-PLUS code
directly into the Commands window, and can run these examples without
having to type them. Be careful not to cut-and-paste the “>” prompt
character and notice that distinct colors differentiate between command
language input and output.

Secondly, the on-line text can be searched for any character string. If you
wish information on a certain function, for example, you can easily browse
through all occurrences of it in the guide.

Also, contents and index entries in the on-line version are hot-links; click on
them to go to the appropriate page.

Evolution of
S-PLUS

S-PLUS has evolved considerably from its beginnings as a research tool, and
the contents of this guide has grown steadily, and will continue to grow, as
the language is improved and expanded. This may mean that some examples
in the text do not match your output from S-PLUS in every formatting detail.
However, the underlying theory and computations, are as described here.

In addition to the huge range of functionality covered in this guide, there are
additional modules, libraries, and user-written functions available from a
number of sources. Refer to the S-PLUS User’s Guide for more details.
xix
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Companion 
Guides

The Guide to Statistics is a companion volume to the S-PLUS User’s Guide
and the S-PLUS Programmer’s Guide. All three are available both in printed
form and on-line through the help system.
xx
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INTRODUCTION TO STATISTICAL ANALYSIS 
IN S-PLUS 1

All statistical analysis has, at its heart, a model which attempts to describe the
structure or relationships in some objects or phenomena on which
measurements (the data) are taken. Estimation, hypothesis testing, and
inference, in general, are based on the data at hand and a conjectured model
which you may define implicitly or explicitly. You specify many types of
models in S-PLUS using formulas, which express the conjectured relationships
between observed variables in a natural way. The power of S-PLUS as a
statistical modeling language lies in its convenient and useful way of
organizing data, its wide variety of classical and modern modeling
techniques, and its way of specifying models.
The goal of this chapter is to give you a feel for data analysis in S-PLUS:
examining the data, selecting a model, and displaying and summarizing the
fitted model.

1.1 DEVELOPING STATISTICAL MODELS
The process of developing a statistical model varies depending on whether
you follow a classical, hypothesis-driven approach (confirmatory data
analysis) or a more modern, data-driven approach (exploratory data analysis).
In many data analysis projects, both approaches are frequently used. For
example, in classical regression analysis, you usually examine residuals using
exploratory data analytic methods for verifying whether underlying
assumptions of the model hold. The goal of either approach is a model which
imitates, as closely as possible, in as simple a way as possible, the properties of
the objects or phenomena being modeled. Creating a model usually involves
the following steps:

 1. Determine the variables to observe. In a study involving a classical
modeling approach, these variables correspond to the hypothesis
being tested. For data-driven modeling, these variables are the link to
the phenomena being modeled.

 2. Collect and record the data observations.

 3. Study graphics and summaries of the collected data to discover and
remove mistakes and to reveal low-dimensional relationships
between variables.

 4. Choose a model describing the important relationships seen or
hypothesized in the data.
3



1. Introduction to Statistical Analysis in S-PLUS
 5. Fit the model using the appropriate modeling technique.

 6. Examine the fit using model summaries and diagnostic plots.

 7. Repeat steps 4–6 until you are satisfied with the model.

There are a wide range of possible modeling techniques to choose from when
developing statistical models in S-PLUS. Among these are linear models (lm),
analysis of variance models (aov), generalized linear models (glm),
generalized additive models (gam), local regression models (loess), and tree-
based models (tree).

1.2 DATA USED FOR MODELS
This section provides descriptions of the most common types of data objects
used when developing models in S-PLUS. There are also brief descriptions
and examples of common S-PLUS functions used for developing and
displaying models.

Data Frame 
Objects

Statistical models allow inferences to be made about objects by modeling
associated observational or experimental data, organized by variables. A data
frame is an object that represents a sequence of observations on some chosen
set of variables. Data frames are like matrices, with variables as columns and
observations as rows. They allow computations where variables can act as
separate objects and can be referenced simply by naming them. This makes
data frames very useful in modeling.
Variables in data frames are generally of three forms:

• Numeric vectors.

• Factors and ordered factors.

• Numeric matrices.

Continuous 
and Discrete 
Data

The type of data you have when developing a model is important for
deciding which modeling technique best suits your data.  Continuous data
represent quantitative data having a continuous range of values.  Categorical
data, by contrast, represent qualitative data, and are discrete, meaning they
can assume only certain fixed numeric or nonnumeric values.
In S-PLUS, you represent categorical data with factors, which keep track of the
levels or different values contained in the data and the level each data point
corresponds to. For example, you might have a factor gender in which every
element assumed one of the two values "male" and "female". You
represent continuous data with numeric objects. Numeric objects are vectors,
matrices, or arrays of numbers. Numbers can take the form of decimal
numbers (such as 11, -2.32, or 14.955) and exponential numbers
4



Data Used for Models
expressed in scientific notation (such as .002 expressed as 2e-3).

A statistical model expresses a response variable as some function of a set of
one or more predictor variables. The type of model you select depends on
whether the response and predictor variables are continuous (numeric) or
categorical (factor). For example, the classical regression problem has a
continuous response and continuous predictors, but the classical ANOVA
problem has a continuous response and categorical predictors.

Summaries 
and Plots for 
Examining 
Data

Before you fit a model, you should examine the data. Plots provide important
information on mistakes, outliers, distributions and relationships between
variables. Numerical summaries provide a statistical synopsis of the data in a
tabular format.
Among the most common functions to use for generating plots and
summaries are the following:

• summary: provides a synopsis of an object. The following example
displays a summary of the kyphosis data frame:

> summary(kyphosis)
   Kyphosis         Age            Number
 absent  :64  Min.   :  1.00  Min.   : 2.000
 present :17  1st Qu.: 26.00  1st Qu.: 3.000
              Median : 87.00  Median : 4.000
              Mean   : 83.65  Mean   : 4.049
              3rd Qu.:130.00  3rd Qu.: 5.000
              Max.   :206.00  Max.   :10.000

       Start
 Min.    : 1.00
 1st Qu. : 9.00
 Median  :13.00
 Mean    :11.49
 3rd Qu. :16.00
 Max.    :18.00

• plot: a generic plotting function, plot produces different kinds of
plots depending on the data passed to it. In its most common use, it
produces a scatter plot of two numeric objects.

• hist: creates histograms. 

• qqnorm: creates quantile-quantile plots. 

• pairs: creates, for multivariate data, a matrix of scatter plots
showing each variable plotted against each of the other variables. To
5



1. Introduction to Statistical Analysis in S-PLUS
create the pairwise scatter plots for the data in the matrix
longley.x, use pairs as follows: 

> pairs(longley.x) 

The resulting plot appears as in figure 1.1.

Figure 1.1:  Pairwise scatter plots for longley.x.

GNP deflator

250 350 450 550

•

•• •

•
• ••

•
•

•
•

• •• •

•

• ••

•
••

••
•
•

•
••

••

150 250 350

•

• ••

•
••

••
•
•

•
••
• •

•

• ••

•
• •• •

•
•

•
• • • •

1950 1960

90
10

0
11

0

•

• • •

•
• • • •

•
•

•
• • • •

25
0

35
0

45
0

55
0

•
••
•

•
•
••

•
•

• •

•
•
•
•

GNP

•
• •

•

•
•
• •

•
•
• •

•
•

•
•

•
• •

•

•
•
••

•
•
••

•
•
•

•

•
• •

•

•
•

••
•
•

• •

•
•

•
•

•
• •

•

•
•

• •
•

•
• •

•
•

•
•

• •

•
•

•
••

•

• • •

•

••

•

•

• •

•
•

•
• •

•

• • •

•

• •

•

•

Unemployed

••

•
•

•
••

•

•••

•

••

•

•

••

•
•

•
• •

•

• • •

•

• •

•

•

20
0

30
0

40
0

• •

•
•

•
• •

•

• • •

•

• •

•

•

15
0

20
0

25
0

30
0

35
0

•
•
••

•

••
•

•
• •

• •••

•

•
•
• •

•

• •
•

•
• •

• • ••

•

•
•

••

•

••
•

•
••

••• •

•

Armed Forces

•
•
••

•

• •
•

•
• •

• • • •

•

•
•

• •

•

• •
•

•
• •

• • • •

•

• •
•
•

•
•
•
•
•

•
•

•
•
•
•
•

• •
•

•
•
•
•
•

•
•

•
•

•
•
•

•

••
•

•
•

•
•

•
•
•
•

•
•
•

•
•

••
•
•

•
•
•

•
•

•
•

•
•
•
•

•

Population

11
0

11
5

12
0

12
5

13
0

• •
•

•
•

•
•

•
•

•
•

•
•

•
•

•

90 100

19
50

19
55

19
60

•
•
•
•

•
•
•
•
•

•
•

•
•
•
•
•

•
•
•

•
•
•
•
•

•
•

•
•

•
•
•

•

200 300 400

•
•

•
•

•
•
•

•
•
•
•

•
•
•

•
•

•
•

•
•

•
•
•

•
•

•
•

•
•
•
•

•

110 120 130

•
•
•
•
•
•

•
•
•
•

•
•
•

•
•

•

Year
6



Statistical Models In S-PLUS
• coplot: provides a graphical look at cross-sectional relationships,
which enable you to assess potential interaction effects. The
following example shows the effect of the interaction between C and
E on values of NOx. The resulting plots appear as in figure 1.2.

> attach(ethanol)
> E.intervals <- co.intervals(E, 9, 0.25)
> coplot(NOx ~ C | E, given.values = E.intervals,
+ data = ethanol, panel = function(x, y) panel.smooth(x,
+ y, span = 1, degree = 1))

1.3 STATISTICAL MODELS IN S-PLUS
The development of statistical models is, in many ways, data dependent. The
choice of the modeling technique you use depends upon the type and
structure of your data and what you want the model to test or explain. A
model may predict new responses, show general trends, or uncover
underlying phenomena. This section gives general selection criteria to help
you develop a statistical model.

Figure 1.2:  Coplot of response and predictors.
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1. Introduction to Statistical Analysis in S-PLUS
The fitting procedure for each model is based on a unified modeling
paradigm in which:

• A data frame contains the data for the model.

• A formula object specifies the relationship between the response and
predictor variables.

• The formula and data frame are passed to the fitting function.

• The fitting function returns a fit object.

There is a relatively small number of functions to help you fit and analyze
statistical models in S-PLUS.

• Fitting models:

• lm: linear  (regression) models.

• aov and varcomp: analysis of variance models.

• glm: generalized linear models.

• gam: generalized additive models.

• loess: local regression models.

• tree: tree models.

• Extracting information from a fitted object:

• fitted: returns fitted values.

• coefficients or coef: returns the coefficients (if present).

• residuals or resid: returns the residuals. 

• summary: provides a synopsis of the fit.

• anova: for a single fit object, produces a table with rows
corresponding to each of the terms in the object, plus a row for
residuals. If two or more fit objects are used as arguments, anova
returns a table showing the tests for differences between the models,
sequentially, from first to last.

• Plotting the fitted object:  

• plot: plot a fitted object.

• qqnorm: produces a normal probability plot, frequently used in
analysis of residuals.

• coplot: provides a graphical look at cross-sectional relationships
8



Statistical Models In S-PLUS
for examining interaction effects.

• For minor modifications in a model, use the update function
(adding and deleting variables, transforming the response, etc.).

• To compute the predicted response from the model, use the
predict function.

The Unity of 
Models in Data 
Analysis

Because there is usually more than one way to model your data, you should
learn which type(s) of model are best suited to various types of response and
predictor data. When deciding on a modeling technique, it helps to ask:
“What do I want the data to explain? What hypothesis do I want to test?
What am I trying to show?”
Some methods should or should not be used depending on whether the
response and predictors are continuous, factors, or a combination of both.
Table 1.1 organizes the methods by the type of data they can handle.

Linear regression models a continuous response variable, y, as a linear
combination of predictor variables xj, for j=1,...,p. For a single predictor, the
data fit by a linear model scatter about a straight line or curve. A linear
regression model has the mathematical form

where εi, referred to, generally, as the error, is the difference between the ith

observation and the model. On average, for given values of the predictors,
you predict the response best with the equation

Table 1.1: Criteria for developing models.

Model Response Predictors

lm Continuous Both

aov Continuous Factors

glm Both Both

gam Both Both

loess Continuous Both

tree Both Both

yi β0 β j xi j

j 1=

p

∑ εi+ +=
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1. Introduction to Statistical Analysis in S-PLUS
Analysis of variance models are also linear models, but all predictors are
categorical, which contrasts with the typically continuous predictors of
regression. For designed experiments, use analysis of variance to estimate and
test for effects due to the factor predictors. For example, consider the
catalyst data frame, which contains the data below:

      Temp Conc Cat Yield
    1  160   20   A    60
    2  180   20   A    72
    3  160   40   A    54
    4  180   40   A    68
    5  160   20   B    52
    6  180   20   B    83
    7  160   40   B    45
    8  180   40   B    80

Each of the predictor terms, Temp, Conc, and Cat, is a factor with two
possible levels, and the response term, Yield, contains numeric data. Use
analysis of variance to estimate and test for the effect of the predictors on the
response.

Linear models produce estimates with good statistical properties when the
relationships are, in fact, linear, and the errors are normally distributed. In
some cases, when the distribution of the response is skewed, you can
transform the response, using, for example, square root, logarithm, or
reciprocal transformations, and produce a better fit. In other cases, you may
need to include polynomial terms of the predictors in the model. However, if
linearity or normality does not hold, or if the variance of the observations is
not constant, and transformations of the response and predictors do not help,
you should explore other techniques such as generalized linear models,
generalized additive models, or classification and regression trees.

Generalized linear models generalize linear models by assuming a
transformation of the expected (or average) response is a linear function of the
predictors, and the variance of the response is a function of the mean
response:

y β0 β j xj

j 1=

p

∑+=

η E y( )( ) β0 β jxj

j 1=

p

∑+=
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Statistical Models In S-PLUS
Generalized linear models, fitted using the glm function, allow you to model
data with distributions including normal, binomial, Poisson, gamma, and
inverse normal, but still require a linear relationship in the parameters.

When the linear fit provided by glm does not produce a good fit, an
alternative is the generalized additive model, fit with the gam function. In
contrast to glm, gam allows you to fit nonlinear data-dependent functions of
the predictors. The mathematical form of a generalized additive model is 

where the fj term represent functions to be estimated from the data. The form
of the model assumes a low-dimensional additive structure. That is, the
pieces represented by functions, fi, of each predictor added together predict
the response without interaction.

In the presence of interactions, if the response is continuous and the errors
about the fit are normally distributed, local regression (or loess) models, allow
you to fit a multivariate function which includes interaction relationships.
The form of the model is 

yi = g(xi1, xi2, ..., xip) + εi

where g represents the regression surface.

Tree-based models have gained in popularity because of their flexibility in
fitting all types of data. Tree models are generally used for exploratory
analysis. They allow you to study the structure of data, creating nodes or
clusters of data with similar characteristics. The variance of the data within
each node is relatively small, since the characteristics of the contained data is
similar. The following example displays a tree-based model using the data
frame car.test.frame: 

> car.tree <- tree(Mileage ~ Weight, car.test.frame) 
> plot(car.tree, type = "u") 
> text(car.tree) 
> title("Tree-based Model") 

The resulting plot appears as in figure 1.3.

VAR y( ) φV µ( )=

η E y( )( ) fj xj( )

j 1=

p

∑=
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1. Introduction to Statistical Analysis in S-PLUS
1.4 EXAMPLE OF DATA ANALYSIS
The example that follows describes only one way of analyzing data through
the use of statistical modeling. There is no perfect cookbook approach to
building models, as different techniques do different things, and not all of
them use the same arguments when doing the actual fitting.

The Iterative 
Process of 
Model Building

As was discussed at the beginning of this chapter, there are some general steps
you can take when building a model:

 1. Determine the variables to observe. In a study involving a classical
modeling approach, these variables correspond directly to the
hypothesis being tested. For data-driven modeling, these variables
are the link to the phenomena being modeled.

 2. Collect and record the data observations.

 3. Study graphics and summaries of the collected data to discover and
remove mistakes and to reveal low-dimensional relationships
between variables.

 4. Choose a model describing the important relationships seen or
hypothesized in the data.

 5. Fit the model using the appropriate modeling technique.

 6. Examine the fit through model summaries and diagnostic plots.

Figure 1.3:  A tree-based model for Mileage versus Weight.
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Example of Data Analysis
 7. Repeat steps 4–6 until you are satisfied with the model.

At any point in the modeling process, you may find that your choice of a
model does not appropriately fit the data. In some cases, diagnostic plots may
give you clues to improve the fit. Sometimes you may need to try
transformed variables or entirely different variables. You may need to try a
different modeling technique that will, for example, allow you to fit
nonlinear relationships, interactions, or different error structures. At times,
all you need to do is remove outlying, influential data, or fit the model
robustly. A point to remember is that there is no one answer on how to build
good statistical models. By iteratively fitting, plotting, testing, changing
something and then refitting, you will arrive at the best fitting model for your
data.

Exploring the 
Data

The following analysis uses the built-in data set auto.stats, which
contains a variety of data for car models between the years 1970–1982,
including price, miles per gallon, weight, and more. Suppose we want to
model the effect that Weight has on the gas mileage of a car. The object,
auto.stats, is not a data frame, so we start by coercing it into a data frame
object: 

> auto.dat <- data.frame(auto.stats) 

Attach the data frame to treat each variable as a separate object: 

> attach(auto.dat) 

Look at the distribution of the data by plotting a histogram of the two
variables, Weight and Miles.per.gallon. First, split the graphics screen
into two portions to display both graphs: 

> par(mfrow = c(1, 2)) 

Plot the histograms: 

> hist(Weight) 
> hist(Miles.per.gallon) 

The resulting histograms appear as in figure 1.4.

Subsetting (or subscripting) gives you the ability to look at only a portion of
the data. For example, type the following to look at only those cars with
mileage greater than 34 miles per gallon:

> auto.dat[Miles.per.gallon > 34,]
               Price Miles.per.gallon Repair (1978)
    Datsun 210  4589               35             5
        Subaru  3798               35             5
Volk Rabbit(d)  5397               41             5
13



1. Introduction to Statistical Analysis in S-PLUS
               Repair (1977) Headroom Rear.Seat Trunk Weight
    Datsun 210             5      2.0      23.5     8   2020
        Subaru             4      2.5      25.5    11   2050
Volk Rabbit(d)             4      3.0      25.5    15   2040
               Length Turning.Circle Displacement Gear.Ratio
    Datsun 210    165             32           85       3.70
        Subaru    164             36           97       3.81
Volk Rabbit(d)    155             35           90       3.78

Suppose you want to predict the gas mileage of a particular auto based upon
its weight. Create a scatter plot of Weight versus Miles.per.gallon to
examine the relationship between the variables. First, reset the graphics
window to display only one graph: 

> par(mfrow = c(1,1)) 

Figure 1.4:  Histograms of Weight and Miles.per.gallon.
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Example of Data Analysis
Plot Weight versus Miles.per.gallon. The plot appears as in figure 1.5:

> plot(Weight, Miles.per.gallon) 

The resulting figure displays a curved scattering of the data. This might
suggest a nonlinear relationship. Create a plot from a different perspective,
giving gallons per mile (1/Miles.per.gallon) as the vertical axis: 

Figure 1.5:  Scatter plot: Weight versus Miles.per.gallon.
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1. Introduction to Statistical Analysis in S-PLUS
> plot(Weight, 1/Miles.per.gallon) 

The resulting scatter plot appears as in figure 1.6.

Fitting the 
Model

Gallons per mile is more linear with respect to weight, suggesting that you
can fit a linear model to Weight and 1/Miles.per.gallon. The formula
1/Miles.per.gallon ~ Weight describes this model. Fit the model by
using the lm function, and name the fitted object fit1: 

> fit1 <- lm(1/Miles.per.gallon ~ Weight) 

As with any S-PLUS object, when you type the name, fit1, S-PLUS prints
the object, in this case, using the specific print method for "lm" objects: 

> fit1
Call:
lm(formula = 1/Miles.per.gallon ~ Weight)

Coefficients:
 (Intercept)       Weight
 0.007447302 1.419734e-05
Degrees of freedom: 74 total; 72 residual
Residual standard error: 0.006363808

Figure 1.6:  Scatter plot of Weight versus 1/Miles.per.gallon.
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Example of Data Analysis
Plot the regression line to see how well it fits the data. The resulting line
appears as in figure 1.7.

> abline(fit1) 

Judging from figure 1.7, the regression line does not fit well in the upper
range of Weight. Plot the residuals versus the fitted values to see more clearly
where the model does not fit well. 

> plot(fitted(fit1), residuals(fit1)) 

The plot appears as in figure 1.8.

Note that with the exception of two outliers in the lower right corner, the
residuals become more positive as the fitted value increases. You can identify
the outliers by typing the following command, then interactively clicking on
the outliers with your mouse: 

> outliers <- identify(fitted(fit1), residuals(fit1),
+ labels = names(Weight)) 

The identify function allows you to interactively select the points on the
plot. The labels argument and names function label the points with their
names in the object. For more information on the identify function, see
chapter Traditional Graphics in the S-PLUS Programmer’s Guide  The plot

Figure 1.7:  Regression line of fit1.
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1. Introduction to Statistical Analysis in S-PLUS
appears as in figure 1.9.

These outliers correspond to cars with better gas mileage than other cars in
the study with similar weights. You can remove the outliers using the subset
argument to lm. 

> fit2 <- lm(1/Miles.per.gallon ~ Weight,
+ subset = -outliers) 

Plot Weight versus 1/Miles.per.gallon, and also two regression lines,
one for the fit1 object and one for the fit2 object. Use the lty= argument
to differentiate between the regression lines: 

> plot(Weight, 1/Miles.per.gallon) 
> abline(fit1, lty=2) 
> abline(fit2) 

The two lines appear with the data in figure 1.10.

A plot of the residuals versus the fitted values shows a better fit. The plot
appears as in figure 1.11:

> plot(fitted(fit2), residuals(fit2))

To see a synopsis of the fit contained in fit2, use summary as follows: 

> summary(fit2)

Figure 1.8:  Plot of residuals for fit1.
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Figure 1.9:  Plot with labeled outliers.
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1. Introduction to Statistical Analysis in S-PLUS
Call: lm(formula = 1/Miles.per.gallon ~ Weight,
subset = - outliers)
Residuals:
      Min        1Q     Median       3Q     Max
 -0.01152 -0.004257 -0.0008586 0.003686 0.01441

Coefficients:
              Value Std. Error t value Pr(>|t|)
(Intercept)  0.0047     0.0026  1.8103   0.0745
     Weight  0.0000     0.0000 18.0625   0.0000

Residual standard error: 0.00549 on 70 degrees of freedom 
Multiple R-squared: 0.8233
F-statistic: 326.3 on 1 and 70 degrees of freedom, the p-
value is 0
Correlation of Coefficients:
       (Intercept)
Weight -0.9686

The summary displays information on the spread of the residuals,
coefficients, standard errors, and tests of significance for each of the variables

Figure 1.11:  Plot of residuals for fit2.
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Example of Data Analysis
in the model (it includes an intercept by default), and overall regression
statistics for the fit. As expected, Weight is a very significant predictor of 1/
Miles.per.gallon. The amount of the variability of 1/
Miles.per.gallon explained by Weight is about 82%, and the residual
standard error is .0055, down about 14% from that of fit1.

To see the individual coefficients for fit2, use coef as follows: 

> coef(fit2)
 (Intercept)       Weight
 0.004713079 1.529348e-05

Fitting an 
Alternative 
Model

Now consider an alternative approach. Recall the plot in figure 1.5 showed
curvature in the scatter plot of Weight versus Miles.per.gallon,
indicating that a straight line fit is an inappropriate model. You can fit a
nonparametric nonlinear model to the data using 

gam using a cubic spline smoother to model the curvature in the data: 

> fit3 <- gam(Miles.per.gallon ~ s(Weight))
> fit3
Call:
gam(formula = Miles.per.gallon ~ s(Weight))

Degrees of Freedom: 74 total; 69.00244 Residual
Residual Deviance: 704.7922

The resulting plot of fit3 appears as in figure 1.12:

> plot(fit3, residuals = T, scale =
+ diff(range(Miles.per.gallon)))

The cubic spline smoother in the plot appears to give a good fit to the data.
You can check the fit with diagnostic plots of the residuals as we did for the
linear models. You should also compare the gam model with a linear model
using aov to produce a statistical test.

Use the predict function to make predictions from models. One of the
arguments to predict, newdata, specifies a data frame containing the
values at which the predictions are required. If newdata is not supplied, the
predict function will make predictions at the data originally supplied to fit
the gam model, as in the following example: 

> predict.fit3 <- predict(fit3) 

Create a new object predict.high and print it to display cars with
predicted miles per gallon greater than 30: 

> predict.high <- predict.fit3[predict.fit3 > 30]
> predict.high
21



1. Introduction to Statistical Analysis in S-PLUS
 Ford Fiesta Honda Civic Plym Champ
    30.17946    30.49947   30.17946

Conclusions The previous examples show a few simple methods for taking data and
iteratively fitting models until achieving desired results. The chapters that
follow discuss the previously mentioned modeling techniques in far greater
detail. Before proceeding further, it is good to remember that:

• General formulas define the structure of models.

• Data used in model-fitting are generally in the form of data frames.

• Different methods can be used on the same data.

• A variety of functions are available for diagnostic study of the fitted
models.

• The S-PLUS functions, like model-fitting in general, are designed to
be very flexible for users. Handling different preferences and
procedures in model-fitting are what make S-PLUS very effective for
data analysis.

Figure 1.12:  Plot of additive model with smoothed spline term.
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Models are specified in S-PLUS using formulas; often one 
formula is all that is needed for many modeling techniques.
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SPECIFYING MODELS IN S-PLUS 2
Models are specified in S-PLUS using formulas, which express the conjectured
relationships between observed variables in a natural way. Once you begin
building models in S-PLUS, you quickly discover that formulas specify
models for the wide variety of modeling techniques available in S-PLUS. You
can use the same formula to specify a model for linear regression (lm),
analysis of variance (aov), generalized linear modeling (glm), generalized
additive modeling (gam), local regression (loess), and tree-based regression
(tree).
For example, consider the following formula: 

> mpg ~ weight + displ 

This formula can specify a least squares regression with mpg regressed on two
predictors, weight and displ, or a generalized additive model with purely
linear effects.

You can also specify smoothed fits for weight and displ in the generalized
additive model as follows: 

> mpg ~ s(weight) + s(displ) 

and compare the resulting fit with the purely linear fit to see if some
nonlinear structure must be built into the model.

Thus, formulas provide the means for you to specify models for all modeling
techniques: parametric or nonparametric, classical or modern. This chapter
provides you with an introduction to the syntax used for specifying statistical
models.

The chapters that follow make use of this syntax in a wide variety of specific
examples.

2.1 BASIC FORMULAS
A formula is an S-PLUS expression that specifies the form of a model in terms
of the variables involved. For example, to specify that mpg is modeled as a
linear and additive model of the two predictors weight and displ, you use
the following formula: 

> mpg ~ weight + displ 

The tilde (~) character separates the response variable from the explanatory
variables. For something to be interpretable as a variable it must be one of the
following:

• numeric vector

• factor or ordered factor
25



2. Specifying Models in S-PLUS
• matrix

For numeric vectors, one coefficient is fit; for matrices, a coefficient for each
column is fit; for factors, the equivalent of one coefficient is fit for each level
of the factor.

You can use any acceptable S-PLUS expression in the place of any of the
variables, provided the expression evaluates to something interpretable as one
or more variables.  Thus, the formula 

> log(mpg) ~ weight + poly(displ,2) 

specifies that the log of mpg is modeled as a linear function of weight and a
quadratic polynomial of displ.

Continuous 
Data

Each continuous variable you provide generates one coefficient in the fitted
model. Thus the formula 

> mpg ~ weight + displ 

fits the model

mpg = β0 + β1 weight + β2 displ + ε

A formula always implicitly includes an intercept term (β0 in the above

formula).

You can, however, remove the intercept term by specifying the model with -1
as an explicit predictor: 

> mpg ~ -1 + weight + displ 

Similarly, you can explicitly include an intercept with a + 1.

When you provide a numeric matrix as one term in a formula, each column
of the matrix is taken to be a separate variable in the model. Any names
associated with the columns are carried along as labels in the subsequent fits.

Categorical 
Data

When you specify categorical variables (factors, ordered factors, or categories)
as predictors in the formulas, the modeling functions fit a coefficient for each
level of the variable. For example, to model salary as a linear model of age
(continuous) and gender (factor) you specify it as follows: 

> salary ~ age + gender 

However, a different parameter is fitted for each of the two levels of gender.
This is equivalent to fitting two dummy variables—one for males and one for
females. Thus you need not create and specify dummy variables in the model.
(In actuality only one additional parameter is fitted, because the parameters
are not independent of the intercept term. More details on over-
parameterization and the defining of contrasts between factor levels is
provided in section 2.7, Contrasts: The Coding of Factors.
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General 
Formula 
Syntax

This section provides a table summarizing the meanings of the operators in
formulas, and shows how to create and save formulas.
Table 2.1, based on page 29 of Statistical Models in S, summarizes the syntax
of formulas.

You can create and save formulas as objects using the formula function:

> form.eg.1 <- formula(Fuel ~ poly(Weight, 2) + Disp. + 
+ Type) 
> form.eg.1 
Fuel ~ poly(Weight, 2) + Disp. + Type 

2.2 INTERACTIONS IN FORMULAS
You can specify interactions for categorical data (e.g., factors), continuous
data, or a mixture of the two. In each case, additional parameters are fitted
that are appropriate for the different types of variables specified in the model.
The syntax for specifying the interaction is the same in each case, but the
interpretation varies depending on the data types.
To specify a particular interaction between two or more variables use a colon
(:) between the variable names. Thus to specify the interaction between
gender and race, use the following term: 

gender:race 

Table 2.1: A summary of formula syntax.

Expression Meaning

T ~ F T is modeled as F

Fa + Fb Include both Fa and Fb in the model

Fa - Fb Include all of Fa except what is in Fb in the model

Fa : Fb The interaction between Fa and Fb

Fa * Fb Fa + Fb + Fa : Fb

Fb %in% Fa Fb is nested within Fa

Fa / Fb Fa + Fb %in% Fa

F^m All terms in F crossed to order m
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You can use an asterisk (*) to specify all terms in the model created by the
subsets of the variables named along with the *. Thus 

salary ~ age * gender 

is equivalent to 

salary ~ age + gender + age:gender 

You can remove terms with a minus or hyphen (-). Thus 

salary ~ gender*race*education - gender:race:education 

is equivalent to 

salary ~ gender + race + education + gender:race + 
gender:education + race:education 

the model consisting of all the terms in the full model except the three-way
interaction. A third way to specify this model is by using the power notation
to get all terms of order two or less:  

salary ~ (gender + race + education) ^ 2 

Categorical 
Data

For categorical data, interactions add coefficients for each combination of the
levels of the named factors. Thus, for two factors, Opening and Mask, with
three and five levels, respectively, the Opening:Mask term in a model adds
15 additional parameters to the model. (In practice, because of dependencies
among the parameters, only some of the total number of parameters specified
by a model are fitted.)
You can specify, for example, a two-way analysis of variance with the
simplified notation as follows: 

skips ~ Opening * Mask 

The fitted model is

skips = µ + Openingi + Maskj + (Opening : Mask)ij + ε

Continuous 
Data

You can specify interactions between continuous variables in the same way as
you do for categorical and a mixture of categorical and continuous variables.
However, the interaction specified is multiplicative. Thus 

mpg ~ weight * displ 

fits the model

mpg = β0 + β1weight + β2displ + β3(weight)(displ) + ε

2.3 NESTING IN FORMULAS
Nesting arises in models when the levels of one or more factors make sense
only within the levels of one or more other factors. For example, in sampling
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the U.S. population, a sample of states is drawn, from which a sample of
counties is drawn, from which a sample of cities is drawn, from which a
sample of families or households is drawn. Counties are nested within states,
cities are nested within counties, and households are nested within cities.
There is special syntax to emphasize the nesting of factors within others. You
can write the county within state model as: 

state + county 

You can state the model more succinctly with 

state / county 

which means “state and then county within state.” The slash (/) used for
nested models is the counterpart of the asterisk (*) which is used for factorial
models.

You can specify the full state-county-city-household example as follows: 

state / county / city / household

2.4 INTERACTIONS BETWEEN CATEGORICAL AND  CONTINUOUS 
VARIABLES

For categorical data combined with continuous data, interactions add a
coefficient for the continuous variable for each level of the categorical
variable. So, for example, you can easily fit a model with different slope
estimates for different groups where the categorical variables specify the
groups.
When you combine categorical and continuous data using the nesting syntax,
you can specify analysis of covariance models simply. If gender (categorical)
and age (continuous) are predictors in a model, you can fit separate slopes for
each gender by nesting. First, make gender a factor (i.e., gender <-
factor(gender)). Then the analysis of covariance model is: 

salary ~ gender / age 

This fits a model equivalent to:

µ + genderi + βiage

This is also equivalent to gender * age. However, the parameterization for
the two models is different. When you fit the nested model, you get estimates
of the individual slopes for each group. When you fit the factorial model, you
get an overall slope estimate plus the deviations in the slope for the different
group contrasts. For example, in gender / age, the formula expands into
main effects for gender followed by age within each level of gender. One
coefficient is fitted for age from each level of gender. Another coefficient
estimates the contrast between the two levels of gender. Thus, the nesting
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model fits the following type of model:

The intercept is µ, the contrast is αg, and the model has coefficients βi for

age within each level of gender. Thus, you have separate slope estimates for
each group. Conversely, the factorial model gender * age fits the following
model:

You get the overall slope estimate β plus the deviations in the slope for the
different group contrasts.

You can fit the “equal slope, separate intercept” model by specifying: 

salary ~ gender + age 

This fits a model equivalent to:

2.5 USING THE PERIOD OPERATOR IN FORMULAS
A single period (“.”) operator can act as a default left or right side of a
formula. There are numerous ways you can use “.” in formulas. To see how
“.” is used, consider the function update, which allows you to modify
existing models. The following example uses the data frame fuel.frame to
display the usage of the single “.” in formulas: 

> fuel.null <- lm(Fuel ~ 1, fuel.frame) 

If Weight is the single best predictor, use update to add it to the model: 

> fuel.wt <- update(fuel.null, . ~ . + Weight) 
> fuel.wt
Call:
lm(formula = Fuel ~ Weight, data = fuel.frame)

Coefficients:
 (Intercept)     Weight
   0.3914324 0.00131638

Degrees of freedom: 60 total; 58 residual
Residual standard error: 0.387715 

SalaryM µ αg β1 age×+ +=

SalaryF µ αg– β2 age×+=

SalaryM µ αg– β age γ age×–×+=

SalaryF µ αg β age γ age×+×+ +=

µ genderi β age×+ +
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Combining Formulas with Fitting Procedures
The single dots “.” in the above example are replaced on the left and right
side of the tilde “~” by the left and right sides of the formula used to fit the
object fuel.null. Two additional methods use “.” in reference to data
frame objects. In the following example, a linear model is fit using the data
frame fuel.frame: 

> lm(Fuel ~ ., data = fuel.frame) 

Here, the new model includes all the predictors in fuel.frame. In the
example, 

> lm(skips ~ .^2, data = solder.balance) 

all main effects and second-order interactions in solder.balance are used
to fit the model.

2.6 COMBINING FORMULAS WITH FITTING PROCEDURES
Once you specify a model with its associated formula, you can fit it to a given
data set by passing the formula and the data to the appropriate fitting
procedure. For the following example, you create the data frame auto.dat
from the data set auto.stats by typing, 

> auto.dat <- data.frame(auto.stats) 

To fit a linear model to Miles.per.gallon ~ Weight +
Displacement, when Miles.per.gallon, Weight, and Displacement
are columns in a data frame named auto.dat, you type: 

> lm(Miles.per.gallon ~ Weight + Displacement, auto.dat) 

You could fit a smoothed model to the same data with: 

> loess(Miles.per.gallon ~ s(Weight) + s(Displacement), 
+ auto.dat) 

All the fitting procedures take a formula and an optional data set (actually a
data frame) as the first two arguments. If the individual variables are in your
search path, or you attached the data frame auto.dat, you can omit the data
specification and type more simply: 

> lm(Miles.per.gallon ~ Weight + Displacement) 

or 

> loess(Miles.per.gallon ~ s(Weight) + s(Displacement))

Warning If you attach a data frame for fitting models and have objects in your .Data
directory with names that match those in the data frame, the data frame
variables are masked and are not used in the actual model fitting.
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Composite 
Terms in 
Formulas

As was previously mentioned, certain operators have special meaning when
used in formula expressions. They must appear only at the top level in the
formulas and only on the right side of the “~”. However, if the operators
appear within arguments to functions within the formula, then they work as
they normally do in S-PLUS. In the formula 

Kyphosis ~ poly(Age, 2) + I((Start > 12) * (Start - 12))

the ‘*’ and ‘-’ operators evaluate as they normally do in S-PLUS, without the
special meaning they have when used at the top level within the formula
because they appear within arguments to the I function. The I function’s
sole purpose, in fact, is to protect special operators on the right side of
formulas.

You can use any acceptable S-PLUS expression in the place of any variable
within the formula, provided the expression evaluates to something
interpretable as one or more variables. The expression must be one of the
following:

• numeric vector

• factor, ordered factor, or category

• matrix

Thus, certain composite terms (among them poly, I, and bs) can be used as
formula variables. Matrices used in formulas are treated as single terms. You
can also use functions that produce factors and categories as formula
variables.

2.7 CONTRASTS: THE CODING OF FACTORS
A coefficient for each level of a factor cannot usually be estimated because of
dependencies among the coefficients of the overall model. An example of this
is the sum of all the dummy variables for any factor, which is a vector of all
ones. This corresponds to the term used for fitting an intercept.
Overparametrization induced by dummy variables is removed prior to fitting,
by replacing the dummy variables with a set of linear combinations of the
dummy variables, which are:

• functionally independent of each other, and

• functionally independent of the sum of the dummy variables.

A factor with k levels has k-1 possible independent linear combinations. A
particular choice of linear combinations of the dummy variables is called a set
of contrasts. Any choice of contrasts for a factor alters the specific individual
coefficients in the model, but does not change the overall contribution of the
term to the fit.
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Built-in 
Contrasts

S-PLUS provides four different kinds of contrasts as built-in functions:

• Helmert Contrasts

The function contr.helmert implements Helmert contrasts. The
jth linear combination is the difference between the level j + 1 and
the average of the first j. The following example returns a Helmert
parametrization based upon four levels: 

> contr.helmert(4)
  [,1] [,2] [,3]
1   -1   -1   -1
2    1   -1   -1
3    0    2   -1
4    0    0    3

• Orthogonal Polynomials

The function contr.poly implements polynomial contrasts.
Individual coefficients represent orthogonal polynomials if the levels
of the factor are equally spaced numeric values. In general, the
function produces k - 1 orthogonal contrasts representing
polynomials of degree 1 to k - 1. The following example uses four
levels: 

> contr.poly(4)
              L     Q           C
[1,] -0.6708204   0.5  -0.2236068
[2,] -0.2236068  -0.5   0.6708204
[3,]  0.2236068  -0.5  -0.6708204
[4,]  0.6708204   0.5   0.2236068

• Sum

The function contr.sum implements sum contrasts. This produces
contrasts between each of the first k - 1 levels and level k: 

> contr.sum(4)
  [,1] [,2] [,3]
1    1    0    0
2    0    1    0
3    0    0    1
4   -1   -1   -1

• Treatment 

The function contr.treatment implements treatment contrasts.
This is not really a contrast but simply includes each level as a
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dummy variable excluding the first one. This generates statistically
dependent coefficients even in balanced experiments. 

> contr.treatment(4)
  2 3 4
1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

This is not a true set of contrasts, for the columns do not sum to zero and
thus are not orthogonal to the vector of ones.

Specifying 
Contrasts

Use the functions C, contrasts, and options to specify contrasts. Use C to
specify a contrast as you type the formula; it is the simplest way to alter the
choice of contrasts. Use contrasts to specify a contrast attribute on a
factor. Use options to specify the default choice of contrasts for all factors.

The C Function As was previously stated, the C function is the simplest way to alter the choice
of contrasts. The arguments to the function are C(object, contr) where
object is a factor or ordered factor, and contr is the contrast to alter. An
optional argument, how.many, is for the number of contrasts to assign to the
factor. The value returned by C is the factor with a "contrasts" attribute
equal to the specified contrast matrix.
For example, with the soldering experiment contained in solder.balance
you could specify sum contrasts for Mask with C(Mask, sum). You could
also have your own contrast function, special.contrast, that returns a
matrix of the desired dimension with the call C(Mask,
special.contrast).

Note If you create your own contrast function it must return a matrix with the
following properties: 

 1. The number of rows must be equal to the number of levels specified
and the number of columns one less than the number of rows.

 2. The columns must be linearly independent of each other and of the
vector of all ones.

You can also specify contrasts by supplying the contrast matrix directly. For
example, quality is a factor with four levels: 

> levels(quality)
[1] "tested-low"  "low"      "high"      "tested-high"
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You can contrast levels 1 and 4 with levels 2 and 3 by including quality in
the model formula as C(quality, c(1, -1, -1, 1)). Two additional
contrasts are generated, orthogonal to the one supplied.

To contrast the “low” values versus the “high” values, provide the contrasts as
a matrix: 

> contrast.mat
     [,1] [,2]
[1,]    1    1
[2,]   -1    1
[3,]   -1   -1
[4,]    1   -1

The contrasts  
Function

Use the contrasts function to set the contrasts for a particular factor
whenever it appears. The contrasts function extracts contrasts from a
factor and returns them as a matrix. The following sets the contrasts for the
quality factor: 

> contrasts(quality) <- contrast.mat 
> contrasts(quality)
            [,1] [,2] [,3]
 tested-low    1    1 -0.5
        low   -1    1  0.5
       high   -1   -1 -0.5
tested-high    1   -1  0.5

Now quality has the contrast.mat parametrization by default any time
it appears in the formula. To override this new default setting, supply a new
contrast specification through the C function.

Setting the 
contrasts 
Option

Use the contrast options function to change the default choice of contrasts
for all factors, as in the following example: 

> options()$contrasts
          factor      ordered
 "contr.helmert" "contr.poly"
> options(contrasts = c(factor = "contr.treatment",
+ ordered = "contr.poly"))
> options()$contrasts
[1] "contr.treatment" "contr.poly"

In summary, the options function sets the default choice of contrasts
globally (on all factors); the contrasts function sets the default choice of
contrasts on a particular factor; and the C function overrides the default.
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2.8 USEFUL FUNCTIONS FOR MODEL FITTING
As model building proceeds, you’ll find several functions useful for adding
and deleting terms in formulas. The update function starts with an existing
fit and adds or removes terms as you specify. For example, create a data frame
from the data set fuel.frame by typing: 

> fuel.fit <- data.frame(fuel.frame) 

Suppose you save the result of lm as follows: 

> fuel.lm.fit <- lm(Mileage ~ Weight + Disp., fuel.fit) 

You can use update to change, for example, the response to Fuel. Use a
period on either side of the tilde to represent the current state of the model in
the fit object (fuel.lm.fit below). 

> update(fuel.lm.fit, Fuel ~ . ) 

Recall that the period (“.”) means to include every predictor that is in
fuel.lm.fit in the new model. Only the response changes.

You could drop the Disp. term, keeping the response the same by: 
> update(fuel.lm.fit, . ~ . - Disp.) 

Another useful function is drop1, which produces statistics obtained from
dropping each term out of the model one at a time. For example: 

> drop1(fuel.lm.fit)
Single term deletions

Model: Mileage ~ Weight + Disp.
       Df Sum of Sq   RSS    Cp
<none>              380.3 420.3
Weight  1     323.4 703.7 730.4
Disp.   1       0.6 380.8 407.5

Each line presents model summary statistics corresponding to dropping the
term indicated in the first column. The first line in the table corresponds to
the original model, that is, no terms (<none>) are deleted.

There is also an add1 function which adds one term at a time. The second
argument to add1 provides the scope for added terms. The scope argument
can be a formula or a character vector indicating the terms to be added. The
resulting table prints a line for each term indicated by the scope argument. 

> add1(fuel.lm.fit, c("Type", "Fuel"))
Single term additions

Model: Mileage ~ Weight + Disp.
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       Df Sum of Sq     RSS      Cp
<none>              380.271 420.299
  Type  5   119.722 260.549 367.292
  Fuel  1   326.097  54.173 107.545

2.9 OPTIONAL ARGUMENTS TO MODEL-FITTING FUNCTIONS
In most model-building calls, you will need to specify the data frame to use.
You may need arguments that check for missing values in the data frame, or
select only particular portions of the data frame to use in the fit. The
following list summarizes standard optional arguments for most model-
fitting functions (other than nonlinear models) you can use in the model fit:

• data: specifies a data frame to interpret the variables named in the
formula, or in the subset and weights arguments. The following
example fits a linear model to data in the fuel.frame data frame:

> fuel.lm <- lm(Fuel ~ Weight + Disp., data = fuel.frame)

• weights: specifies a vector of observation of weights. If weights is
supplied, the algorithm fits to minimize the sum of the squared
residuals multiplied by the weights:

Negative weights generate an S-PLUS error. We recommend that the
weights be strictly positive, since zero weights give no residuals. The
following example fits a linear model to the claims data frame, and
uses number with the weights argument: 

> claims.fit <- lm(cost ~ age + type + car.age, claims,
+ weights = number, na.action = na.omit) 

The number in the preceding call corresponds to the number of claims per
type of car in the claims data frame.

• subset: indicates a subset of the rows of the data to be used in the
fit. The expression should evaluate to a logical or numeric vector, or
a character vector with appropriate row names. The following
example removes outliers and fits a linear model to data in the
auto.dat data frame: 

> fit <- lm(1/Miles.per.gallon ~ Weight,
+ subset = -outliers) 

• na.action: a missing-data filter function, applied to the model
frame, after any subset argument has been used. The following

wir i
2∑
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example uses na.omit with the na.action argument to drop any
row of the data frame that contains a missing value: 

> ozone.lm <- lm(ozone ~ temperature + wind, data= air,
+            subset=wind > 8, na.action=na.omit)

Each model fitting function has nonstandard optional arguments, not listed
above, which you can use to fit the appropriate model. The following
chapters describe the available arguments for each model type.
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STATISTICAL INFERENCE FOR ONE AND 
TWO SAMPLE PROBLEMS 3

Suppose you have one or two samples of data that are continuous in the sense
that the individual observations can take on any possible value in an interval.
You often want to draw conclusions from your data concerning underlying
“population” or distribution model parameters which determine the
character of the observed data. The parameters which are most often of
interest are the mean and variance in the case of one sample, and the relative
means and variances and the correlation coefficient in the case of two
samples. This chapter shows you how to use S-PLUS to carry out statistical
inference for these parameters.
Often, your samples of data are assumed to come from a distribution that is
normal, or Gaussian. A normal distribution has the familiar bell-shaped
population “frequency” curve (or probability density) shown by the solid line
in figure 3.1. Another common assumption is that the observations within a
sample are serially uncorrelated with one another. In fact, the data seldom
come from an exactly normal distribution. Usually, a more accurate
assumption is that the samples are drawn from a nearly normal distribution—
that is, a nearly bell-shaped curve whose tails do not go to zero in quite the
same way as those of the true normal distribution, as shown by the dotted
line in figure 3.1.

It is important that you be aware that nearly normal distributions, which
have “heavier tails” than a normal distribution, give rise to outliers, i.e.,
unusually aberrant or deviant data values. For example, in figure 3.1 the left-
hand tail of the nearly normal distribution is heavier than the tail of the
normal distribution, but the right hand tail is not, and so this nearly normal
distribution generates outliers which fall to the left (smaller values than) the
bulk of the data.

Even though your data has only a nearly normal distribution, rather than a
normal distribution, you can use a normal distribution as a good “nominal”
model, as indicated by figure 3.1. Thus you are interested in knowing the
values of the parameters of a normal distribution, (or of two normal
distributions in the case of two samples), that provides a good nominal
distribution model for your data.

A normal distribution is characterized by two parameters: the mean m and
the variance s2, or, equivalently, the mean and the standard deviation s (the
square root of the variance). The mean locates the center of symmetry of the
normal distribution, and so the parameter m is sometimes referred to as the
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3. Statistical Inference for One and Two Sample Problems
location. Similarly, the standard deviation provides a measure of the spread of
the distribution, and thus can be thought of as a scale parameter.

In the case of two samples, X1, X2, …, Xn and Y1, Y2, …, Yn, for two
variables X and Y, you may also be interested in the value of the correlation
coefficient r. The parameter r measures the correlation (or linear dependency)
between the variables X and Y. The value of r is reflected in the scatter plot
obtained by plotting Yi versus Xi for i=1,2, …,n. A scatterplot of Yi versus Xi

which has a roughly elliptical shape, with the values of Yi increasing with
increasing values of Xi, corresponds to positive correlation r (see for example,
figure 3.7). An elliptically-shaped scatter plot with the values of Yi decreasing
with increasing values of Xi corresponds to negative correlation r. A circular
shape to the scatter plot corresponds to a zero value for the correlation
coefficient r.

Keep in mind that the correlation between two variables X and Y, as just
described, is quite distinct from serial correlation between the observations
within one or both of the samples when the samples are collected over time.

Figure 3.1:  Normal and nearly normal densities.
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Whereas the former reveals itself in a scatterplot of the Yi versus the Xi, the
latter reveals itself in scatter plots of the observations versus lagged values of
the observations; for example, a scatter plot of Yi versus Yi+ 1 or a scatter plot
of Xi versus Xi+ 1. If these scatter plots have a circular shape, the data is
serially uncorrelated. Otherwise, the data has some serial correlation.

Generally, you must be careful not to assume that data collected over time is
serially uncorrelated. You need to check this assumption carefully, because the
presence of serial correlation invalidates most of the methods of this chapter.

To summarize: You want to draw conclusions from your data concerning the

population mean and variance parameters m and s2 for one sample of data,
and you want to draw conclusions from your data concerning the population

means m1, m2, the population variances ,  and the population

correlation coefficient r for two samples of data. You frame your conclusions
about the above parameters in one of the following two types of statistical
inference statements, illustrated for the case of the population mean m in a
one sample problem:

•  A CONFIDENCE INTERVAL. With probability 1 - a, the mean m
lies within the confidence interval  (L,U). 

•  A HYPOTHESIS TEST. The computed statistic T compares the null
hypothesis that the mean m has the specified value m0 with the

alternative hypothesis that m Þ m0. At any level of significance greater

than the reported p-value for T, we reject the null hypothesis in favor
of the alternative hypothesis.

A more complete description of confidence intervals and hypothesis tests is
provided in the section Statistical Inference on page 46.

Classical methods of statistical inference, such as Student’s t methods, rely on
the assumptions that the data come from a normal distribution and the
observations within a sample are serially uncorrelated. If your data contain
outliers, or are strongly non-normal, or if the observations within a sample
are serially correlated, the classical methods of statistical inference can give
you very misleading results. Fortunately, there are robust and nonparametric
methods which give reliable statistical inference for data that contain outliers
or are strongly non-normal. Special methods are needed for dealing with data
that are serially correlated. See, for example, Heidelberger and Welch (1981).

In this chapter, you learn to use S-PLUS functions for making both classical
and robust or nonparametric statistical inference statements for the
population means and variances for one and two samples, and for the

σ1
2 σ2

2
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3. Statistical Inference for One and Two Sample Problems
population correlation coefficient for two samples. The basic steps in using
S-PLUS functions are essentially the same no matter which of the above
parameters you are interested in. They are as follows:

 1. Setting up your data.
Before S-PLUS can be used to analyze the data, you must put the
data in a form that S-PLUS recognizes.

 2. Exploratory data analysis, or EDA. 
EDA is a graphically-oriented method of data analysis which
helps you determine whether the data support the assumptions
required for the classical methods of statistical inference: an out-
lier-free nearly normal distribution and serially uncorrelated
observations

 3. Statistical inference.
Once you’ve verified that your sample or samples are nearly nor-
mal, outlier-free, and uncorrelated, you can use classical meth-
ods of statistical inference which assume a normal distribution
and uncorrelated observations, to draw conclusions from your
data.

If your data are not nearly normal and outlier-free, the results of the classical
methods of statistical inference may be misleading. Hence, you often need
“robust” or “nonparametric” methods, as described in the section Robust and
Nonparametric Methods on page 48.

3.1 BACKGROUND
This section prepares you for using the S-PLUS functions in the remainder of
the chapter by providing brief background information on the following
three topics: exploratory data analysis, statistical inference, and robust and
nonparametric methods.

Exploratory 
Data Analysis

The classical methods of statistical inference depend heavily on the
assumption that your data is outlier-free and nearly normal, and that your
data is serially uncorrelated. Exploratory data analysis (EDA) uses graphical
displays to help you obtain an understanding of whether or not such
assumptions hold. Thus you should always carry out some graphical
exploratory data analysis (EDA) to answer the following questions:

• Do the data come from a nearly normal distribution?

• Do the data contain outliers?

• If the data were collected over time, is there any evidence of serial
correlation (correlation between successive values of the data)?
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Background
You can get a pretty good picture of the shape of the distribution generating
your data, and also detect the presence of outliers, by looking at the following
collection of four plots: a histogram, a boxplot, a density plot, and a normal
qqplot. Examples of these four plots are provided by figure 3.2.

Density plots are essentially smooth versions of histograms, which provide
smooth estimates of population frequency, or probability density curves; for
example, the normal and nearly normal curves of figure 3.1. Since the latter
are smooth curves, it is both appropriate and more pleasant to look at density
plots than at histograms.

A normal qqplot (or quantile-quantile plot) consists of a plot of the ordered
values of your data versus the corresponding quantiles of a standard normal
distribution; that is, a normal distribution with mean zero and variance one.
If the qqplot is fairly linear, your data are reasonably Gaussian; otherwise,
they are not.

Of these four plots, the histogram and density plot give you the best picture
of the distribution shape, while the boxplot and normal qqplot give the
clearest display of outliers. The boxplot also gives a clear indication of the
median (the solid dot inside the box), and the upper and lower quartiles (the
upper and lower ends of the box).

A simple S-PLUS function can create all four suggested distributional shape
EDA plots, and displays them all on a single screen or a single hard copy plot.
Define the function as follows:

> eda.shape <- function(x) 
+ {
+       par(mfrow = c(2, 2)) 
+       hist(x) 
+       boxplot(x) 
+       iqd <- summary(x)[5] - summary(x)[2] 
+       plot(density(x,width=2*iqd), xlab = "x", 
+       ylab = "", type = "l") 
+       qqnorm(x) 
+       qqline(x) 
+ }

This function is used to make the EDA plots you see in the remainder of this
chapter. (The argument width=2*iqd to density sets the degree of
smoothness of the density plot in a good way. For more details on writing
functions, see the S-PLUS Programmer’s Guide.)

If you have collected your data over time, the data may contain serial
correlation. That is, the observations may be correlated with one another at
different times. The assessment of whether or not there is any time series
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3. Statistical Inference for One and Two Sample Problems
correlation in the context of confirmatory data analysis for location and scale
parameters (and more generally) is an often-neglected task.

You can check for obvious time series features, such as trends and cycles, by
looking at a plot of your data against time, using the function ts.plot (see
the chapter entitled “Visualizing One and Two Dimensional Data” in the
S-PLUS User’s Guide). You can check for the presence of less obvious serial
correlation by looking at a plot of the autocorrelation function for the data,
using the acf function. These plots can be created, and displayed one above
the other, with the following S-PLUS function:

> eda.ts <- function(x) 
+ { 
+       par(mfrow=c(2,1)) 
+       ts.plot(x) 
+       acf(x) 
+       invisible() 
+ }

This function is used to make the time series EDA plots you find in the
remainder of this chapter. See, for example, figure 3.3. The discussion of
figure 3.3 includes a guideline for interpreting the acf plot. (See the chapter
Analyzing Time Series for a complete description of acf.)

Warning If either the time series plot or the acf plot suggests the presence of serial
correlation, then you can place little credence in the results computed in this
chapter, using either the Student’s t-statistic approach or using the
nonparametric Wilcoxon approach! A method for estimating the population
mean in the presence of serial correlation is described by Heidelberger and
Welch (1981). Seek expert assistance, as needed.

Statistical 
Inference

Formal methods of statistical inference provide probability-based statements
about population parameters such as the mean, variance, and correlation
coefficient for your data. You may be interested in a simple (point) estimate of
a population parameter. For example, the sample mean is a point estimate of
the population mean. However, a point estimate neither conveys any
uncertainty about the value of the estimate, nor indicates whether a
hypothesis about the population parameter is to be rejected. To address these
two issues, you will usually use one or both of the following methods of
statistical inference: confidence intervals and hypothesis tests.
We define these two methods for you, letting u represent any one of the
parameters you may be interested in; for example, u may be the mean m, or
the difference between two means m1 - m2, or the correlation coefficient r.
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CONFIDENCE INTERVALS.

A (1-a)100% confidence interval for the true but unknown parameter u is
any interval of the form (L,U), such that the probability is 1 - a that (L,U)
contains u. The probability a with which the interval (L,U) fails to cover q is
sometimes called the error rate of the interval. The quantity (1-a)3100% is
called the confidence level of the confidence interval. Common values of a are
a=.01, .05, .1, which yield 99%, 95%, and 90% confidence intervals,
respectively.

HYPOTHESIS TESTS. A hypothesis test is a probability-based method for
making a decision concerning the value of a population parameter u (for
example, the population mean m or standard deviation s in a one-sample
problem), or the relative values of two population parameters u1 and u2 (for

example, the difference between the population means m1 - m2 in a two

sample problem). You begin by forming a null hypothesis and an alternative
hypothesis. For example, in the two sample problem your null hypothesis is
often the hypothesis that u1 = u2, and your alternative hypothesis is one of
the following:

• the two-sided alternative: u1 Þ u2

• the greater-than alternative: u1 > u2

• the less-than alternative: u1 < u2

Your decision to accept the null hypothesis, or to reject the null hypothesis in
favor of your alternative hypothesis is based on the observed value T = tobs of
a suitably chosen test statistic T. The probability that the statistic T “exceeds”
the observed value tobs when your null hypothesis is in fact true, is called the
p-value.

For example, suppose you are testing the null hypothesis that u = u0 against
the alternative hypothesis that u Þ u0 in a one-sample problem. The p-value
is the probability that the absolute value of T exceeds the absolute value of
tobs for your data, when the null hypothesis is true.

In formal hypothesis testing, you proceed by choosing a “good” statistic T and
specifying a level of significance, which is the probability of rejecting a null
hypothesis when the null hypothesis is in fact true.

In terms of formal hypothesis testing, your p-value has the following
interpretation: the p-value is the level of significance for which your observed
test statistic value tobs lies on the boundary between acceptance and rejection
of the null hypothesis. At any significance level greater than the p-value, you
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3. Statistical Inference for One and Two Sample Problems
reject the null hypothesis, and at any significance level less than the p-value
you accept the null hypothesis. For example, if your p-value is .03, you reject
the null hypothesis at a significance level of .05, and accept the null
hypothesis at a significance level of .01.

Robust and 
Nonparametric 
Methods

Two problems frequently complicate your statistical analysis. For example,
Student’s t-test, which is the basis for most statistical inference on the mean-
value locations of normal distributions, relies on two critical assumptions:

 1. The observations have a common normal (or Gaussian) distribution

with mean m and variance s2.

 2. The observations are independent.

However, one or both of these assumptions often fail to hold in practice.

For example, if the actual distribution for the observations is an outlier-
generating, heavy-tailed deviation from an assumed Gaussian distribution,
the confidence level remains quite close to (1-a)100%, but the average
confidence interval length is considerably larger than under normality. The p-
values based on the Student’s t test are also heavily influenced by outliers.

In this example, and more generally, you would like to have statistical
methods with the property that the conclusions you draw are not much
affected if the distribution for the data deviates somewhat from the assumed
model; for example, if the assumed model is a normal, or Gaussian
distribution, and the actual model for the data is a nearly normal
distribution. Such methods are called robust. In this chapter you will learn
how to use an S-PLUS function to obtain robust point estimates and robust
confidence intervals for the population correlation coefficient.

For one and two-sample location parameter problems (among others), there
exist strongly robust alternatives to classical methods, in the form of
nonparametric statistics. The term “nonparametric” means that the methods
work even when the actual distribution for the data is far from normal; that
is, when the data do not have to have even a nearly normal distribution. In
this chapter, you will learn to use one of the best of the nonparametric
methods for constructing a hypothesis test p-value, namely the Wilcoxon
rank method, as implemented in the S-PLUS function wilcox.test.

It is important to keep in mind that serial correlation in the data can quickly
invalidate the use of both classical methods (such as Student’s t) and
nonparametric methods (such as the Wilcoxon rank method) for computing
confidence intervals and p-values. For example, a 95% Student’s t confidence
interval can have a much higher error rate than 5% when there is a small
amount of positive correlation in the data. Also, most modern robust
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One Sample: Distribution Shape, Location, and Scale
methods are oriented toward obtaining insensitivity toward outliers
generated by heavy-tailed nearly normal distributions, and are not designed
to cope with serial correlation. For information on how to construct
confidence intervals for the population mean when your data are serially
correlated and free of outliers, see Heidelberger and Welch (1981).

3.2 ONE SAMPLE: DISTRIBUTION SHAPE, LOCATION, AND SCALE
In 1876, the French physicist Cornu reported a value of 299,990 km/sec for
c, the speed of light. In 1879, the American physicist A. A. Michelson carried
out several experiments to verify and improve on Cornu’s value.
Michelson obtained the following 20 measurements of the speed of light:

 850  740  900  1070  930  850  950  980  980  880
1000  980  930   650  760  810 1000 1000  960  960

To obtain Michelson’s actual measurements in km/sec, add 299,000 km/sec
to each of the above values.

The twenty observations can be thought of as observed values of twenty
random variables with a common but unknown mean-value location m. If
the experimental setup for measuring the speed of light is free of bias, then it
is reasonable to assume that m is the true speed of light.

In evaluating this data, we seek answers to at least five questions:

 1. What is the speed of light m?

 2. Has the speed of light changed relative to our best previous value m0?

 3. What is the uncertainty associated with our answers to (1) and (2)?

 4. What is the shape of the distribution of the data?

 5. The measurements were taken over time. Is there any evidence of
serial correlation?

The first three questions were probably in Michelson’s mind when he
gathered his data. The last two must be answered to determine which
techniques can be used to obtain valid statistical inferences from the data. For
example, if the shape of the distribution indicates a nearly normal
distribution without outliers, we can use the Student’s t tests in attempting to
answer question (2). If the data contain outliers or are far from normal, we
should use a robust method or a nonparametric method such as the
Wilcoxon signed-rank test. On the other hand, if serial correlation exists,
neither the Student’s t nor the Wilcoxon test offers valid conclusions.

In this section, we use S-PLUS to carefully analyze the Michelson data.
Identical techniques can be used to explore and analyze any set of one-sample
data.
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3. Statistical Inference for One and Two Sample Problems
Setting Up the 
Data

The data form a single, ordered set of observations, so they are appropriately
described in S-PLUS as a vector. Use the scan function to create the vector
mich: 

> mich <- scan() 
1: 850 740 900 1070 930 
6: 850 950 980 980 880 
11: 1000 980 930 650 760 
16: 810 1000 1000 960 960 
21: 

Exploratory 
Data Analysis

To start, we can evaluate the shape of the distribution, by making a set of four
EDA plots, using the eda.shape function described in the section
Exploratory Data Analysis on page 44: 

> eda.shape(mich) 

Figure 3.2:  Exploratory data analysis plots.
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One Sample: Distribution Shape, Location, and Scale
The plots in figure 3.2 reveal a distinctly skewed distribution, skewed toward
the left (that is, toward smaller values), but rather normal in the middle
region. The distribution is thus not normal, and probably not even "nearly"
normal.

The solid horizontal line in the box plot is located at the median of the data,
and the upper and lower ends of the box are located at the upper quartile and
lower quartile of the data, respectively. To get precise values for the median
and quartiles, use the summary function: 

> summary(mich) 
 Min. 1st Qu. Median Mean 3rd Qu. Max. 
  650     850    940  909     980 1070 

The summary shows, from left to right, the smallest observation, the first
quartile, the median, the mean, the third quartile, and the largest
observation. From this summary you can compute the interquartile range,
IQR = 3Q - 1Q. The interquartile range provides a useful criterion for
identifying outliers—any observation which is more than 1.5 3 IQR above
the third quartile or below the first quartile is a suspected outlier.

To examine possible serial correlation, or dependency, make two plots using
the eda.ts function defined in the section Exploratory Data Analysis on
page 44. 
> eda.ts(mich) 

Figure 3.3:  Time series plots.
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3. Statistical Inference for One and Two Sample Problems
The top plot in figure 3.3 reveals a somewhat unusual excursion at
observations 14, 15, 16, and perhaps a slightly unusual oscillation in the first
6 observations. However, the autocorrelation function plot in the lower part
of figure 3.3 reveals no significant serial correlations—all values lie within the
horizontal dashed lines for lags greater than 0.

Statistical 
Inference

Because the Michelson data are not normal, you should probably use the
Wilcoxon signed-rank test rather than the Student’s t-test for your statistical
inference. For illustrative purposes, we’ll use both.
To compute Student’s t confidence intervals for the population mean-value
location parameter m, and to compute Student’s t significance test p-values
for the parameter m0, use the function t.test.

To perform the test, you specify the confidence level, the hypothesized mean-
value location m, and the hypothesis being tested, as follows:

• conf.level= specifies the confidence level of the confidence
interval. Usual values are 0.90, 0.95, or 0.99. The default is 0.95.

• mu= specifies the null hypothesis value m0 of m. The default is m0=0,
which is often inappropriate for one sample problems. You should
choose m carefully, using either a previously accepted value or a value
suggested by the data before sampling.

• alternative= specifies the specific hypothesis being tested. There
are three options:

– "two.sided" tests the hypothesis that the true mean is not
equal to m0. This is the default alternative.

– "greater" tests the hypothesis that the true mean is greater
than m0.

– "less" tests the hypothesis that the true mean is less than m0.

For Michelson’s data, suppose you want to test the null hypothesis value m0 =

990 (plus 299,000) against a two-sided alternative. Then you use t.test
with the argument mu=990:

> t.test(mich,mu=990)

         One-sample t-Test

data:  mich 
t = -3.4524, df = 19, p-value = 0.0027 
alternative hypothesis: true mean is not equal to 990
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One Sample: Distribution Shape, Location, and Scale
95 percent confidence interval: 
 859.8931 958.1069 
sample estimates: 
 mean of x 
       909

The p-value is 0.0027, which is highly significant. S-PLUS returns other
useful information besides the p-value, including the t-statistic value, the
degrees of freedom (df), the sample mean, and the confidence interval.

Our example used the default confidence level of .95. If you specify a
different confidence level, as in the following command: 

> t.test(mich,conf.level=.90,mu=990) 

you obtain a new confidence interval of (868,950), which is shorter than
before, but nothing else changes in the output from t.test.

Wilcoxon Signed 
Rank Test 
p-Values

To perform the Wilcoxon signed rank nonparametric test, use the function
wilcox.test. As with t.test, the test is completely determined by the
confidence level, the hypothesized mean m0, and the hypothesis to be tested.
These options are specified for wilcox.test exactly as for t.test.
For example, to test the hypothesis that m = 990 (plus 299,000), use
wilcox.test as follows: 

> wilcox.test(mich,mu=990)

Wilcoxon signed-rank test

data:  mich 
signed-rank normal statistic with correction Z = -3.0715, 
 p-value = 0.0021 
alternative hypothesis: true mu is not equal to 990
Warning messages: 
  cannot compute exact p-value with ties in:
  wil.sign.rank(dff, alternative, exact, correct) 

The p-value of .0021 compares with the t-test p-value of .0027 for testing the
same null hypothesis with a two-sided alternative.

Michelson’s data have several tied values. Because exact p-values cannot be
computed if there are tied values (or if the null hypothesis mean is equal to
one of the data values), a normal approximation is used and the associated Z-
statistic value is reported.
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3. Statistical Inference for One and Two Sample Problems
3.3 TWO SAMPLES: DISTRIBUTION SHAPES, LOCATIONS, AND 
SCALES

Suppose you are a nutritionist interested in the relative merits of two diets,
one featuring high protein, the other low protein. Do the two diets lead to
differences in mean weight gain? Consider the data in table 3.1, which shows
the weight gains (in grams) for two lots of female rats, under the two diets.
The first lot, consisting of 12 rats, was given the high protein diet, and the
second lot, consisting of 7 rats, was given the low protein diet. These data
appear in section 6.9 of Snedecor and Cochran (1980).

The high protein and low protein samples are presumed to have mean-value
location parameters mH and mL, and standard deviation scale parameters sH

and sL, respectively. While you are primarily interested in whether there is
any difference in the m’s, you may also be interested in whether or not the
two diets result in different variabilities, as measured by the standard
deviations (or their squared values, the variances). This section shows you
how to use S-PLUS functions to answer such questions.

Table 3.1: Weight gain data.

High Protein Low Protein

134 70

146 118

104 101

119 85

124 107

161 132

107 94

83

113

129

97

123
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Two Samples: Distribution Shapes, Locations, and Scales
Setting Up the 
Data

In the two sample case, each sample forms a set of data. Thus, you begin by
creating two data vectors, say gain.high and gain.low, containing,
respectively, the first and second column of data from the table 3.1: 

> gain.high <- scan() 
1: 134 146 104 119 124 161 107 83 113 129 97 123 
13: 
> gain.low <- scan() 
1: 70 118 101 85 107 132 94 
8: 

Exploratory 
Data Analysis

For each sample, make a set of EDA plots, consisting of a histogram, a
boxplot, a density plot and a normal qq-plot, all displayed in a two-by-two
plot layout, using the eda.shape function defined in the section
Exploratory Data Analysis on page 44: 

> eda.shape(gain.high) 
> eda.shape(gain.low) 

Figure 3.4:  EDA plots for high-protein group.

80 100 120 140 160 180

0
1

2
3

4

x

80
10

0
12

0
14

0
16

0

x

60 80 100 120 140 160 180

0.
0

0.
01

0
0.

02
0

•

•

•

•
•

•

•

•

•

•

•

•

Quantiles of Standard Normal

x

-1 0 1

80
10

0
12

0
14

0
16

0

55



3. Statistical Inference for One and Two Sample Problems
The resulting plots for the high-protein group are shown in figure 3.4. They
indicate that the data come from a nearly normal distribution, and there is no
indication of outliers. The plots for the low-protein group, which we do not
show, support the same conclusions.

Since the data were not collected in any specific time order, you need not
make any exploratory time series plots to check for serial correlation.

Statistical 
Inference

Is the mean weight gain the same for the two groups of rats? Specifically, does
the high-protein group show a higher average weight gain? From our
exploratory data analysis, we have good reason to believe that Student’s t-test
will provide a valid test of our hypotheses. As in the one-sample case, you can
get confidence intervals and hypothesis test p-values for the difference m1-m2
between the two mean-value location parameters m1 and m2 using the
functions t.test and wilcox.test.
As before, each test is specified by a confidence level, a hypothesized m0

(which now refers to the difference of the two sample means), and the
hypothesis to be tested. However, because of the possibility that the two
samples may be from different distributions, you may also specify whether
the two samples have equal variances.

You define the test to be performed using the following arguments to
t.test:

• conf.level= specifies the confidence level of the confidence
interval. Usual values are 0.90, 0.95, or 0.99. The default is 0.95.

• mu= specifies the null hypothesis value m0 of mdiff = mH - mL. The

default is m0=0.

• alternative= specifies the hypothesis being tested. There are
three options:

– "two.sided" tests the hypothesis that the difference of means
is not equal to m0. This is the default alternative.

– "greater" tests the hypothesis that the difference of means is
greater than m0.

– "less" tests the hypothesis that the difference of means is less
than m0.

• var.equal= specifies whether equal variances are assumed for the
two samples. The default is var.equal=TRUE.
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Two Samples: Distribution Shapes, Locations, and Scales
To determine the correct setting for the option var.equal, you can either
use informal inspection of the EDA boxplots or use the function var.test
for a more formal test. If the heights of the boxes in the two boxplots are
approximately the same, then so are the variances of the two outlier-free
samples. The var.test function performs the F test for variance equality
on the vectors representing the two samples. For the weight gain data: 

> var.test(gain.high,gain.low)
         F test for variance equality
data:  gain.high and gain.low 
F = 1.0755, num df = 11, denom df = 6, p-value = 0.9788
alternative hypothesis: true ratio of variances is not 
 equal to 1 
95 percent confidence interval: 
 0.1988088 4.1737320 
sample estimates: 
 variance of x variance of y 
      457.4545      425.3333 

The evidence supports the assumption that the variances are the same, so
var.equal=T is a valid choice.

We are interested in two alternative hypotheses: the two-sided alternative that
mH - mL = 0 and the one-sided alternative that mH - mL > 0. To test these, we
run the standard two-sample t-test twice, once with the default two-sided
alternative and a second time with the one-sided alternative alt="g".

You get both a confidence interval for mH - mL, and a two-sided test of the
null hypothesis that mH - mL = 0, by the following simple use of t.test: 

> t.test(gain.high,gain.low)
         Standard Two-Sample t-Test
data: gain.high and gain.low 
t = 1.8914, df = 17, p-value = 0.0757 
alternative hypothesis: true difference in means is 
 not equal to 0 
95 percent confidence interval: 
  -2.198905 40.198905 
sample estimates: 
 mean of x mean of y 
       120       101 

The p-value is .0757, so the null hypothesis is rejected at the .10 level, but
not at the .05 level. The confidence interval is (-2.2, 40.2).
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3. Statistical Inference for One and Two Sample Problems
To test the one-sided alternative that mH - mL > 0, use t.test again with the
argument alternative="greater" (abbreviated below for ease of typing): 
t.test(gain.high,gain.low,alt="g")

         Standard Two-Sample t-Test

data:  gain.high and gain.low 
t = 1.8914, df = 17, p-value = 0.0379 
alternative hypothesis: true difference in means 
 is greater than 0 
95 percent confidence interval: 
 1.521055       NA 
sample estimates: 
mean of x mean of y 
      120       101 

In this case, the p-value is just half of the p-value for the two-sided
alternative. This relationship between the p-values of the one-sided and two-
sided alternatives holds in general. You also see that when you use the
alt="g" argument, you get a lower confidence bound. This is the natural
one-sided confidence interval corresponding to the “greater than" alternative.

Hypothesis Test 
p-Values using 
wilcox.test

To get a two-sided hypothesis test p-value for the “two-sided” alternative,
based on the Wilcoxon rank sum test statistic, use wilcox.test, which
takes the same arguments as t.test:

> wilcox.test(gain.high,gain.low)

             Wilcoxon rank-sum test

data: gain.high and gain.low 
rank-sum normal statistic with correction Z = 1.691, 
 p-value = 0.0908 
alternative hypothesis: true mu is not equal to 0

Warning messages: 
  cannot compute exact p-value with ties 

The above p-value of .0908, based on the normal approximation (used
because of ties in the data), is rather close to the t-statistic p-value of .0757.
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Two Paired Samples
3.4 TWO PAIRED SAMPLES
Often two samples of data are collected in the context of a comparative  study.
A comparative study is designed to determine the difference between effects,
rather than the individual effects. For example, consider the data in table 3.2,
which gives values of wear for two kinds of shoe sole material, A and B, along
with the differences in values.

In the table, (L) indicates the material was used on the left sole; (R), that it
was used on the right sole.

The experiment leading to this data, described in Box, Hunter, and Hunter
(1978), was carried out by taking 10 pairs of shoes and putting a sole of
material A on one shoe and a sole of material B on the other shoe in each
pair. Which material type went on each shoe was determined by
randomizing, with equal probability that material A was on the right shoe or
left shoe. A group of 10 boys then wore the shoes for a period of time, after
which the amount of wear was measured. The problem is to determine
whether shoe material A or B is longer wearing.

Table 3.2: Comparing shoe sole material

boy wear.A wear.B wear.A-wear.B

1 14.0(R) 13.2(L) 0.8

2 8.8(R) 8.2(L) 0.6

3 11.2(L) 10.9(R) 0.3

4 14,2(R) 14.3(L) -0.1

5 11.8(L) 10.7(R) 1.1

6 6.4(R) 6.6(L) -0.2

7 9.8(R) 9.5(L) 0.3

8 11.3(R) 10.8(L) 0.5

9 9.3(L) 8.8(R) 0.5

10 13.6(R) 13.3(L) 0.3
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3. Statistical Inference for One and Two Sample Problems
You could treat this problem as a two sample location problem and use either
t.test or wilcox.test, as described in the section Two Samples:
Distribution Shapes, Locations, and Scales on page 54, to test for a difference
in the means of wear for material A and material B. However, you will not be
very successful with this approach because there is considerable variability in
wear of both materials types A and B from individual to individual, and this
variability tends to mask the difference in wear of material A and B when you
use an ordinary two sample test.

However, the above experiment uses paired comparisons. Each boy wears one
shoe with material A and one shoe with material B. In general, pairing
involves selecting similar individuals or things. One often uses self-pairing as
in the above experiment, in which two procedures, often called treatments, are
applied to the same individual (either simultaneously or at two closely spaced
time intervals) or to similar material. The goal of pairing is to make a
comparison more sensitive by measuring experimental outcome differences
on each pair, and combining the differences to form a statistical test or
confidence interval. When you have paired data, you use t.test and
wilcox.test with the optional argument paired=T.

The use of paired versions of t.test and wilcox.test leads to improved
sensitivity over the usual versions when the variability of differences is smaller
than the variability of each sample; for example, when the variability of
differences of material wear between materials A and B is smaller than the
variability in wear of material A and material B.

Setting Up the 
Data

In paired comparisons you start with two samples of data, just as in the case
of ordinary two sample comparisons. You begin by creating two data vectors,
wear.A and wear.B, containing the first and second columns of table 3.2: 

> wear.A <- scan() 
1: 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6 
10: 
> wear.B <- scan() 
1: 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3 
10: 

Exploratory 
Data Analysis

You can carry out exploratory data analysis on each of the two paired samples
x1, …, xn and y1, …, yn, as for an ordinary two sample problem, as described
in the section Exploratory Data Analysis on page 55. However, since your
analysis is based on differences, it is appropriate to carry out EDA based on a
single sample of differences di = xi - yi, i=1, …, n.
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Two Paired Samples
In the shoe material wear experiment, you use eda.shape on the difference
wear.A-wear.B: 

> eda.shape(wear.A - wear.B) 

The results are displayed in figure 3.5. The histogram and density indicate
some deviation from normality that is difficult to judge because of the small
sample size.

You might also want to make a scatter plot of wear.B versus wear.A, using
plot(wear.A,wear.B), as a visual check on correlation between the two
variables. Strong correlation is an indication that within-sample variability is
considerably larger than the difference in means, and hence that the use of
pairing will lead to greater test sensitivity. To obtain the scatter plot of
figure 3.6, use the following S-PLUS expression:

Figure 3.5:  EDA plots for differences in shoe sole material wear.
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3. Statistical Inference for One and Two Sample Problems
> plot(wear.A,wear.B) 

Statistical 
Inference

To perform a paired t-test on the shoe material wear data, with the default
two-sided alternative use t.test with the paired argument, as follows: 

> t.test(wear.A,wear.B,paired=T)

         Paired t-Test

data: wear.A and wear.B 
t = 3.3489, df = 9, p-value = 0.0085 
alternative hypothesis: true mean of differences is not
 equal to 0 
95 percent confidence interval: 
 0.1330461 0.6869539 
sample estimates: 
 mean of x - y 
          0.41 

Figure 3.6:  Scatter plot of wear.A versus wear.B.
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Correlation
The p-value of .0085 is highly significant for testing the difference in mean
wear of materials A and B. You also get the 95% confidence interval (.13,.67)
for the difference in mean values. You can control the type of alternative
hypothesis with the alt= optional argument, and you can control the
confidence level with the conf.level= optional argument, as usual. To
perform a paired Wilcoxon test (often called the Wilcoxon signed rank test) on
the shoe material data, with the default two-sided alternative use
wilcox.test with the paired argument, as follows:

> wilcox.test(wear.A,wear.B,paired=T)

Wilcoxon signed-rank test

data:  wear.A and wear.B 
signed-rank normal statistic with correction Z = 2.4495, 
 p-value = 0.0143 
alternative hypothesis: true mu is not equal to 0

Warning messages: 
  cannot compute exact p-value with ties in:
  wil.sign.rank(dff, alternative, exact, correct) 

The p-value of .0143 is highly significant for testing the null hypothesis of
equal centers of symmetry for the distributions of wear.A and wear.B. You
can control the type of alternative hypothesis by using the optional argument
alt= as usual.

3.5 CORRELATION
What effect, if any, do housing starts have on the demand for residential
telephone service? If there is some useful association, or correlation, between
the two, you may be able to use housing start data as a predictor of growth in
demand for residential phone lines. Consider the data displayed in table 3.3
(in coded form), which relates to residence telephones in one area of New
York City.
The first column of data, labeled “Diff. HS", shows annual first differences in
new housing starts over a period of fourteen years. The first differences are
calculated as the number of new housing starts in a given year, minus the
number of new housing starts in the previous year. The second column of
data, labeled “Phone Increase", shows the annual increase in the number of
“main" residence telephone services (excluding extensions), for the same
fourteen-year period.

The general setup for analyzing the association between two samples of data
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3. Statistical Inference for One and Two Sample Problems
such as those above is as follows. You have two samples of observations, of
equal sizes n, of the random variables X1, X2, …, Xn and Y1, Y2, …, Yn. Let’s
assume that each of the two-dimensional vector random variables (Xi,Yi),

i=1, 2, …, n, have the same joint distribution.

The most important, and commonly used measure of association between
two such random variables is the (population) correlation coefficient parameter
r, defined as

,

where m1, m2 and s1, s2 are the means and standard deviations, respectively,

of the random variables X and Y. The E appearing in the numerator denotes
the statistical expected value, or expectation operator, and the quantity

Table 3.3: The phone increase data.

Diff. HS Phone Increase

.06 1.135

.13 1.075

.14 1.496

-.07 1.611

-.05 1.654

-.31 1.573

.12 1.689

.23 1.850

-.05 1.587

-.03 1.493

.62 2.049

.29 1.942

-.32 1.482

.71 1.382

ρ
E x µ1–( ) Y µ2–( )

σ1σ2

-------------------------------------------=
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Correlation
E(X -m1)(Y - m2) is the covariance between the random variables X and Y.
The value of r is always between 1 and -1.

Your main goal is to use the two samples of observed data to determine the
value of the correlation coefficient r. In the process you want to do sufficient
graphical EDA to feel confident that your determination of r is reliable.

Setting Up the 
Data

The data form two distinct data sets, so we create two vectors with the
suggestive names diff.hs and phone.gain: 

> diff.hs <- scan() 
1: .06 .13 .14 -.07 -.05 -.31 .12 
8: .23 -.05 -.03 .62 .29 -.32 -.71 
15:
> phone.gain <- scan() 
1: 1.135 1.075 1.496 1.611 1.654 1.573 1.689 
8: 1.850 1.587 1.493 2.049 1.943 1.482 1.382 
15: 

Exploratory 
Data Analysis

If two variables are strongly correlated, that correlation may appear in a
scatter plot of one variable against the other. For example, plot phone.gain
versus diff.hs using the following command: 

> plot(diff.hs, phone.gain) 

The results are shown in figure 3.7. The plot reveals a strong positive
correlation, except for two obvious outliers. To identify the observation
numbers associated with the outliers in the scatter plot, along with that of a
third suspicious point, we used identify as follows: 

> identify(diff.hs, phone.gain, n=3) 

See the on-line help for a complete discussion of identify. 

The obvious outliers occur at the first and second observations. In addition,
the suspicious point (labeled “3” in the scatter plot) occurs at the third
observation time.

Since you have now identified the observation times of the outliers, you can
gain further insight by making a time series plot of each series: 

> plot(diff.hs,type="b") 
> plot(phone.gain,type="b") 

You should also make an autocorrelation plot for each series:

> acf(diff.hs) 
> acf(phone.gain) 

The results are shown in figure 3.8. Except for the first three observations of
the two series phone.gain and diff.hs, there is a strong similarity of
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3. Statistical Inference for One and Two Sample Problems
shape exhibited in the two time series plots. This accounts for the strong
positive correlation between the two variables diff.hs and phone.gain
shown in figure 3.7. The dissimilar behavior of the two time series plots for
the first three observations produces the two obvious outliers, and the
suspicious point, in the scatter plot of phone.gain versus diff.hs.

The ACF plots show little evidence of serial correlation within each of the
individual series.

Statistical 
Inference

From your exploratory data analysis, two types of questions present
themselves for more formal analysis. If the evidence for correlation is
inconclusive, you may want to test whether there is correlation between the
two variables of interest by testing the null hypothesis that r = 0. On the
other hand, if your EDA convinces you that correlation exists, you might

prefer a point estimate  of the correlation coefficient r, or a confidence
interval for r.

Hypothesis Test 
p-Values

You can get p-values for the null hypothesis that r = 0 by using the function
cor.test. To perform this test, you specify the alternative hypothesis to be
tested and the test method to use, as follows:

• alternative= specifies the alternative hypothesis to be tested.

Figure 3.7:  Scatter plot of phone.gain versus diff.hs.
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Correlation
There are three options:

– "two.sided" (the default alternative) tests the alternative
hypothesis that r Þ 0.

– "greater" tests the alternative hypothesis that r > 0.

– "less" tests the alternative hypothesis that r < 0.

You can also use the abbreviated forms alt="g" and alt="l".

Figure 3.8:  Time series and ACF plots of phone increase data .
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3. Statistical Inference for One and Two Sample Problems
• method= specifies which of the following methods is used:

– "pearson" (the default) uses the standard Pearson sample cor-
relation coefficient.

– "kendall" uses the rank-based Kendall’s t measure of correla-
tion.

– "spearman" uses the rank-based Spearman’s r measure of cor-
relation.

You can abbreviate these methods by using enough of the character
string to determine a unique match; here "p", "k", and "s" work.

Because both Kendall’s t and Spearman’s r methods are based on ranks, they
are not so sensitive to outliers and non-normality as the standard Pearson
estimate.

Here is a simple use of cor.test to test the alternative hypothesis that there
is a positive correlation in the phone gain data. We use the default choice of
the classical Pearson estimate with the one-sided alternative alt="g": 

> cor.test(diff.hs,phone.gain,alt="g")

         Pearson product-moment correlation

data:  diff.hs and phone.gain 
t = 1.9155, df = 12, p-value = 0.0398 
alternative hypothesis: true coef is greater than 0 
sample estimates: 
       cor 
 0.4839002

You get a normal theory t-statistic having the modest value of 1.9155, and a
p-value of .0398. The estimate of r is .48, to two decimal places. There are
14 bivariate observations, and since the mean is estimated for each sample
under the null hypothesis that r > 0, the number of degrees of freedom (df) is
12.

Since your EDA plots reveal two obvious bivariate outliers in the phone gain
data, the non-parametric alternatives, either Kendall’s t or Spearman’s r, are
preferable in determining p-values for this case. Using Kendall’s method, we
obtain the following results: 

> cor.test(diff.hs,phone.gain,alt="g",method="k")
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Correlation
         Kendall’s rank correlation tau

data: diff.hs and phone.gain 
normal-z = 2.0256, p-value = 0.0214 
alternative hypothesis: true tau is greater than 0 
sample estimates: 
       tau 
 0.4065934

The p-value obtained from Kendall’s method is smaller than that obtained
from the Pearson method. The null hypothesis is rejected at a level of 0.05.
Spearman’s r, by contrast, yields a p-value similar to that of the standard
Pearson method.  

Warning The values returned for “tau" and “rho" (.407 and .504, respectively, for the
phone gain data) do not provide unbiased estimates of the true correlation r.
Transformations of “tau" and “rho" are required to obtain unbiased estimates
of r.

Point Estimates 
and Confidence 
Intervals for r 

You may want an estimate  of r, or a confidence interval for r. The
function cor.test gives you the classical sample correlation coefficient
estimate r of r, when you use the default Pearson’s method. However,
cor.test does not provide you with a robust estimate of r, (since neither
Kendall’s t or Spearman’s r provide an unbiased estimate of r). Furthermore,
cor.test does not provide any kind of confidence interval for r.
To obtain a robust point estimate of r, use the function cor with a non-zero
value for the optional argument trim=. You should specify a fraction a
between 0 and .5 for the value of this argument. This results in a robust
estimate which consists of the ordinary sample correlation coefficient based
on the fraction (1-a) of the data remaining after “trimming" away a fraction
a. In most cases, set trim=.2. If you think your data contain more than
20% outliers, you should use a larger fraction in place of .2. The default
value is trim=0, which yields the standard Pearson sample correlation
coefficient.

Applying cor to the phone gain data, you get: 

> cor(diff.hs,phone.gain,trim=.2) 
[1] 0.715215 

Comparing this robust estimate to our earlier value for r obtained using
cor.test, we see the robust estimate yields a larger estimate of r. This is
what you expect, since the two outliers cause the standard sample correlation
coefficient to have a value smaller than that of the “bulk" of the data.

ρ̂
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3. Statistical Inference for One and Two Sample Problems
To obtain a confidence interval for r, we’ll use the following procedure (as in
Snedecor and Cochran (1980)). First, transform r using Fisher’s “z-
transform,” which consists of taking the inverse hyperbolic tangent transform
z = atanh(r). Then, construct a confidence interval for the correspondingly

transformed true correlation coefficient . Finally, transform
this interval back to the original scale by transforming each endpoint of this
interval with the hyperbolic tangent transformation tanh.

To implement the procedure just described as an S-PLUS function, create the
function cor.confint as follows:
> cor.confint <- function(x, y, conf.level = .95, trim = 0)
+ {
+          z <- atanh(cor(x, y, trim)) 
+          b <- qnorm((1 - conf.level)/2)/(length(x) - 3)^.5
+          ci.z <- c(z - b, z + b) 
+          conf.int <- tanh(ci.z) 
+          conf.int 
+ } 

You can now use your new function cor.confint on the phone gain data:

> cor.confint(diff.hs,phone.gain) 
[1]  0.80722631 -0.06280418
> cor.confint(diff.hs,phone.gain,trim=.2) 
[1] 0.9028239 0.2962303 

When you use the optional argument trim=.2, you are basing the
confidence interval on a robust estimate of r, and consequently you get a
robust confidence interval. Since the robust estimate has the value .72, which
is larger than the standard (non-robust) estimate value of .48, you should be
reassured to get an interval which is shifted upward, and is also shorter, than
the non-robust interval you got by using cor.confint with the default
option trim=0.

ρ ρ( )atanh=
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GOODNESS OF FIT TESTS 4
Most S-PLUS functions for hypothesis testing assume a certain distributional
form—often normal—and then use data to make conclusions about certain
parameters of the distribution—often the mean or variance. In chapter 3,
Statistical Inference for One and Two Sample Problems, we describe EDA
techniques to informally test the assumptions of these procedures. Goodness
of fit (GOF) tests are another, more formal, tool to assess the evidence for
assuming a certain distribution. 
There are two types of GOF problems—corresponding to the number of
samples—which ask the following questions:

 1. One sample. Does the sample arise from a hypothesized distribution?

 2. Two sample. Do two independent samples arise from the same
distribution?

S-PLUS implements the two best known GOF tests:

• Chi-square, in the chisq.gof function. 

• Kolmogorov-Smirnov, in the ks.gof function. 

The chi-square test applies only in the one-sample case; Kolmogorov-
Smirnov can be used in both the one-sample and the two-sample cases. This
chapter describes both tests, together with a graphical function,
cdf.compare, that can be used in both the one-sample and two-sample
cases as an exploratory tool for evaluating goodness of fit.

4.1 CUMULATIVE DISTRIBUTION FUNCTIONS
For a random variable X, a cumulative distribution function (cdf), F(x) =
P[X # x], assigns a measure (between 0 and 1) of the probability that X # x.
If X1, …, Xn form a random sample from a continuous distribution, with
observed values x1, …, xn, an empirical distribution function Fn can be

defined for all x, , so that Fn(x) is the proportion of observed
values less than or equal to x. The empirical distribution function estimates
the unknown cdf. To decide whether two samples arise from the same
unknown distribution, a natural procedure is to compare their empirical
distribution functions. Likewise, for one sample, you can compare its
empirical distribution function with a hypothesized cdf.
A graphical comparison of either one empirical distribution function with a
known cdf, or of two empirical distribution functions, can be obtained easily
in S-PLUS using the function cdf.compare.  

For example, consider the plot shown in figure 4.1. In this example, the

∞ x ∞< <–
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4. Goodness of Fit Tests
empirical distribution function and a hypothetical cdf are quite close. This
plot is produced using the cdf.compare function as follows: 

> z <- rnorm(100) 
> cdf.compare(z, distribution="normal") 

You may also compare distributions using quantile-quantile plots (Q-Q
plots) generated by either of the following functions:

• qqnorm to compare one sample with a normal distribution

• qqplot to compare two samples

For our normal sample z, qqnorm(z) produces the plot shown in figure 4.2.
Departures from linearity show how the sample differs from the normal, or
how the two sample distributions differ. To compare samples with
distributions other than the normal, you may produce Q-Q plots using the
function ppoints. For more details, see the chapter Traditional Graphics in

Figure 4.1:  The empirical distribution function of a sample of size 100
generated from a N(0,1) distribution. The dotted line is the smoothed
theoretical N(0,1) distribution evaluated at the sample points.
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The Chi-Square Test of Goodness of Fit
the S-PLUS Programmer’s Guide.

In many cases, the graphical conclusions drawn from cdf.compare or the
Q-Q plots make more formal tests such as the chi square or Kolmogorov-
Smirnov unnecessary. For example, consider the two empirical distributions
compared in figure 4.3—they clearly have different distribution functions: 

> x <- rnorm(30) 
> y <- runif(30) 
> cdf.compare(x,y) 

4.2 THE CHI-SQUARE TEST OF GOODNESS OF FIT
The chi-square test, the oldest and best known goodness-of-fit test, is a one-
sample test that examines the frequency distribution of n observations
grouped into k classes. The observed counts ci in each class are compared to
the expected counts Ci from the hypothesized distribution. The test statistic,
due to Pearson, is

.

Figure 4.2:  A qqnorm plot of a sample from a normal distribution.
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4. Goodness of Fit Tests
Under the null hypothesis that the sample comes from the hypothesized

distribution, it has a  distribution with k-1 degrees of freedom. For any

significance level a, reject the null hypothesis if  is greater than the critical

value n for which .

You perform the chi-square goodness of fit test with the chisq.gof
function. In the simplest case, you specify a test vector and a hypothesized
distribution:

> z.chisq <- chisq.gof(z, distribution="normal") 
> z.chisq
         Chi-square Goodness of Fit Test

data: z

Chi-square = 8.94, df = 12, 
p-value = 0.708 
alternative hypothesis: 
True cdf does not equal the normal Distn. 
     for at least one sample point. 

Figure 4.3:  Two clearly different empirical distribution functions.
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The Chi-Square Test of Goodness of Fit
Since we created z as a random sample from a normal distribution, it is not
surprising that we cannot reject the null hypothesis. If we hypothesize a
different distribution, we see that the chi-square correctly rejects the
hypothesis: 

> chisq.gof(z, distribution="exponential") 

         Chi-square Goodness of Fit Test

data: z

Chi-square = 324.84, df = 12, 
p-value = 0 
alternative hypothesis: 
True cdf does not equal the exponential Distn. 
     for at least one sample point. 

The allowable values for the distribution argument are the following
strings (the default is "normal"): 
"beta"            "binomial"     "cauchy"    "chisquare" 
"exponential"     "f"             "gamma"    "geometric" 
"hypergeometric"  "lognormal"  "logistic"  "negbinomial" 
"normal"          "poisson"           "t"      "uniform" 
"weibull"         "wilcoxon" 

When the sample being tested is from a continuous distribution, one factor
affecting the outcome is the choice of partition for determining the grouping
of the observations. This becomes particularly important when the expected
count in one or more cells drops below 1, or the average expected cell count
drops below five (Snedecor and Cochran (1980), p. 77). You can control the
choice of partition using either the n.classes or cut.points argument to
chisq.gof. By default, chisq.gof uses a default value for n.classes due
to Moore (1986).

Use the n.classes argument to specify the number of equal-width classes: 

> chisq.gof(z, n.classes=5) 

Use the cut.points argument to specify the end points of the cells; the
specified points should span the observed values: 

> cuts.z <- c(floor(min(z))-1, -1,0,1, ceiling(max(z))+1) 
> chisq.gof(z, cut.points=cuts.z) 

Chi-square tests apply to any type of variable: continuous, discrete, or a
combination of these. For large sample sizes (n $ 50), if the hypothesized
distribution is discrete, the chi-square is the only valid test. In addition, the
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4. Goodness of Fit Tests
chi-square test easily adapts to the situation when parameters of a
distribution are estimated. However, especially for continuous variables,
information is lost by grouping the data. 

When the hypothesized distribution is continuous, the Kolmogorov-Smirnov
test is more likely to reject the null hypothesis when it should; it is more
powerful than the chi-square test. 

4.3 THE KOLMOGOROV-SMIRNOV TEST
Suppose F1 and F2 are two cdfs. In the one-sample situation, F1 is the
empirical distribution function, and F2 is a hypothesized cdf. In the two-
sample situation, F1 and F2 are both empirical distribution functions.

Possible hypotheses and alternatives concerning these cdfs are:

•  Two-sided:

H0: F1(x) = F2(x) for all x 

HA: F1(x) Þ F2(x) for at least one value of x.

•  One-sided (“less” alternative):

H0: F1(x) $ F2(x) for all x 

HA: F1(x) < F2(x) for at least one value of x.

•  One-sided (“greater” alternative):

H0: F1(x) # F2(x) for all x 

HA: F1(x) > F2(x) for at least one value of x.

The Kolmogorov-Smirnov test is a method for testing the above hypotheses.
Corresponding to each alternative hypothesis is a Kolmogorov-Smirnov test
statistic, as follows:

•  Two-sided Test: 

•  Less Alternative: 

•  Greater Alternative: 

If the test statistic is greater than some critical value, the null hypothesis is
rejected.

To perform a KS test, use the function ks.gof. By default, the one-sample
ks.gof test compares the sample x to a normal with mean mean(x) and
standard deviation sqrt(var(x)): 

T supx F1 x( ) F2 x( )–=

T- supx F2 x( ) F1 x( )–=

T+ supx F1 x( ) F2 x( )–=
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One Sample Tests
> ks.gof(z)

 One sample Kolmogorov-Smirnov Test of Composite Normality
data: z

ks = 0.0457, p-value = 0.5 
alternative hypothesis: 
True cdf does not equal the normal Distn. 
     for at least one sample point.

sample estimates: 
   mean of x standard deviation of x 
 -0.04593973                1.103777
Warning messages: 
  The Dallal-Wilkinson approximation, used to calculate 
     the p-value in testing composite normality, 
     is most accurate for p-values <= 0.10 . 
   The calculated p-value is 0.881 
     and so is set to 0.5 . in: dall.wilk(test, nx)

In the one-sample case, ks.gof can test any of the three alternative
hypotheses ("two-sided", "greater", "less"). In the two-sample case,
ks.gof can test only the two-sided hypothesis. The default hypothesized
distribution is the normal, as for the chisq.gof function. You can specify a
different distribution using the distribution argument. Allowable values
for the distribution argument are as follows: 
"beta"            "binomial"     "cauchy"    "chisquare" 
"exponential"     "f"             "gamma"    "geometric" 
"hypergeometric"  "lognormal"  "logistic"  "negbinomial" 
"normal"          "poisson"           "t"      "uniform" 
"weibull"         "wilcoxon" 

4.4 ONE SAMPLE TESTS
In a real situation, we do not know the true source of the data. Suppose,
instead, that we think the underlying distribution is chi-square with 2 degrees
of freedom. The KS test gives strong evidence against this assumption:

> ks.gof(z,alternative="greater",dist="chisquare",df=2)

         One-sample Kolmogorov-Smirnov Test; 
                     hypothesized distribution = chisquare
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4. Goodness of Fit Tests
data: z 
ks = 0.4741, p-value = 0 
alternative hypothesis: True cdf is greater than the
       chisquare Distn. for at least one sample point. 

Figure 4.4, created as follows, further shows that this assumption is not
reasonable: 

> cdf.compare(z, dist="chisquare", df=2) 

The chisq.gof test gives further confirmation: 

> chisq.gof(z,dist="chisquare",n.param.est=0,df=2)

         Chi-square Goodness of Fit Test
data: z 
Chi-square = 282.98, df = 12, p-value = 0 
alternative hypothesis: True cdf does not equal the
         chisquare Distn. for at least one sample point. 

Note that chisq.gof tests only the two sided alternative.

Figure 4.4:  Like the previous figure, except the dotted line shows a chi-
square cdf with 2 degrees of freedom.
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One Sample Tests
Composite 
Tests for a 
Family of 
Distributions

When the parameters are estimated from the sample, rather than specified in
advance, the tests described above are no longer adequate. Different tables of
critical values are needed. In fact, for the KS test, the tables vary for different
distributions, parameters estimated, methods of estimation, and sample sizes.
The null hypothesis is now composite: rather than hypothesizing that the data
have a distribution with specific parameters, we hypothesize only that the
distribution belongs to the family of distributions with a certain form, such
as normal. This family of distributions results from allowing all possible
parameter values.
The two functions ks.gof and chisq.gof use different strategies to solve
composite tests: ks.gof explicitly calculates the required parameters in two
cases (described below), but otherwise forbids composite hypotheses, while
chisq.gof requires the user to pass both the number of estimated
parameters and the estimates themselves as arguments, then reduces the
degrees of freedom for the chi-square by the number of estimated parameters.

The function ks.gof estimates parameters in the following two cases:

• Normal, with both mean and variance estimated.

• Exponential, with mean estimated.

As an example, we test whether we can reasonably assume that the Michelson
data (see the section One Sample: Distribution Shape, Location, and Scale on
page 49) arises from a normal distribution. We start with an exploratory plot
using cdf.compare (figure 4.5), and then use ks.gof with estimated mean
and variance: 
> cdf.compare(mich, dist="normal", mean=mean(mich), 
+                 sd=sqrt(var(mich))) 
> ks.gof(mich,dist="normal")

One-sample Kolmogorov-Smirnov Test of Composite Normality

data: mich 
ks = 0.1793, p-value = 0.0914 
alternative hypothesis: True cdf does not equal 
         the normal Distn. for at least one sample point. 

For the function chisq.gof, if parameters are estimated, the degrees of
freedom depend on the method of estimation. In practice, you may estimate
the parameters from the original (that is, not grouped) data, and then set the
argument n.param.est to the number of parameters estimated. The
function then subtracts one degree of freedom for each parameter estimated.

In truth, if the parameters are estimated by maximum likelihood, the degrees
of freedom are bounded between (m-1) and (m-1-k), where m is the number
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4. Goodness of Fit Tests
of cells, and k is the number of parameters estimated. Therefore, especially
when the sample size is small, it is important to compare the test statistic to
the chi-square distribution with both (m-1) and (m-1-k) degrees of freedom.
See Kendall and Stuart (1979), for a more complete discussion.

We again test the normal assumption for the Michelson data using
chisq.gof: 

> chisq.gof(mich, dist="normal", n.param.est=2, 
+                 mean=mean(mich), sd=sqrt(var(mich))) 

        Chi-square Goodness of Fit Test
data: mich 
Chi-square = 8.7, df = 4, p-value = 0.0691 
alternative hypothesis: True cdf does not equal 
      the normal Distn. for at least one sample point.

Warning messages: 
Expected counts < 5. Chi-square approximation may not 
    be appropriate. in: chisq.gof(mich, dist = "normal",
    n.param.est = 2, mean = mean(mich), sd = sqrt( .... 

Figure 4.5:  Exploratory plot of cdf of mich data.
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Two Sample Tests
Both goodness-of-fit tests return results which make us suspect the null
hypothesis, but don’t allow us to firmly reject it at 95% or 99% confidence
levels.

Note that the distribution theory of the chi-square test is a large sample
theory. Therefore when any expected cell counts are small, chisq.gof issues
a warning message. You should regard p-values with caution in this case.

4.5 TWO SAMPLE TESTS
In the two-sample case, you can use ks.gof as for the one-sample case (with
the second sample y filling in for the hypothesized distribution).
The assumptions of the two-sample KS test are:

• the samples are random samples,

• the two samples are mutually independent, and

• the data are measured on at least an ordinal scale.

In addition, the test gives exact results only if the underlying distributions are
continuous.

For example, compare the cdfs of vectors x and y generated from a normal
and exponential distribution, respectively: 
> x <- rnorm(30) 
> y <- rexp(100) 
> qqplot(x,y) 
> cdf.compare(x,y) 

Figure 4.6 shows a Q-Q plot which is not linear, and cdfs which are quite
different. This graphical evidence is verified by a formal KS test:
> ks.gof(x,y)

        Two-Sample Kolmogorov-Smirnov Test

data: x and y

ks = 0.3667, p-value = 0.0028 
alternative hypothesis: 
cdf of x does not equal the 
              cdf of y for at least one sample point. 
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4. Goodness of Fit Tests
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Figure 4.6:  A normal and exponential (dotted line) sample compared.
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STATISTICAL INFERENCE FOR COUNTS AND 
PROPORTIONS 5

This chapter shows you how to use S-PLUS statistical inference functions for
two types of problems that involve counts or proportions. With these
functions, you can obtain confidence intervals for the unknown population
parameters and p-values for hypothesis tests of the parameter values.
The first type of problem is one where you have one or more samples, or sets
of trials, in which the count for each sample represents the number of times
that a certain interesting outcome occurs. By common convention, we refer
to the occurrence of the outcome of interest as a “success”. For example, if
you play roulette 100 times at a casino, and you bet on red each time, you are
interested in counting the number of times that the color red comes up. This
count is a number between 0 and 100. When you divide this count by 100
you get a proportion (that is, a number between 0 and 1). This proportion is
a natural estimate of the probability that red comes up on the roulette wheel.

Another example is provided by the famous Salk vaccine trials. These trials
involved two groups, one of which received the vaccine and one of which
received a placebo. For each group, the count of interest was the number of
individuals who contracted polio. The ratio of the number of individuals
who contracted polio to the total number of individuals in the group is a
proportion that provides a natural estimate of the probability of contracting
polio within that group.

The underlying probability model for problems of this first type is the
binomial distribution. For each set of trials i, this distribution is characterized
by the number of trials and the probability pi that a success occurs on each
trial. This probability is called a proportion parameter. Your main interest is in
making statistical inference statements concerning the probabilities p1,

p2, …, pm of occurrence of the event of interest for each of the m sets of
trials.

The second type of problem is one where you have counts on the number of
occurrences of several possible outcomes for each of two variables. For
example, you may be studying three types of cancer and three types of diet
(such as low, medium and high fat diets). The two variables of interest may
be “type of cancer” and “type of diet”. For a fixed set of individuals, you have
counts on the number of individuals who fall jointly in each of the categories
defined by the simultaneous occurrence of a type of cancer and a diet
classification. For problems of this kind, the data is arranged in a two-way
table called a contingency table.
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5. Statistical Inference for Counts and Proportions
In this second kind of problem, your main interest is to determine whether
there is any association between the two variables of interest. The probability
model for such problems is one of statistical independence between the two
variables.

The first three sections of this chapter cover the first type of problem
described above, for which the proportion parameters are the probabilities of
success, p1, p2, …, pm in m sets of binomial trials. The last section covers the
second type of problem, where you are interested in testing the null
hypothesis of independence between two variables.

5.1 PROPORTION PARAMETER FOR ONE SAMPLE
When you play roulette and bet on red, you expect your probability of
winning to be close to, but slightly less than, 0.5. You expect this because (in
the United States) a roulette wheel has 18 red slots, 18 black slots, and two
additional slots labeled “0” and “00”, for a total of 38 slots into which the
ball can fall. Thus, for a “fair” (that is, perfectly balanced) wheel, you expect
the probability of red to be p0 = 18/38 = .474. You hope that the house is not
cheating you by altering the roulette wheel so that the probability of red is
less than .474.
To test whether a given sample has a particular proportion parameter, use the
binom.test function.

Setting Up the 
Data

In the roulette case there is little to do, since the only data are the number n
of trials and the number x of successes. These two values can be directly
supplied as arguments to binom.test, as shown in the examples below.

Hypothesis 
Testing

You can test the null hypothesis that p = p0 using the function binom.test.
For example, if you bet on red 100 times and red comes up 42 times, you get
a p-value for this null hypothesis against the two-sided alternative that
p Þ .474 as follows: 

> binom.test(42,100,p=.474)$p.value 
[1] 0.3167881

The two-sided alternative is the default alternative for binom.test. You can
get a p-value for a one-sided alternative by using the optional argument
alt=. For example, in the roulette wheel example you are concerned that the
house might cheat you in some way so that p < p0. Use the following to test
the null hypothesis against this one-sided alternative:  

> binom.test(42,100,p=.474,alt="l")$p.value 
[1] 0.1632416
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Here alt="l" specifies the “less than” alternative p < p0. To specify the
“greater than” alternative p > p0, use alt="g".

The default for the optional argument p=, which specifies the null hypothesis
value for p, is p=.5. For example, suppose you toss a coin 1000 times, with
heads coming up 473 times. To test the coin for “fairness;” that is, to test that
the probability of heads equals .5, use the following: 
> binom.test(473,1000)$p.value 
[1] 0.09368729 

Confidence 
Intervals

The function binom.test does not compute a confidence interval for the
probability p of success. You can get a confidence interval for p by using the
function prop.test. For example, the following shows how to obtain the
95% confidence interval for p:  

> prop.test(45,100)$conf.int 
[1] 0.3514281 0.5524574
attr(, "conf.level"):
[1] 0.95

The function prop.test uses a normal approximation to the binomial
distribution for such computations.

You get different confidence intervals by using the optional argument
conf.level= with different values. For example, to get a 90% confidence
interval: 

> prop.test(45,100,conf.level=.9)$conf.int 
[1] 0.3657761 0.5370170
attr(, "conf.level"):
[1] 0.9

5.2 PROPORTION PARAMETERS FOR TWO SAMPLES
In the Salk vaccine trials, two large groups were involved in the placebo-
control phase of the study. The first group, which received the vaccination,
consisted of 200,745 individuals. The second group, which received a
placebo, consisted of 201,229 individuals. There were 57 cases of polio in the
first group and 142 cases of polio in the second group. 
You assume a binomial model for each group, with a probability p1 of
contracting polio in the first group and a probability p2 of contracting polio
in the second group. You are mainly interested in knowing whether or not
the vaccine is effective. Thus you are mainly interested in knowing the
relationship between p1 and p2. 
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5. Statistical Inference for Counts and Proportions
You can use prop.test to obtain hypothesis test p-values concerning the
values of p1 and p2, and to obtain confidence intervals for the difference
between the values p1 and p2.

Setting Up the 
Data

The first two arguments to prop.test are vectors containing, respectively, the
number of successes and the total number of trials. For consistency with the
one-sample case, we name these vectors x and n. In the case of the Salk
vaccine trials, a “success” corresponds to contracting polio (although one
hardly thinks of this as a literal success!) Thus, you create the vectors x and n
as follows:  
> x <- c(57,142) 

> n <- c(200745,201229) 

Hypothesis 
Testing

For two-group problems, you can use either of two null hypotheses: an equal
probabilities null hypothesis that p1 = p2, with no restriction on the common

value of these probabilities other than that they be between 0 and 1, or a
completely specified probabilities null hypothesis, where you provide specific
probabilities for both p1 and p2, and test whether the true probabilities are

equal to those hypothesized.

The Equal 
Probabilities Null 
Hypothesis

When using the equal probabilities null hypothesis, a common alternative
hypothesis is the two-sided alternative p1 Þ p2. These null and alternative
hypotheses are the defaults for prop.test. 
In the Salk vaccine trials, your null hypothesis is that the vaccine has no
effect. For the two-sided alternative that the vaccine has some effect, either
positive or negative, you get a p-value by extracting the p.value component
of the list returned by prop.test: 

> prop.test(x,n)$p.value 
[1] 2.86606e-09 

The extremely small p-value clearly indicates that the vaccine has some effect.

To test the one-sided alternative that the vaccine has a positive effect; that is,
that p1 , p2, use the argument alt="l" to prop.test: 

> prop.test(x,n,alt="l")$p.value 
[1] 1.43303e-09 

Here the p-value is even smaller, indicating that the vaccine is highly effective
in protecting against the contraction of polio.
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Completely 
Specified Null 
Hypothesis 
Probabilities

You can also use prop.test to test “completely” specified null hypothesis
probabilities. For example, suppose you have some prior belief that the
probabilities of contracting polio with and without the Salk vaccine are
p01 = .0002 and p02 = .0006, respectively. Then you supply these null
hypothesis probabilities as a vector object, using the optional argument p=.
The p-value returned is for the joint probability that both probabilities are
equal to the hypothesized probabilities; that is, .0002 and .0006 . 
> prop.test(x,n,p=c(.0002,.0006))$p.value 
[1] 0.005997006 

The above p-value is very small and indicates that the null hypothesis that the
joint probability that the underlying population probabilities with and
without the Salk vaccine are .0002 and .0006 is very unlikely and should be
rejected.

Confidence 
Intervals

You obtain a confidence interval for the difference p1 - p2 in the probabilities
of success for the two samples by extracting the conf.int component of
prop.test. For example, to get a 95% confidence interval for the difference
in probabilities for the Salk vaccine trials: 

> prop.test(x,n)$conf.int 
[1] -0.0005641810 -0.0002792617 
attr(, "conf.level"): 
[1] 0.95 

The 95% confidence level is the default confidence level for prop.test. You
get a different confidence level by using the optional argument
conf.level=. For example, to get a 99% confidence interval, use: 

> prop.test(x,n,conf.level=.99)$conf.int 
[1] -0.0006073705 -0.0002360723 
attr(, "conf.level"): 
[1] 0.99 

You get a confidence interval for the difference p1 - p2 by using prop.test

only when you use the default null hypothesis that p1 = p2.

You get all the information provided by prop.test as follows:

> prop.test(x,n,conf.level=.90)

         2-sample test for equality of proportions with
 continuity correction

data: x out of n 
X-squared = 35.2728, df = 1, p-value = 0 
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5. Statistical Inference for Counts and Proportions
alternative hypothesis: two.sided 
90 percent confidence interval: 
 -0.0005420769 -0.0003013659 
sample estimates: 
 prop’n in Group 1 prop’n in Group 2 
      0.0002839423      0.0007056637 

5.3 PROPORTION PARAMETERS FOR THREE OR MORE SAMPLES
Sometimes you may have three or more samples of subjects, with each subject
characterized by the presence or absence of some characteristic. An
alternative, but equivalent, terminology is that you have three or more sets of
trials, with each trial resulting in a success or failure. For example, consider
the data shown in table 5.1 for four different studies of lung cancer patients,
as presented by Fleiss (1981).

Each study has a certain number of patients, as shown in the second column
of the table, and for each study a certain number of the patients were
smokers, as shown in the third column of the table. For this data, you are
interested in whether the probability of a patient being a smoker is the same
in each of the four studies, that is, whether each of the studies involve
patients from a homogeneous population.

Setting Up the 
Data

The first argument to prop.test is a vector containing the number of
subjects having the characteristic of interest for each of the groups (or the
number of successes for each set of trials). The second argument to
prop.test is a vector containing the number of subjects in each group (or
the number of trials for each set of trials). As in the one and two sample cases,
we call these vectors x and n.
For the smokers data in table 5.1, you create the vectors x and n as follows: 

> x <- c(83,90,129,70) 
> n <- c(86,93,136,82) 

Table 5.1: Smoking status among lung cancer patients in four studies.

Study Number of Patients Number of Smokers

1 86 83

2 93 90

3 136 129

4 82 70
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Hypothesis 
Testing

For problems with three or more groups, you can use either an equal
probabilities null hypothesis or a completely specified probabilities null
hypothesis.

The Equal 
Probabilities Null 
Hypothesis

In the lung cancer study, the null hypothesis is that the probability of being a
smoker is the same in all groups. Because the default null hypothesis for
prop.test is that all groups (or sets of trials) have the same probability of
success, you get a p-value as follows: 

> prop.test(x,n)$p.value 
[1] 0.005585477 

The p-value of .006 is highly significant, so you can not accept the null
hypothesis that all groups have the same probability that a patient is a
smoker. To see all the results returned by prop.test, use: 

> prop.test(x,n) 

         4-sample test for equality of proportions without
 continuity correction 

data: x out of n 
X-squared = 12.6004, df = 3, p-value = 0.0056 
alternative hypothesis: two.sided 
sample estimates: 
prop’n in Group 1 prop’n in Group 2 prop’n in Group 3
        0.9651163         0.9677419         0.9485294 
prop’n in Group 4 
        0.8536585

Completely 
Specified Null 
Hypothesis 
Probabilities

If you want to test a completely specified set of null hypothesis probabilities,
you need to supply the optional argument p=, with the value of this
argument being a vector of probabilities having the same length as the first
two arguments, x and n. 
For example, in the lung cancer study, to test the null hypothesis that the first
three groups have a common probability .95 of a patient being a smoker,
while the fourth group has a probability .90 of a patient being a smoker,
create the vector p as follows, the use it as an argument to prop.test: 
> p <- c(.95,.95,.95,.90) 
> prop.test(x,n,p)$p.value 
[1] 0.5590245 
Warning messages: 
  Expected counts < 5. Chi-square approximation may not be
appropriate. 
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5. Statistical Inference for Counts and Proportions
Alternatively, you could use 
prop.test(x,n,p=c(.95,.95,.95,.90))$p.value 

Confidence 
Intervals

Confidence intervals are not computed by prop.test when you have three
or more groups (or sets of trials).

5.4 CONTINGENCY TABLES AND TESTS FOR INDEPENDENCE
The Salk vaccine trials in the early 1950s resulted in the data presented in
table 5.2.

There are two categorical variables for the Salk trials: vaccination status,
which has the two levels “vaccinated” and “placebo,” and polio status, which
has the three levels “no polio,” “non-paralytic polio,” and “paralytic polio.”
Of 200,745 individuals who were vaccinated, 24 contracted non-paralytic
polio, 33 contracted paralytic polio, and the remaining 200,688 did not
contract any kind of polio. Of 201,229 individuals who received the placebo,
27 contracted non-paralytic polio, 115 contracted paralytic polio, and the
remaining 201,087 did not contract any kind of polio. 

Tables such as table 5.2 are called contingency tables. A contingency table
lists the number of counts for the joint occurrence of two levels (or possible
outcomes), one level for each of two categorical variables. The levels for one
of the categorical variables correspond to the columns of the table, and the
levels for the other categorical variable correspond to the rows of the table. 

When working with contingency table data, your primary interest is most
often determining whether there is any  association  in the form of statistical
dependence between the two categorical variables whose counts are displayed
in the table. The null hypothesis is that the two variables are statistically
independent. You can test this null hypothesis with the functions
chisq.test and fisher.test. The function chisq.test is based on
the classic chi-square test statistic, and the associated p-value computation
entails some approximations. The function fisher.test computes an

Table 5.2: Contingency table of Salk vaccine trials data.

No Polio
Non-paralytic 
Polio

Paralytic 
Polio

Totals

Vaccinated 200,688 24 33 200,745

Placebo 201,087 27 115 201,229

Totals 401,775 51 148 401,974
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Contingency Tables and Tests for Independence
exact p-value for tables having at most 10 levels for each variable. The
function fisher.test also entails a statistical conditioning assumption. 

For contingency tables involving confounding variables, which are variables
related to both variables of interest, you can test for independence using the
function mantelhaen.test, which performs the Mantel-Haenszel test. For
contingency tables involving matched pairs, use the function mcnemar.test
to perform McNemar’s chi-square test. 

The functions for testing independence in contingency tables do not
compute confidence intervals, only p-values and the associated test statistic.

The Chi-square 
and Fisher 
Tests of 
Independence

The chi-square and Fisher’s exact tests are familiar methods for testing
independence. The Fisher test is often recommended when expected counts
in any cell are below 5, as the chi-square probability computation becomes
increasingly inaccurate when the expected counts in any cell are low. (S-PLUS

produces a warning message in that case). Other factors may also influence
your choice of which test to use, however. Refer to a statistics text for further
discussion if you are unsure which test to use.

Setting Up the 
Data

You can set up your contingency table data in several ways. Which way you
choose depends to some extent on the original form of the data and whether
the data involves a large number of counts or a small to moderate number of
counts.

Two-Column Matrix 
Objects

If you already have the data in the form of a contingency table in printed
form, as in table 5.2, the easiest thing to do is to put the data in matrix form
(excluding the marginal totals, if provided in the original data). For example,  

> salk.mat <- rbind(c(200688,24,33),c(201087,27,115)) 
> salk.mat  
       [,1] [,2] [,3] 
[1,] 200688   24   33 
[2,] 201087   27  115 

You could obtain the same result in a slightly different way as follows: 

> salk.mat <- matrix(c(200688, 24, 33, 201087, 27, 115), 
+ 2, 3, byrow=T)

Two Numeric 
Vector Objects

You may be given the raw data in the form of two equal-length coded vectors,
one for each variable. In such cases, the length of the vectors corresponds to
the number of individuals, with each entry indicating the level by a numeric
coding. For example, suppose you have two variables from a clinical trial of
the drug propranolol. (The data was reported by P. J. D. Snow in Lancet,
(Snow 1965)). The vector drug is coded for control or propranolol status,
and the vector status is coded yes or no indicating whether the patient
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5. Statistical Inference for Counts and Proportions
survived at least 28 days. The raw data is as follows:  

> drug  
 [1] "control" "control" "control" "control" "prop" 
 [6] "control" "prop"    "control" "prop"    "control" 
[11] "prop"    "prop"    "control" "prop"    "prop" 
[16] "control" "control" "prop"    "prop"    "prop" 
[21] "prop"    "control" "prop"    "control" "control" 
[26] "prop"    "control" "control" "control" "control" 
[31] "control" "control" "prop"    "control" "prop" 
[36] "control" "prop"    "prop"    "prop"    "control" 
[41] "prop"    "control" "prop"    "control" "prop" 
[46] "control" "prop"    "control" "control" "prop" 
[51] "prop"    "prop"    "control" "prop"    "prop" 
[56] "prop"    "control" "control" "control" "prop" 
[61] "prop"    "control" "prop"    "control" "prop" 
[66] "control" "prop"    "control" "prop"    "control" 
[71] "prop"    "control" "prop"    "control" "prop" 
[76] "control" "prop"    "control" "prop"    "control" 
[81] "prop"    "control" "prop"    "control" "prop" 
[86] "control" "prop"    "control" "control" "prop" 
[91] "prop" 
> status  
 [1] "yes" "yes" "yes" "no"  "yes" "yes" "yes" "yes" "yes"
[10] "yes" "yes" "no"  "no"  "yes" "yes" "no"  "no"  "yes" 
[19] "yes" "yes" "yes" "no"  "yes" "yes" "no"  "yes" "no" 
[28] "yes" "no"  "yes" "no"  "yes" "no"  "yes" "yes" "no" 
[37] "no"  "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes"
[46] "no"  "yes" "no"  "yes" "yes" "yes" "yes" "yes" "yes"
[55] "yes" "yes" "yes" "yes" "yes" "no"  "yes" "yes" "yes"
[64] "no"  "no"  "no"  "yes" "yes" "yes" "yes" "no"  "no" 
[73] "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes"
[82] "yes" "yes" "yes" "yes" "yes" "yes" "no"  "no"  "yes"
[91] "no" 

To obtain the contingency table (without marginal count totals) use the
function table with status and drug as arguments:  

> table(status,drug) 
    control prop  
no       17    7 
yes      29   38 
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Contingency Tables and Tests for Independence
Two Factor Objects Your data may already be in the form of two factor objects, or you may want
to put your data in that form for further analysis in S-PLUS. For example, to
put drug and status into factor form, use the factor command as
follows:  

> drug.fac <- factor(drug) 
> drug.fac 
 [1] control control control control prop    control  
 [7] prop    control prop    control prop    prop 
[13] control prop    prop    control control prop 
[19] prop    prop    prop    control prop    control 
[25] control prop    control control control control 
[31] control control prop    control prop    control 
[37] prop    prop    prop    control prop    control 
[43] prop    control prop    control prop    control 
[49] control prop    prop    prop    control prop 
[55] prop    prop    control control control prop 
[61] prop    control prop    control prop    control 
[67] prop    control prop    control prop    control 
[73] prop    control prop    control prop    control 
[79] prop    control prop    control prop    control 
[85] prop    control prop    control control prop 
[91] prop 
> status.fac <- factor(status) 
> status.fac  
 [1] yes yes yes no  yes yes yes yes yes yes yes no 
[13] no  yes yes no  no  yes yes yes yes no  yes yes 
[25] no  yes no  yes no  yes no  yes no  yes yes no 
[37] no  yes yes yes yes yes yes yes yes no  yes no 
[49] yes yes yes yes yes yes yes yes yes yes yes no 
[61] yes yes yes no  no  no  yes yes yes yes no  no 
[73] yes yes yes yes yes yes yes yes yes yes yes yes 

[85] yes yes yes no  no  yes no 
Then use drug.fac and status.fac as arguments to the functions
described below.

The Chi-square 
Test of 
Independence

You use the function chisq.test to perform a classical chi-square test of
the null hypothesis that the categorical variables of interest are independent.
For example, using the matrix form of data object salk.mat for the Salk
vaccine trials  

> chisq.test(salk.mat)$p.value 
[1] 1.369748e-10 
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5. Statistical Inference for Counts and Proportions
which yields an exceedingly small p-value. This leads to rejection of the null
hypothesis of no association between polio status and vaccination status.

To get all the information computed by chisq.test, use chisq.test
without specifying a return component, as usual: 

> chisq.test(salk.mat)

          Pearson’s chi-square test without Yates’ 
 continuity correction

data: salk.mat 
X-squared = 45.4224, df = 2, p-value = 0 

You could also use the two factor objects, such as drug.fac and
status.fac as follows:  

> chisq.test(drug.fac,status.fac)

         Pearson’s chi-square test with Yates’ 
 continuity correction

data: drug.fac and status.fac 
X-squared = 4.3198, df = 1, p-value = 0.0377 

The results are the same no matter which way you have set up the data.

Fisher’s Exact 
Test of 
Independence

You can perform an exact test of indepence by using the S-PLUS function
fisher.test. You can use any data object type that can be used with
chisq.test. For example, using the factor object for the propranolol
clinical trial: 

> fisher.test(drug.fac,status.fac)

         Fisher’s exact test

data: drug.fac and status.fac 
p-value = 0.0314 alternative hypothesis: two.sided 

When using fisher.test you should be aware that the p-value is
computed conditionally on the fixed marginal counts of the contingency
table you are analyzing That is, the inference does not extend to all possible
tables that might be obtained by repeating the experiment and getting
different marginal counts.
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Contingency Tables and Tests for Independence
The Mantel-
Haenszel 
Test of 
Independence

A cancer study produced the data shown in table 5.3 and table 5.4, as
reported by Rosner (1986). In these tables, “case” refers to an individual who
had cancer and “control” refers to an individual who did not have cancer. A
“passive” smoker is an individual who lives with a smoker. A smoker can also
be a passive smoker if that smoker lives with a spouse who also smokes.

For each of these tables, you can use chisq.test or fisher.test to test
for independence between cancer status and passive smoking status. The data
is presented in separate tables because “smoking status;” that is, being a
smoker or not being a smoker, could be a confounding variable, because both
smoking status and passive smoking status are related to the outcome, cancer
status, and because smoking status may be related to the smoking status of
the spouse. You would like to be able to combine the information in both
tables so as to produce an overall test of independence between cancer status
and passive smoking status. You can do so for two or more two-by-two tables,
by using the function mantelhaen.test, which performs the Mantel-
Haenszel  test.

Since the data is now associated with three categorical variables, the two main
variables of interest plus a confounding variable, you can prepare your data in
any one of the following forms:

• a three-dimensional array which represents the three dimensional
contingency table (two-by-two tables stacked on top of one another)

Table 5.3: Nonsmokers in cancer study.

case-control status
passive 
smoker

not a passive 
smoker

case 120 111

control 80 155

Table 5.4: Smokers in cancer study.

case-control status
passive 
smoker

not a passive 
smoker

case 161 117

control 130 124
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5. Statistical Inference for Counts and Proportions
• three numerical vectors representing each of the three categorical
variables, two of primary interest and one a confounding variable

• three factor objects for the three categorical variables

Which form you use depends largely on the form in which the data is
presented to you. For example, the data in tables 5.3 and 5.4 are ideal for use
with a three-dimensional array: 

> x.array <- array(c(120, 80, 111, 155, 161, 130, 
+ 117, 124),c(2,2,2)) 
> x.array

, , 1 
     [,1] [,2] 
[1,]  120  111 
[2,]   80  155

, , 2 
     [,1] [,2] 
[1,]  161  117 
[2,]  130  124
> mantelhaen.test(x.array)$p.value 
[1] 0.0001885083 
> mantelhaen.test(x.array) 

         Mantel-Haenszel chi-square test with 
 continuity correction 

data: x.array 
Mantel-Haenszel chi-square = 13.9423, df = 1, 

p-value = 2e-04 

McNemar Test 
for Symmetry 
using Matched 
Pairs

In some experiments with two categorical variables, one of the variables
specifies two or more groups of individuals who receive different treatments.
In such situations, matching of individuals is often carried out in order to
increase the precision of statistical inference. However, when matching is
carried out the observations usually are not independent. In such cases, the
inference obtained from chisq.test, fisher.test and
mantelhaen.test is not valid because these tests all assume independent
observations. The function mcnemar.test allows you to obtain a valid
inference for experiments where matching is carried out. 
Consider, for example, the data in table 5.5, as reported by Rosner (1986). In
this table, each entry represents one pair. For instance, the “5” in the lower
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Contingency Tables and Tests for Independence
left cell means that in 5 pairs, the individual with treatment A died, while the
individual that that person was paired with, who received treatment B,
survived.

Your interest is in the relative effectiveness of treatments A and B in treating a
rare form of cancer. Each count in the table is associated with a matched pair
of individuals. 

A pair in the table for which one member of a matched pair survives while
the other member dies is called a discordant pair. There are 16 discordant
pairs in which the individual who received treatment A survives and the
individual who received treatment B dies. There are 5 discordant pairs with
the reverse situation in which the individual who received treatment A dies
and the individual who received treatment B survives. 

If both treatments are equally effective, then you expect these two types of
discordant pairs to occur with “nearly” equal frequency. Put in terms of
probabilities, your null hypothesis is that p1 = p2, where p1 is the probability
that the first type of discordancy occurs in a matched pair of individuals, and
p2 is the probability that the second type of discordancy occurs. 

We illustrate the use of mcnemar.test on the above data, putting the data
into the form of a matrix object: 

> x.matched <- cbind(c(90,5),c(16,510)) 
> x.matched  
     [,1] [,2] 
[1,]   90   16 
[2,]    5  510 
> mcnemar.test(x.matched)$p.value 
[1] 0.02909633
> mcnemar.test(x.matched)
         McNemar’s chi-square test with continuity 
 correction

data: x.matched 
McNemar’s chi-square = 4.7619, df = 1, p-value = 0.0291 

Table 5.5: Matched pair data for cancer study.

survive with treatment B die with treatment B

survive with treatment A 90 16

die with treatment A 5 510
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5. Statistical Inference for Counts and Proportions
You can use mcnemar.test with two numeric vector objects, or two factor
objects, as the data arguments (just as with the other functions in this
section). You can also use mcnemar.test with matched pair tables having
more than two rows and more than two columns. In such cases, the null
hypothesis is symmetry of the probabilities pij associated with each row and
column of the table; that is, the null hypothesis is that pij = pji for each
combination of i and j.
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CROSS-CLASSIFIED DATA AND 
CONTINGENCY TABLES 6

Much data of interest is categorical in nature. Did patients receive treatment
A, B, or C; did they survive? Do the people in a sample population smoke?
Do they have high cholesterol counts? Have they had heart trouble? These
data are stored in S-PLUS as factors, that is, as vectors where the elements
indicate one of a number of levels. A useful way of looking at this data is to
cross-classify it and get a count of the number of cases sharing a given
combination of levels, and then create a multi-way contingency table (a cross-
tabulation) showing the levels and the counts.
Consider the data set claims. It contains the number of claims for auto
insurance received broken down by the following variables: age of claimant,
age of car, type of car, and the average cost of the claims. We can disregard the
costs for the moment, and consider the question of which groups of
claimants generate the most claims. To make the work easier we create an
new data frame claims.src which does not contain the cost variable: 

> claims.src <- claims[,-4] 
> summary(claims.src) 
           age    car.age  type        number 
17-20       :16   0-3:32   A:32   Min.   :  0.00 
21-24       :16   4-7:32   B:32   1st Qu.:  9.00 
25-29       :16   8-9:32   C:32   Median : 35.50 
30-34,35-39 :32   10+:32   D:32   Mean   : 69.86 
40-49       :16                   3rd Qu.: 96.25 
50-59       :16                     Max. :434.00 
60+         :16 

Use the function crosstabs to generate tables of cross-classified data.
Table 6.1 shows car age vs. car types, the output generated by the following
call to crosstabs: 

> crosstabs(number~car.age+type, claims.src) 

The first argument to crosstabs is a formula that tells which variables to
include in the table. The second argument is the data set where the variables
are found. The complete call to crosstabs is stored in the resulting object
as the attribute "call", and is printed at the top of the table.

The next item of information is the number of cases, that is, the total count
of all the variables considered. In this example, this is the total of the number
variable; that is, sum(claims.src$number). 

Then you get a key which tells you how to interpret the cells of the table. N is
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6. Cross-Classified Data and Contingency Tables
the count; below it are the proportions of the whole that the count
represents: the proportion of the row total, the proportion of the column
total and the proportion of the table total. If there are only two terms in the
formula, the table total will be the same as the number of cases. A quick look
at the counts, and in particular at the row totals (4134, 3549, 822, 437),
shows that there are fewer older cars than newer cars; relatively few cars
survive to be eight or nine years old, and the number of cars over ten years
old is a tenth that of cars three years or newer. It is slightly more surprising to
note the four types of cars don’t seem to age equally. You can get an inkling of
this by comparing the cells near the top of the table with those near the
bottom, but if you compare the third figure in each cell, the one the key tells
us is N/ColTotal, the progression becomes clear. Of cars of type D, 64% are
no more than three years old, while only 4% are eight or nine, and less than
2% are over 10. Compare this to type A cars, where there are slightly more in
the four to seven year age group than in the under three year, the proportion
between eight and nine is 0.147 and the proportion over ten years is 12. It
seems as if the the type of car is related to its age, and if we look below the

table where the results of the x2 test for independence are written, we see that
the p-value is so small it appears as 0. 

Of course, we must remember these data are from insurance claims forms—
this is not a sample of all the cars on the road, just those that got into
accidents and had insurance policies with the company that collected the
data. 

There may also be an interaction between car type/car age and the age of the
owner (which seems likely) and between the age of the owner and the
likelihood of a automobile accident. 

With crosstabs, it is possible to tabulate all this data at once, and print the
resulting table in a series of layers, each showing two variables. Thus when we
type crosstabs(number~car.age+type+age, claims.src), we get a
series of 8 layers, one for each factor (age group) in the variable age. The
variable represented by the first term in the formula to the left of the ~,
age.car, is represented by the rows of each layer, the second term, car.age
is represented by the columns, and each level of the third, type, produces a
separate layer. If there were more than three variables, there would be one
layer for each possible combination of levels in the variables after the first
two. Part of the first of these layers is shown in table 6.2. Note that the
number written in the bottom right margin is the sum of the row totals, and
is not the same as the number of cases in the entire table, which is still found
at the top of the display and which is used to compute N/Total, the fourth
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Table 6.1: Output from call to crosstabs.

Call:
crosstabs(number ~ car.age + type, claims.src)
8942 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
car.age|type
       |A      |B      |C      |D      |RowTotl|
-------+-------+-------+-------+-------+-------+
0-3    | 391   |1538   |1517   | 688   |4134   |
       |0.0946 |0.3720 |0.3670 |0.1664 |0.462  |
       |0.3081 |0.3956 |0.5598 |0.6400 |       |
       |0.0437 |0.1720 |0.1696 |0.0769 |       |
-------+-------+-------+-------+-------+-------+
4-7    | 538   |1746   | 941   | 324   |3549   |
       |0.1516 |0.4920 |0.2651 |0.0913 |0.397  |
       |0.4240 |0.4491 |0.3472 |0.3014 |       |
       |0.0602 |0.1953 |0.1052 |0.0362 |       |
-------+-------+-------+-------+-------+-------+
8-9    | 187   | 400   | 191   |  44   |822    |
       |0.2275 |0.4866 |0.2324 |0.0535 |0.092  |
       |0.1474 |0.1029 |0.0705 |0.0409 |       |
       |0.0209 |0.0447 |0.0214 |0.0049 |       |
-------+-------+-------+-------+-------+-------+
10+    | 153   | 204   |  61   |  19   |437    |
       |0.3501 |0.4668 |0.1396 |0.0435 |0.049  |
       |0.1206 |0.0525 |0.0225 |0.0177 |       |
       |0.0171 |0.0228 |0.0068 |0.0021 |       |
-------+-------+-------+-------+-------+-------+
ColTotl|1269   |3888   |2710   |1075   |8942   |
       |0.14   |0.43   |0.30   |0.12   |       |
-------+-------+-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 588.2952 d.f.=9 (p=0)
        Yates’ correction not used
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figure in each cell.

Table 6.2: Further cross-tabulations of claims data.

type=A
age    |car.age                                   8942 cases
       |0-3    |4-7    |8-9    |10+    |RowTotl|  in table
-------+-------+-------+-------+-------+-------+ +----------+
17-20  |  8    |  8    |  4    |  1    |21     | |N         |
       |0.38095|0.38095|0.19048|0.04762|0.0165 | |N/RowTotal|
       |0.02046|0.01487|0.02139|0.00654|       | |N/ColTotal|
       |0.00089|0.00089|0.00045|0.00011|       | |N/Total   |
-------+-------+-------+-------+-------+-------+ +----------+
21-24  | 18    | 31    | 10    |  4    |63     |
       |                                       |
                    .  .  .
       |                                       |
       |                                       |
-------+-------+-------+-------+-------+-------+
35-39  | 43    | 73    | 21    | 14    |151    |
       |0.28477|0.48344|0.13907|0.09272|0.1190 |
       |0.10997|0.13569|0.11230|0.09150|       |
       |0.00481|0.00816|0.00235|0.00157|       |
-------+-------+-------+-------+-------+-------+
40-49  | 90    | 98    | 35    | 22    |245    |
       |0.36735|0.40000|0.14286|0.08980|0.1931 |
       |0.23018|0.18216|0.18717|0.14379|       |
       |0.01006|0.01096|0.00391|0.00246|       |
-------+-------+-------+-------+-------+-------+
50-59  | 69    |120    | 42    | 35    |266    |
       |0.25940|0.45113|0.15789|0.13158|0.2096 |
       |0.17647|0.22305|0.22460|0.22876|       |
       |0.00772|0.01342|0.00470|0.00391|       |
-------+-------+-------+-------+-------+-------+
60+    | 64    |100    | 43    | 53    |260    |
       |0.24615|0.38462|0.16538|0.20385|0.2049 |
       |0.16368|0.18587|0.22995|0.34641|       |
       |0.00716|0.01118|0.00481|0.00593|       |
-------+-------+-------+-------+-------+-------+
ColTotl|391    |538    |187    |153    |1269   |
       |0.308  |0.424  |0.147  |0.121  |       |
-------+-------+-------+-------+-------+-------+
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6.1 CHOOSING SUITABLE DATA SETS
Cross tabulation is a technique for categorical data. You tabulate the number
of cases for each combination of factors between your variables. In the claims
data set these numbers were already tabulated. However, when looking at
data that has been gathered as a count, you must always keep in mind exactly
what is being counted—thus we can tell that of the 40–49 year old car
owners who submitted insurance claims, 43% owned cars of type B, and of
the cars of type B whose owners submitted insurance claims, 25% were
owned by 40-49 year olds. 
The data set guayule also has a response variable which is a count, while all
the predictor variables are factors. Here, the thing being counted is the
number of rubber plants that sprouted from seeds of a number of varieties
subjected to a number of treatments. However, this experiment was designed
so that the same number of seeds were planted for each possible combination
of the factors of the controlling variables. Since we know the exact make-up
of the larger population from which our counts are taken, we can observe the
relative size of counts with complaisance and draw conclusions with great
confidence. The difference between guayule and claims is that with the
former we can view the outcome variable as a binomial response variable
(“sprouted”/“didn’t sprout”) for which we have tabulated one of the outcomes
(“sprouted”), and in the claims data set we can’t. 

Another data set in which all the controlling variables are factors is solder. 

> summary(solder) 
Opening    Solder      Mask     PadType  Panel       skips
S:300   Thin :450  A1.5:180  L9   : 90  1:300  Min.   : 0.00
M:300   Thick:450  A3  :270  W9   : 90  2:300  1st Qu.: 0.00
L:300              A6  : 90  L8   : 90  3:300  Median : 2.00
                   B3  :180  L7   : 90         Mean   : 5.53
                   B6  :180  D7   : 90         3rd Qu.: 7.00
                             L6   : 90         Max.   :48.00
                           (Other):360

The response variable is the number of skips appearing on a finished circuit
board. Since any skip on a board renders it unusable, we can easily turn this
into a binary response variable: 

> attach(solder) 
> good <- factor(skips==0) 

Then, when we want to look at the interaction between the variables,
crosstabs counts up all the cases with like levels among the factors: 
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crosstabs( ~ Opening + Mask + good)
Call:
crosstabs( ~ Opening + Mask + good)
900 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
good=FALSE
Opening|Mask
       |A1.5   |A3     |A6     |B3     |B6     |RowTotl|
-------+-------+-------+-------+-------+-------+-------+
S      |49     |76     |30     |60     |60     |275    |
       |0.1782 |0.2764 |0.1091 |0.2182 |0.2182 |0.447  |
       |0.5326 |0.5033 |0.3371 |0.4444 |0.4054 |       |
       |0.0544 |0.0844 |0.0333 |0.0667 |0.0667 |       |
-------+-------+-------+-------+-------+-------+-------+
M      |22     |35     |59     |39     |51     |206    |
       |0.1068 |0.1699 |0.2864 |0.1893 |0.2476 |0.335  |
       |0.2391 |0.2318 |0.6629 |0.2889 |0.3446 |       |
       |0.0244 |0.0389 |0.0656 |0.0433 |0.0567 |       |
-------+-------+-------+-------+-------+-------+-------+
L      |21     |40     | 0     |36     |37     |134    |
       |0.1567 |0.2985 |0.0000 |0.2687 |0.2761 |0.218  |
       |0.2283 |0.2649 |0.0000 |0.2667 |0.2500 |       |
       |0.0233 |0.0444 |0.0000 |0.0400 |0.0411 |       |
-------+-------+-------+-------+-------+-------+-------+
ColTotl|92     |151    |89     |135    |148    |615    |
       |0.1496 |0.2455 |0.1447 |0.2195 |0.2407 |       |
-------+-------+-------+-------+-------+-------+-------+
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good=TRUE
Opening|Mask
       |A1.5   |A3     |A6     |B3     |B6     |RowTotl|
-------+-------+-------+-------+-------+-------+-------+
S      |11     |14     | 0     | 0     | 0     |25     |
       |0.4400 |0.5600 |0.0000 |0.0000 |0.0000 |0.088  |
       |0.1250 |0.1176 |0.0000 |0.0000 |0.0000 |       |
       |0.0122 |0.0156 |0.0000 |0.0000 |0.0000 |       |
-------+-------+-------+-------+-------+-------+-------+
M      |38     |25     | 1     |21     | 9     |94     |
       |0.4043 |0.2660 |0.0106 |0.2234 |0.0957 |0.330  |
       |0.4318 |0.2101 |1.0000 |0.4667 |0.2812 |       |
       |0.0422 |0.0278 |0.0011 |0.0233 |0.0100 |       |
-------+-------+-------+-------+-------+-------+-------+
L      |39     |80     | 0     |24     |23     |166    |
       |0.2349 |0.4819 |0.0000 |0.1446 |0.1386 |0.582  |
       |0.4432 |0.6723 |0.0000 |0.5333 |0.7188 |       |
       |0.0433 |0.0889 |0.0000 |0.0267 |0.0256 |       |
-------+-------+-------+-------+-------+-------+-------+
ColTotl|88     |119    |1      |45     |32     |285    |
       |0.3088 |0.4175 |0.0035 |0.1579 |0.1123 |       |
-------+-------+-------+-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 377.3556 d.f.= 8 (p=0)
        Yates' correction not used

In the first example above we specified where to look for the variables age,
car.age and type by giving the data frame claims.src as the second
argument of crosstabs. In the second example, we attached the data frame
solder and let crosstabs find the variables in the search list. Both
methods work because, when crosstabs goes to interpret a term in the
formula, it looks first in the data frame specified by the argument data and
then in the search list. You can specifiy the data set with the name of a data
frame, or a frame number in which to find an attached data frame. Using a
frame number gives the advantage of speed that comes from attaching the
data frame, while protecting against the possibility of having masked the
name of one of the variables with something in your .Data directory:
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> attach(guayule) 
> search() 
[1] ".Data" 
[2] "guayule" . . . 
> rubber <- crosstabs(plants~variety+treatment, data=2) 

If you specify a data frame and do not give a formula, crosstabs uses the
formula ~ ., that is, it will cross classify all the variables in the data frame.
Any variable names not found in the specified data frame (which is all of
them if you don’t specify any) are sought in the search list.

6.2 CROSS-TABULATING CONTINUOUS DATA
As was seen in the example of the solder data frame above, it is fairly easy to
turn a continuous response variable into a binomial response variable.
Clearly, we could have used any logical expression that made sense to do so—
we could have chosen any cutoff point for acceptable numbers of skips. 
A somewhat harder problem is presented by the case where you want a
multinomial factor from continuous data. You can make judicious use of the
cut function to turn the continuous variables into factors, but you need to
put care and thought into the points at which to separate the data into
ranges. The quartiles given by the function summary offer a good starting
point. The data frame kyphosis represents data on 81 children who have
had corrective spinal surgery. The variables here are whether a postoperative
deformity (kyphosis) is present, the age of the child in months, the number
of vertebrae involved in the operation, and beginning of the range of
vertebrae involved.

> summary(kyphosis) 
  Kyphosis        Age            Number          Start
absent :64  Min.   :  1.00  Min.   : 2.000  Min.   : 1.00
present:17  1st Qu.: 26.00  1st Qu.: 3.000  1st Qu.: 9.00
            Median : 87.00  Median : 4.000  Median :13.00
            Mean   : 83.65  Mean   : 4.049  Mean   :11.49
            3rd Qu.:130.00  3rd Qu.: 5.000  3rd Qu.:16.00
            Max.   :206.00  Max.   :10.000  Max.   :18.00

The summary of these variables suggests that two year intervals might be a
reasonable division for the age. We use the cut function to break the variable
Age into factors at a sequence of points at 24 month intervals and to label the
resulting levels with the appropriate range of years. Since there are at most
nine values for Number we leave it alone for the moment. Since the mean of
the Start variable is close to the first quartile, a fairly coarse division of
Start is probably sufficient. We could require that cut simply divide the
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data into four segments of equal length with the command cut(Start, 4),
but the results of this, while mathematically correct, look a bit bizarre—the
first level thus created is  " 0.830+ thru 5.165". The pretty function
divides the range of Start into equal intervals with whole number end
points, and the cut function makes them into levels with reasonable names:  

> attach(kyphosis)
> kyphosis.fac <- data.frame(Kyphosis=Kyphosis,
+  Age =  cut(Age, c( seq(0, 144, by=24), 206),
+    labels=
+      c("0-2","2-4","4-6","6-8","8-10","10-12","12+")),
+  Number = Number,
+  Start = cut(Start, pretty(Start, 4) ) )
> detach(2)
> summary(kyphosis.fac)
   Kyphosis       Age         Number               Start
 absent :64   0-2  :20   Min.   : 2.000    0+ thru  5:13
 present:17   2-4  : 7   1st Qu.: 3.000    5+ thru 10:14
              4-6  : 8   Median : 4.000   10+ thru 15:32
              6-8  : 9   Mean   : 4.049   15+ thru 20:22
              8-10 :11   3rd Qu.: 5.000
              10-12:14   Max.   :10.000
              12+  :12
> attach(kyphosis.fac)

The cross-tabulation of this data can then be easily examined:  

> crosstabs(~Age+Kyphosis, kyphosis.fac)
Call:
crosstabs( ~ Age + Kyphosis, kyphosis.fac)
81 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
Age    |Kyphosis
       |absent |present|RowTotl|
-------+-------+-------+-------+
0-2    |19     | 1     |20     |
       |0.950  |0.050  |0.247  |
       |0.297  |0.059  |       |
       |0.235  |0.012  |       |
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-------+-------+-------+-------+
2-4    | 6     | 1     |7      |
       |                       |
          .  .  .
       |                       |
-------+-------+-------+-------+
10-12  | 9     | 5     |14     |
       |0.643  |0.357  |0.173  |
       |0.141  |0.294  |       |
       |0.111  |0.062  |       |
-------+-------+-------+-------+
12+    |11     | 1     |12     |
       |0.917  |0.083  |0.148  |
       |0.172  |0.059  |       |
       |0.136  |0.012  |       |
-------+-------+-------+-------+
ColTotl|64     |17     |81     |
       |0.79   |0.21   |       |
-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 9.588004 d.f.= 6 (p=0.1431089)
        Yates' correction not used
        Some expected values are less than 5,
             don't trust stated p-value

6.3 CROSS-CLASSIFYING SUBSETS OF DATA FRAMES
There are two ways to subset a data frame for cross-classification. First, the
crosstabs function will cross-tabulate only those variables specified in the
formula. If there is one variable in the data frame in which you are not
interested, don’t mention it. Second, you can choose which rows you want to
consider with the subset argument. You can use anything you would
normally use to subscript the rows of a data frame. Thus, the subset
argument can be an expression that evaluates to a logical vector, or a vector of
row numbers or row names.
As an example, recall the solder data set. You can look at the relation
between the variables without turning skips explicitly into a binomial
variable by using it to subscript the rows of the data frame:

> crosstabs(~Solder+Opening, solder, subset= skips<10)
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Call:
crosstabs( ~ Solder+Opening, solder, subset = skips<10)
729 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
Solder |Opening
       |S      |M      |L      |RowTotl|
-------+-------+-------+-------+-------+
Thin   | 50    |133    |140    |323    |
       |0.155  |0.412  |0.433  |0.44   |
       |0.294  |0.494  |0.483  |       |
       |0.069  |0.182  |0.192  |       |
-------+-------+-------+-------+-------+
Thick  |120    |136    |150    |406    |
       |0.296  |0.335  |0.369  |0.56   |
       |0.706  |0.506  |0.517  |       |
       |0.165  |0.187  |0.206  |       |
-------+-------+-------+-------+-------+
ColTotl|170    |269    |290    |729    |
       |0.23   |0.37   |0.40   |       |
-------+-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 20.01129 d.f.= 2 (p=4.514445e-05)
        Yates' correction not used

A more common use of the subscript is to look at some of the variables while
considering only a subset of the levels of another: 

> crosstabs( ~ Solder+Opening+good, subset = Panel == "1")
Call:
crosstabs( ~ Solder+Opening+good, subset = Panel == "1")
300 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
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good=FALSE
Solder |Opening
       |S      |M      |L      |RowTotl|
-------+-------+-------+-------+-------+
Thin   |49     |33     |31     |113    |
       |0.4336 |0.2920 |0.2743 |0.59   |
       |0.5444 |0.5410 |0.7949 |       |
       |0.1633 |0.1100 |0.1033 |       |
-------+-------+-------+-------+-------+
Thick  |41     |28     | 8     |77     |
       |0.5325 |0.3636 |0.1039 |0.41   |
       |0.4556 |0.4590 |0.2051 |       |
       |0.1367 |0.0933 |0.0267 |       |
-------+-------+-------+-------+-------+
ColTotl|90     |61     |39     |190    |
       |0.474  |0.321  |0.205  |       |
-------+-------+-------+-------+-------+
good=TRUE
Solder |Opening
       |S      |M      |L      |RowTotl|
-------+-------+-------+-------+-------+
Thin   | 1     |17     |19     |37     |
       |0.0270 |0.4595 |0.5135 |0.34   |
       |0.1000 |0.4359 |0.3115 |       |
       |0.0033 |0.0567 |0.0633 |       |
-------+-------+-------+-------+-------+
Thick  | 9     |22     |42     |73     |
       |0.1233 |0.3014 |0.5753 |0.66   |
       |0.9000 |0.5641 |0.6885 |       |
       |0.0300 |0.0733 |0.1400 |       |
-------+-------+-------+-------+-------+
ColTotl|10     |39     |61     |110    |
       |0.091  |0.355  |0.555  |       |
-------+-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 82.96651 d.f.= 2 (p=0)
        Yates' correction not used
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6.4 MANIPULATING AND ANALYZING CROSS-CLASSIFIED DATA
When you apply crosstabs to a data frame you get a multi-dimensional
array whose elements are the counts and whose dimensions are the variables
involved in the cross-tabulations. The first factor variable is the first, or row
dimension, the second is the second, or column dimension, the third is the
third dimension, etc. If you wish to do more than tabulate data, say compute
means or sums of cross-classified data, you can apply functions to the
elements of the array with the function tapply. 
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A large number of problems can be analyzed using linear 
regression, and even more with simple transformations.
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REGRESSION AND SMOOTHING FOR 
CONTINUOUS RESPONSE DATA 7

Regression is a tool for exploring relationships between variables. Linear
regression explores relationships that are readily described by straight lines, or
their generalization to many dimensions. A surprisingly large number of
problems can be analyzed using the techniques of linear regression, and even
more can be attacked by means of transformations of the original variables
that result in linear relationships among the transformed variables. In recent
years, the techniques themselves have been extended through the addition of
robust methods and generalizations of the classical linear regression
techniques. These generalizations allow familiar problems in categorical data
analysis such as logistic and Poisson regression to be subsumed under the
heading of the generalized linear model (GLM), while still further
generalizations allow a predictor to be replaced by an arbitrary smooth
function of the predictor in building a generalized additive model (GAM).

This chapter describes regression and smoothing in the case of a univariate,
continuous response. We start with simple regression, that is, regression with
a single predictor variable: fitting the model, examining the fitted models,
and analyzing the residuals. We then examine multiple regression, varying
models by adding and dropping terms as appropriate. Again, we examine the
fitted models and analyze the residuals. We then consider the special case of
weighted regression, which underlies many of the robust techniques and
generalized regression methods.

One important reason for performing regression analysis is to get a model
useful for prediction. The section Prediction with the Model describes how
to use S-PLUS to obtain predictions from your fitted model, and the section
Confidence Intervals describes how to obtain pointwise and simultaneous
confidence intervals.

The classical linear regression techniques make several strong assumptions
about the underlying data, and the data can fail to satisfy these assumptions
in different ways—for example, the regression line may be thrown off by one
or more outliers or the data may not be fitted well by any straight line. In the
first case, we can bring robust regression methods into play; these minimize the
effects of outliers while retaining the basic form of the linear model.
Conversely, the robust methods are often useful in identifying outliers. In the
second case, we can expand our notion of the linear model, either by adding
polynomial terms to our straight line model, or by replacing one or more
predictors by an arbitrary smooth function of the predictor, converting the
123



7. Regression and Smoothing for Continuous Response Data
classical linear model into a generalized additive model (GAM).

Scatterplot smoothers are useful tools for fitting arbitrary smooth functions to
a scatter plot of data points. The smoother summarizes the trend of the
measured response as a function of the predictor variables. We describe
several scatterplot smoothers available in S-PLUS, and describe how the
smoothed values they return can be incorporated into additive models.

7.1 SIMPLE LEAST-SQUARES REGRESSION
Simple regression uses the method of least squares to fit a continuous,
univariate response as a linear function of a single predictor variable. In the
method of least squares, we fit a line to the data so as to minimize the sum of
the squared residuals. Given a set of n observations yi of the response variable
corresponding to a set of values xi of the predictor, and an arbitrary model

, the ith residual is defined as the difference between the ith

observation yi and the fitted value , that is .

To do simple regression with S-PLUS, use the function lm (for linear model)
with a simple formula linking your chosen response variable to the predictor
variable. In many cases, both the response and the predictor are components
of a single data frame, which can be specified as the data argument to lm.
For example, consider the air pollution data in the built-in data set air:

> air[,c(1,3)]
      ozone temperature
 1 3.448217          67
 2 3.301927          72
 3 2.289428          74
 4 2.620741          62
 5 2.843867          65
 . . .

A scatter plot of the data is shown in figure 7.1. From the scatter plot, we
hypothesize a linear relationship between temperature and ozone
concentration. We choose ozone as the response, and temperature as the
single predictor. The choice of response and predictor variables is driven by
the subject matter in which the data arise, rather than by statistical
considerations.

To fit the model, use lm as follows:

> ozone.lm <- lm(ozone ~ temperature, data = air)

The first argument, ozone ~ temperature, is the formula specifying that
the variable ozone is modeled as a function of temperature. The second

ŷ f̂ x( )=

yi
ˆ f̂ xi( )= r i yi ŷi–=
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Simple Least-Squares Regression
argument specifies that the data for the linear model is contained in the data
frame air.

Use the summary  function to obtain a summary of the fitted model:

> summary(ozone.lm)
Call: lm(formula = ozone ~ temperature)
Residuals:
   Min      1Q  Median     3Q   Max
 -1.49 -0.4258 0.02521 0.3636 2.044

Coefficients:
               Value Std. Error  t value Pr(>|t|)
(Intercept)  -2.2260   0.4614    -4.8243   0.0000
temperature   0.0704   0.0059    11.9511   0.0000

Residual standard error: 0.5885 on 109 degrees of freedom
Multiple R-Squared: 0.5672
F-statistic: 142.8 on 1 and 109 degrees of freedom, the p-
value is 0

Figure 7.1:  Scatter plot of ozone against temperature.
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Correlation of Coefficients:
            (Intercept)
temperature -0.9926

The Value column under Coefficients gives the coefficients of the linear
model, allowing us to read off the estimated regression line as follows:

ozone = -2.2260 + 0.0704 × temperature

The column headed Std. Error gives the estimated standard error for each
coefficient. The Multiple R-Squared term from the lm summary tells us
that the model explains about 57% of the variation in ozone. The F-
statistic is the ratio of the mean square of the regression to the estimated
variance; if there is no relationship between temperature and ozone, this ratio
has an F distribution with 1 and 109 degrees of freedom. The ratio here is
clearly significant, so the true slope of the regression line is probably not 0.

Diagnostic 
Plots for 
Linear Models

Suppose we have the linear model defined as follows:

> ozone.lm <- lm(ozone ~ temperature, data=air)

How good is the fitted linear regression model? Is temperature an adequate
predictor of ozone concentration? Can we do better? Questions such as these
are essential any time you try to explain data with a statistical model.

It is not enough to fit a model; you must also assess how well that model fits
the data, being ready to modify the model or abandon it altogether if it does
not satisfactorily explain the data.

The simplest and most informative method for assessing the fit is to look at
the model graphically, using an assortment of plots that, taken together,
reveal the strengths and weaknesses of the model. For example, a plot of the
response against the fitted values gives a good idea of how well the model has
captured the broad outlines of the data, while examining a plot of the
residuals against the fitted values often reveals unexplained structure left in
the residuals, which in a strong model should appear as nothing but noise.
The default plotting method for lm objects provides these two plots, along
with the following useful plots:

• Square root of absolute residuals against fitted values. This plot is useful
in identifying outliers and visualizing structure in the residuals.

• Normal quantile plot of residuals. This plot provides a visual test of
the assumption that the model’s errors are normally distributed. If
the ordered residuals cluster along the superimposed quantile-
quantile line, you have strong evidence that the errors are indeed
normal.
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Simple Least-Squares Regression
• Residual-Fit spread plot, or r-f plot. This plot compares the spread of
the fitted values with the spread of the residuals. Since the model is
an attempt to explain the variation in the data, you hope that the
spread in the fitted values is much greater than that in the residuals.

• Cook’s distance plot. Cook’s distance is a measure of the influence of
individual observations on the regression coefficients.

Calling plot as follows yields the six plots shown in figure 7.2:

> par(mfrow=c(2,3))
> plot(ozone.lm)

The line y =  is shown as a dashed line in the third plot (far right of top
row). In the case of simple regression, this line is visually equivalent to the
regression line. The regression line appears to model the trend of the data
reasonably well. The residuals plots (left and center, top row) show no
obvious pattern, although five observations appear to be outliers. By default,
as in figure 7.2, the three most extreme values are identified in each of the
residuals plots and the Cook’s distance plot. You can request a different
number of points by using the id.n argument in the call to plot; for this

Figure 7.2:  Default plots for lm objects.

•
•

•

• •
•

• •• •

•

•

•

•
•

•

•
••

•

•
•

•

•

•
•

••
•

••

• •

•

••

•
•

• ••

•
•

•

•
•

• ••

•

•
•

•

•
•

•
••

•

•
•

•
•
•

••

•

•

•

• •
•

•
•

•

•

•

•

•

••
•
••
•

•••
••

• •
••

•
•

••

•

•

•

• •
•

•

• •

••

•

Fitted : temperature

R
es

id
ua

ls

2.0 3.0 4.0

-1
0

1
2

45

23
77

•

•
•

• •
•

• •
• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

••
•

•
•

•

•

• •
•

• ••

•
•

•

•
• •

•
•

• •

•
•

•

•

•

••

•

•
• •

•

•

•
••

•
•

•
•
•

•
•

•

•

• •
•

•

•

•

•
••

•
•

•
•

•

• •

•
•

•
• •

•

•

•

•

• •
•

•

•
•

•
•

•

Fitted : temperature

sq
rt

(a
bs

(r
es

id
(o

zo
ne

.lm
))

)

2.0 3.0 4.0

0.
2

0.
6

1.
0

1.
4

4523
77

• •

•
• ••

•
•• •• •

•

•

•

•

•

•
•

•
•

•

•

• •

•

•
••

•
•

• •

•

•
•

•
•

•
••

•

•

•

•
•

•
•

•

•

•
•

•

•
•

•
••

•

•
•

•
•
•

•
•

•

•

•

•
•
•

•
•

•

•

• •
•

•••
••
•

•
•

••••
•

••

••

•

• •
•

••
•

•

•
•

•
••

•

Fitted : temperature

oz
on

e

2.0 3.0 4.0

1
2

3
4

5
•

•

•

••
•

••••

•

•

•

•
•

•

•
• •

•

•
•

•

•

•
•

••
•

••

••

•

••

•
•

••••

•
•

•

•
•

• ••

•

•
•

•

•
•

•
••

•

•
•

•
•

•

••

•

•

•

• •
•

•
•

•

•

•

•

•

• •
•

••
•

•••
••

••
• •

•
•

••

•

•

•

••
•

•

• •

••

•

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-1
0

1
2

45

23
77

••••
••••••
••••••
•••••••••
•••••••
••••••••
••••••••••••••

••••••••••••••••
•••••••••••••

•••••••••••
•••••••
••••••
•••
•

Fitted Values

0.0 0.4 0.8

-1
0

1
2

••
•••
•••••••••••

••••••••
••••••••••

•••••••••••••
•••••••••••

••••••••••••
••••••••••••••••••

•••••••••••
••••
•••
••
••

•
Residuals

0.0 0.4 0.8

-1
0

1
2

f-value

oz
on

e

Index

C
oo

k’
s 

D
is

ta
nc

e

0 20 40 60 80

0.
0

0.
04

17 77
20

ŷ
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7. Regression and Smoothing for Continuous Response Data
model, id.n=5 is a good choice.

Another useful diagnostic plot is the normal plot of residuals (left plot,
bottom row). The normal plot gives no reason to doubt that the residuals are
normally distributed.

The r-f plot, on the other hand (middle plot, bottom row), shows a weakness
in this model; the spread of the residuals is actually greater than the spread in
the original data. However, if we ignore the five outlying residuals, the
residuals are more tightly bunched than the original data.

The Cook’s distance plot shows four or five heavily influential observations.
As the regression line fits the data reasonably well, the regression is
significant, and the residuals appear normally distributed, we feel justified in
using the regression line as a way to estimate the ozone concentration for a
given temperature. One important issue remains—the regression line
explains only 57% of the variation in the data. We may be able to do
somewhat better by considering the effect of other variables on the ozone
concentration. See the section Multiple Regression for this further analysis.

At times, you are not interested in all of the plots created by the default
plotting method. To view only those plots of interest to you, call plot with
the argument ask=T. This call brings up a menu listing the available plots:

> par(mfrow=c(1,1))
> plot(ozone.lm, id.n=5, ask=T)
Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Residuals vs Fitted Values
3: plot: Sqrt of abs(Residuals) vs Fitted Values
4: plot: Response vs Fitted Values
5: plot: Normal QQplot of Residuals
6: plot: r-f spread plot
7: plot: Cook’s Distances
Selection:
Enter the number of the desired plot.

If you want to view all the plots, but want them all to appear in a full
graphics window, do not set par(mfrow=c(2,3)) before calling plot, and
do not use the ask=T argument. Instead, before calling plot, call
par(ask=T). This tells S-PLUS to prompt you before displaying each
additional plot.
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Multiple Regression
7.2 MULTIPLE REGRESSION
You can construct linear models involving more than one predictor as easily
in S-PLUS as models with a single predictor. In general, each predictor
contributes a single term in the model formula; a single term may contribute
more than one coefficient to the fit.
For example, consider the built-in data sets stack.loss and stack.x.
Together, these data sets contain information on ammonia loss in a
manufacturing process. The stack.x data set is a matrix with three columns
representing three predictors: air flow, water temperature, and acid
concentration. The stack.loss data set is a vector containing the response.
To make our computations easier, combine these two data sets into a single
data frame, then attach the data frame:

> stack.df <- data.frame(stack.loss, stack.x)
> stack.df
   stack.loss Air.Flow Water.Temp Acid.Conc.
 1         42       80         27         89
 2         37       80         27         88
 3         37       75         25         90
 . . .
> attach(stack.df)

For multivariate data, it is usually a good idea to view the data as a whole
using the pairwise scatter plots generated by the pairs function:

> pairs(stack.df)

The resulting plot is shown in figure 7.3.

Call lm as follows to model stack.loss as a linear function of the three
predictors:

> stack.lm <- lm(stack.loss ~ Air.Flow + Water.Temp + 
+                Acid.Conc.)
> summary(stack.lm)
Call: lm(formula = stack.loss ~ Air.Flow + Water.Temp + 
Acid.Conc.)
Residuals:
   Min     1Q  Median    3Q   Max
-7.238 -1.712 -0.4551 2.361 5.698

Coefficients:
               Value Std. Error  t value Pr(>|t|)
(Intercept) -39.9197  11.8960    -3.3557   0.0038
   Air.Flow   0.7156   0.1349     5.3066   0.0001
 Water.Temp   1.2953   0.3680     3.5196   0.0026
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7. Regression and Smoothing for Continuous Response Data
 Acid.Conc.  -0.1521   0.1563    -0.9733   0.3440

Residual standard error: 3.243 on 17 degrees of freedom
Multiple R-Squared: 0.9136
F-statistic: 59.9 on 3 and 17 degrees of freedom, the p-
value is 3.016e-09

Correlation of Coefficients:
           (Intercept) Air.Flow Water.Temp
  Air.Flow  0.1793

Figure 7.3:  Pairwise scatter plots of stack loss data.
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Adding and Dropping Terms from a Linear Model
Water.Temp -0.1489     -0.7356
Acid.Conc. -0.9016     -0.3389   0.0002

When the response is the first variable in the data frame, as in stack.df,
and the desired model includes all the variables in the data frame, the name
of the data frame itself can be supplied in place of the formula and data
arguments:

> lm(stack.df)
Call:
lm(formula = stack.df)

Coefficients:
 (Intercept)  Air.Flow Water.Temp Acid.Conc.
   -39.91967 0.7156402   1.295286 -0.1521225

Degrees of freedom: 21 total; 17 residual
Residual standard error: 3.243364

We examine the default plots to assess the quality of the model (see
figure 7.4): 

> par(mfrow=c(2,3))
> plot(stack.lm, ask=F)

Both the line y =  and the residuals plots give support to the model. The
multiple R2 and F statistic also support the model. But would a simpler
model suffice?

To find out, let’s return to the summary of the stack.lm model. From the t
values, and the associated p-values, it appears that both Air.Flow and
Water.Temp contribute significantly to the fit. But can we improve the
model by dropping the Acid.Conc. term? We explore this question further
in section 7.3, Adding and Dropping Terms from a Linear Model.

7.3 ADDING AND DROPPING TERMS FROM A LINEAR MODEL
In section 7.2, Multiple Regression, we fitted a linear model with three
predictors, of which only two appeared to be significant. Can we improve the
model stack.lm by dropping one or more terms? 

The drop1 function takes a fitted model and returns an ANOVA table
showing the effects of dropping in turn each term in the model:

> drop1(stack.lm)
Single term deletions
Model:
stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.

ŷ
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7. Regression and Smoothing for Continuous Response Data
           Df Sum of Sq      RSS       Cp
    <none>              178.8300 262.9852
  Air.Flow  1  296.2281 475.0580 538.1745
Water.Temp  1  130.3076 309.1376 372.2541
Acid.Conc.  1    9.9654 188.7953 251.9118

The columns of the returned value show the degrees of freedom for each
deleted term, the sum of squares corresponding to the deleted term, the
residual sum of squares from the resulting model, and the Cp statistic for the
terms in the reduced model.

The Cp statistic (actually, what is shown is the AIC statistic, the likelihood
version of the Cp statistic—the two are related by the equation

) provides a convenient criterion for determining

whether a model is improved by dropping a term. If any term has a Cp

statistic lower than that of the current model (shown on the line labeled
<none>), the term with the lowest Cp statistic is dropped. If the current
model has the lowest Cp statistic, the model is not improved by dropping any
term. The regression literature discusses many other criteria for adding and
dropping terms. See, for example, chapter 8 of Weisberg (1985).

Figure 7.4:  Default plots of fitted model.
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Adding and Dropping Terms from a Linear Model
In our example, the Cp statistic shown for Acid.Conc. is lower than that for
the current model. So it is probably worthwhile dropping that term from the
model:

> stack2.lm <- lm(stack.loss ~ Air.Flow + Water.Temp)
> stack2.lm
Call:
lm(formula = stack.loss ~ Air.Flow + Water.Temp)

Coefficients:
 (Intercept)  Air.Flow Water.Temp
   -50.35884 0.6711544   1.295351

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

A look at the summary shows that we have retained virtually all the
explanatory power of the more complicated model:

> summary(stack2.lm)

Call: lm(formula = stack.loss ~ Air.Flow + Water.Temp)
Residuals:
    Min    1Q Median    3Q   Max
 -7.529 -1.75 0.1894 2.116 5.659

Coefficients:
               Value Std. Error  t value Pr(>|t|)
(Intercept) -50.3588   5.1383    -9.8006   0.0000
   Air.Flow   0.6712   0.1267     5.2976   0.0000
 Water.Temp   1.2954   0.3675     3.5249   0.0024

Residual standard error: 3.239 on 18 degrees of freedom
Multiple R-Squared: 0.9088
F-statistic: 89.64 on 2 and 18 degrees of freedom, the p-
value is 4.382e-10

Correlation of Coefficients:
           (Intercept) Air.Flow
  Air.Flow -0.3104
Water.Temp -0.3438     -0.7819

The residual standard error has fallen, from 3.243 to 3.239, while the
multiple R2 has decreased only slightly from 0.9136 to 0.9088.
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7. Regression and Smoothing for Continuous Response Data
We create the default set of diagnostic plots  as follows:

> par(mfrow=c(2,3))
> plot(stack2.lm, ask=F)

These plots, shown in figure 7.5, support the simplified model.

We turn next to the opposite problem—adding terms to an existing model.
Our first linear model hypothesized a relationship between temperature and
atmospheric ozone, based on a scatter plot showing an apparent linear
relationship between the two variables. The air data set containing the two
variables ozone and temperature also includes two other variables,
radiation and wind. Pairwise scatter plots for all the variables can be
constructed using pairs as follows:

> pairs(air)

The resulting plot is shown in figure 7.6. The plot in the top row, third
column of figure 7.6 corresponds to the scatter plot shown in figure 7.1.

From the pairwise plots, it appears that the ozone varies somewhat linearly
with each of the variables radiation, temperature, and wind, and the
dependence on wind has a negative slope.

Figure 7.5:  Diagnostic plots for simplified model.
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Adding and Dropping Terms from a Linear Model
We can use the add1 function to add the terms wind and radiation in
turn to our previously fitted model:

> ozone.add1 <- add1(ozone.lm, ~ temperature + wind + 
radiation)
> ozone.add1
Single term additions

Figure 7.6:  Pairwise scatter plots for ozone data.
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7. Regression and Smoothing for Continuous Response Data
Model:
ozone ~ temperature
          Df Sum of Sq      RSS       Cp
   <none>              37.74698 39.13219
     wind  1  5.839621 31.90736 33.98517
radiation  1  3.839049 33.90793 35.98575

The first argument to add1 is a fitted model object, the second a formula
specifying the scope, that is, the possible choices of terms to be added to the
model. No response need be specified in the formula supplied; the response
must be the same as that in the fitted model. The returned object is an
ANOVA table like that returned by drop1, showing the sum of squares due
to the added term, the residual sum of squares of the new model, and the
modified Cp statistic for the terms in the augmented model. Each row of the
ANOVA table represents the effects of a single term added to the base model.
In general, it is worth adding a term if the Cp statistic for that term is lowest
among the rows in the table, including the base model term. In our example,
we conclude that it is worthwhile adding the wind term.

Our choice of temperature as the original predictor in the model, however,
was completely arbitrary. We can gain a truer picture of the effects of adding
terms by starting from a simple intercept model:

> ozone0.lm <- lm(ozone ~ 1, data=air)
> ozone0.add1 <- add1(ozone0.lm, ~ temperature + wind 
+ + radiation)
> ozone0.add1
Single term additions

Model:
ozone ~ 1
            Df Sum of Sq      RSS       Cp
     <none>              87.20876 88.79437
temperature  1  49.46178 37.74698 40.91821
       wind  1  31.28305 55.92571 59.09694
  radiation  1  15.53144 71.67732 74.84855

The obvious conclusion is that we should start with the temperature term,
as we did originally.
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Choosing the Best Model—Stepwise Selection
7.4 CHOOSING THE BEST MODEL—STEPWISE SELECTION
Adding and dropping terms using add1 and drop1 is a useful method for
selecting a model when only a few terms are involved, but it can quickly
become tedious. The step function provides an automatic procedure for
conducting stepwise model selection. Essentially what step does is automate
the selection process implied in section 7.3—that is, it calculates the Cp

statistics for the current model, as well as those for all reduced and
augmented models, then adds or drops the term that reduces Cp the most.
The step function requires an initial model, often constructed explicitly as
an intercept-only model, such as the ozone0.lm model constructed in
section 7.3. Because step calculates augmented models, it requires a scope
argument, just like add1.
For example, suppose we want to find the “best” model involving the stack
loss data, we could create an intercept-only model and then call step as
follows:

> stack0.lm <- lm(stack.loss ~ 1, data = stack.df)
> step(stack0.lm, ~ Air.Flow + Water.Temp + Acid.Conc.)
Start:  AIC= 2276.162
 stack.loss ~ 1

Single term additions

Model:
stack.loss ~ 1

scale:  103.4619

           Df Sum of Sq      RSS      Cp
    <none>              2069.238 2276.162
  Air.Flow  1  1750.122  319.116  732.964
Water.Temp  1  1586.087  483.151  896.998
Acid.Conc.  1   330.796 1738.442 2152.290

Step: AIC= 732.9637
 stack.loss ~ Air.Flow

Single term deletions
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7. Regression and Smoothing for Continuous Response Data
Model:
stack.loss ~ Air.Flow

scale:  103.4619

         Df Sum of Sq      RSS       Cp
  <none>               319.116  732.964
Air.Flow  1  1750.122 2069.238 2276.162
Single term additions

Model:
stack.loss ~ Air.Flow

scale:  103.4619

           Df Sum of Sq      RSS       Cp
    <none>              319.1161 732.9637
Water.Temp  1  130.3208 188.7953 809.5668
Acid.Conc.  1    9.9785 309.1376 929.9090
Call:
lm(formula = stack.loss ~ Air.Flow, data = stack.df)

Coefficients:
 (Intercept) Air.Flow
   -44.13202 1.020309

Degrees of freedom: 21 total; 19 residual
Residual standard error (on weighted scale): 4.098242

The value returned by step is an object of class "lm", and the final result
appears in exactly the same form as the output of lm. However, by default,
step displays the output of each step of the selection process. You can turn
off this display by calling step with the trace=F argument:

> step(stack0.lm, ~ Air.Flow + Water.Temp + Acid.Conc.,
+ trace=F)
Call:
lm(formula = stack.loss ~ Air.Flow, data = stack.df)

Coefficients:
 (Intercept) Air.Flow
   -44.13202 1.020309
138



Updating Models
Degrees of freedom: 21 total; 19 residual
Residual standard error (on weighted scale): 4.098242

7.5 UPDATING MODELS
We built our alternate model for the stack loss data by explicitly constructing
a second call to lm. For models involving only one or two predictors, this is
not usually too burdensome. However, if you are looking at many different
combinations of many different predictors, constructing the full call
repeatedly can be tedious.
The update function provides a convenient way for you to fit new models
from old models, by specifying an updated formula or other arguments. For
example, we could create the alternate model stack2.lm using update as
follows:

> stack2a.lm <- update(stack.lm, .~. - Acid.Conc.,
+ data=stack.df)
> stack2a.lm
Call:
lm(formula = stack.loss ~ Air.Flow + Water.Temp, data
= stack.df)

Coefficients:
 (Intercept)  Air.Flow Water.Temp
   -50.35884 0.6711544   1.295351

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

The first argument to update is always a model object, and additional
arguments for lm are passed as necessary. The formula argument typically
makes use of the “.” notation on either side of the “~”. The “.” indicates “as
in previous model.” The “-” and “+” operators are used to delete or add
terms. See chapter 2, Specifying Models in S-PLUS, for more information on
formulas with update.

7.6 WEIGHTED REGRESSION
You can supply weights in fitting any linear model; this can sometimes
improve the fit of models with repeated values in the predictor. Weighted
regression is the appropriate method in those cases where it is known a priori
that not all observations contribute equally to the fit.
For example, a software company with a successful training department
wanted to estimate the revenue to be generated by an expanded training
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7. Regression and Smoothing for Continuous Response Data
schedule. For previous courses, the company had the data shown in table 7.1
concerning the number of courses per month and revenue generated.

We create an S-PLUS data frame from the data in table 7.1 as follows:

> ncourse <- c(2,2,2,3,3,3,3,4,4,4,5)
> revenue <- scan()
 [1] 10030  7530 10801 18005 15455 14986 13926 16104
 [9] 19166 18578 27596

> courserev <- data.frame(revenue, ncourse)
> courserev
   revenue ncourse
 1   10030       2
 2    7530       2
 3   10801       2
 4   18005       3
 5   15455       3
 6   14986       3
 7   13926       3
 8   16104       4

Table 7.1: Revenue and courses per month.

Courses per month Revenue

2 10030

2 7530

2 10801

3 18005

3 15455

3 14986

3 13926

4 16104

4 19166

4 18578

5 27596
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Weighted Regression
 9   19166       4
10   18578       4
11   27596       5

As a first look at the data, we fit a simple regression model as follows:

> course.lm <- lm(courserev)
> course.lm
Call:
lm(formula = courserev)

Coefficients:
 (Intercept)  ncourse
   -650.3113 5123.726

Degrees of freedom: 11 total; 9 residual
Residual standard error: 2131.713

We then look at the default plots, shown in figure 7.7:

> par(mfrow=c(2,3))
> plot(course.lm)

Figure 7.7:  Default diagnostic plots for unweighted course revenue model.
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7. Regression and Smoothing for Continuous Response Data
Overall, the model seems to match the data reasonably well, but the residuals
look to be increasing with the predictor. A weighted regression can help in
this case.

Weights are specified by supplying a non-negative vector as the weights
argument to lm. We weight with the number of observations for each value
of the predictor—this gives a higher weight to the lone observation for 5
courses:

> course1.lm <- lm(revenue ~ ncourse, weights=c(1/3, 1/3,
+ 1/3, 1/4, 1/4, 1/4, 1/4, 1/3, 1/3, 1/3, 1))
> course1.lm
Call:
lm(formula = revenue ~ ncourse, weights = c(1/3, 1/3,
1/3, 1/4, 1/4, 1/4, 1/4, 1/3, 1/3, 1/3, 1))

Coefficients:
 (Intercept)  ncourse
   -2226.167 5678.333

Degrees of freedom: 11 total; 9 residual
Residual standard error (on weighted scale): 1297.942

The plots of the weighted regression show again a reasonable fit to the data
and a less obvious pattern to the residuals.

7.7 PREDICTION WITH THE MODEL
Much of the value of a linear regression model is that, if it accurately models
the underlying phenomenon, it can provide reliable predictions about the
response for a given value of the predictor. The predict function takes a
fitted model object and a data frame of new data, and returns a vector
corresponding to the predicted response. The variable names in the new data
must correspond to those of the original predictors; the response may or may
not be present, but if present is ignored.
For example, suppose we want to predict the atmospheric ozone
concentration from the following vector of temperatures:

> newtemp <- c(60, 62, 64, 66, 68, 70, 72)

We can obtain the desired predictions using predict as follows:

> predict(ozone.lm, data.frame(temperature=newtemp))
        1        2        3        4        5        6 
 1.995822 2.136549 2.277276 2.418002 2.558729 2.699456 
        7
 2.840183
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Prediction with the Model
The predicted values do not stand apart from the original observations.

You can use the se.fit argument to predict to obtain the standard error
of the fitted value at each of the new data points. When se.fit=T, the
output of predict is a list, with a fit component containing the predicted
values and an se.fit component containing the standard errors:

> predict(ozone.lm, data.frame(temperature=newtemp), 
se.fit=T)
$fit:
        1        2        3        4        5        6 
 1.995822 2.136549 2.277276 2.418002 2.558729 2.699456
        7
 2.840183 

$se.fit:
         1         2          3          4          5
 0.1187178 0.1084689 0.09856156 0.08910993 0.08027508
          6          7
 0.07228355 0.06544499

Figure 7.8:  Diagnostic plots for weighted course revenue model.
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7. Regression and Smoothing for Continuous Response Data
$residual.scale:
[1] 0.5884748

$df:
[1] 109

You can use this output list to compute pointwise and simultaneous
confidence intervals for the fitted regression line. See section 7.8, Confidence
Intervals, for details. See the predict help file for a description of the
remaining components of the return list, $residual.scale and $df, as
well as a description of predict’s other arguments.

7.8 CONFIDENCE INTERVALS
How reliable is the estimate produced by a simple regression? Provided the
standard assumptions hold (that is, normal, identically distributed errors
with constant variance σ), we can construct confidence intervals for each
point on the fitted regression line based on the t distribution, and
simultaneous confidence bands for the fitted regression line using the F
distribution.
In both cases, we need the standard error of the fitted value, se.fit, which
is computed as follows (Weisberg, 1985, p. 21):

For a fitted object of class "lm", you can use the predict function as follows
to calculate se.fit:

> predict(ozone.lm, se.fit=T)
$se.fit:
          1          2          3         4
 0.08460301 0.06544499 0.06015393 0.1084689
          5
 0.09377002 . . .

For any given point x in the predictor space, a 1 - α percent confidence
interval for the fitted value corresponding to x is the set of values y such that

 

se.fit σ̂ 1
n
---

x x–( )2

xi x–( )2

i∑
---------------------------+

 
 
 
 
  1

2
---

=

ŷ t α n 2–,( ) se.fit y ŷ t α n 2–,( ) se.fit×+< <×–
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Confidence Intervals
The pointwise function takes the output of predict (produced with the
se.fit=T flag), and returns a list containing three vectors: the vector of
lower bounds, the fitted values, and the vector of upper bounds giving the
confidence intervals for the fitted values for the predictor:

> pointwise(predict(ozone.lm, se.fit=T))
$upper:
        1        2        3       4        5        6
 2.710169 3.011759 3.138615 2.42092 2.593475 2.250401
        7
 2.363895 . . .

$fit:
        1        2       3        4        5        6
 2.488366 2.840183 2.98091 2.136549 2.347639 1.925458
        7
 2.066185 . . .

$lower:
        1        2        3        4        5       6
 2.266563 2.668607 2.823205 1.852177 2.101803 1.600516
        7
 1.768476 . . .

The output from pointwise is suitable, for example, as input for the
error.bar function. It is tempting to believe that the curves resulting from
connecting all the upper points and all the lower points would give a
confidence interval for the entire curve. This, however, is not the case; the
resulting curve does not have the desired confidence level across its whole
range. What is required instead is a simultaneous confidence interval,
obtained by replacing the t distribution with the F distribution. An S-PLUS

function for creating such simultaneous confidence intervals (and by default
plotting the result) can be defined as follows:
"confint.lm"<-
function(object, alpha = 0.05, plot.it = T, ...)
{
        f <- predict(object, se.fit = T)
        p <- length(coef(object))
        fit <- f$fit
        adjust <- (p * qf(1 - alpha, p, length(fit) -
                p))^0.5 * f$se.fit
        lower <- fit - adjust
        upper <- fit + adjust
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7. Regression and Smoothing for Continuous Response Data
        if(plot.it) {
                y <- fit + resid(object)
                plot(fit, y)
                abline(0, 1, lty = 2)
                ord <- order(fit)
                lines(fit[ord], lower[ord])
                lines(fit[ord], upper[ord])
                invisible(list(lower = lower, upper =
                        upper))
        }
        else list(lower = lower, upper = upper)
}

To see how it works, let’s create a plot of our first model of the ozone data:

> confint.lm(ozone.lm)

The resulting plot is shown in figure 7.9.

7.9 ROBUST REGRESSION
Robust regression techniques are an important complement to the classical
least-squares technique in that they provide answers similar to the least-

Figure 7.9:  Simultaneous confidence intervals for ozone data.
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Robust Regression
squares regression when the data are linear with normally distributed errors,
but differ significantly from the least-squares fit when the errors don’t satisfy
the normality conditions or when the data contain significant outliers.
S-PLUS includes several robust regression techniques. These robust
techniques are not yet seamlessly integrated into the standard model
structure, so using them is somewhat different from fitting a classical model
with lm. This section describes three of these robust techniques; we
recommend the first, least trimmed squares regression, because it is robust
not only with respect to outliers but also to high leverage points, which are
points in the model matrix with excessive influence on the result.

Least Trimmed 
Squares 
Regression

Least trimmed squares regression (LTS) regression, introduced by Rousseeuw,
1984, is a highly robust method for fitting a linear regression model. The

LTS estimate  minimizes the sum of the q smallest squared residuals

where  is the ith ordered residual. The value of q is often set to be

slightly larger than half of n.

By contrast, the ordinary least squares estimate  minimizes the sum of all
of the squared residuals.

The least squares estimator lacks robustness because a single “observation” (yi,

xiT ) can cause  to take on any value. The same is true of M-estimators of
regression, which are discussed in section 7.9.

To compute the least trimmed squares regression, use the ltsreg function.
For example, for the stack loss data, we can compute the LTS estimate as
follows:

> stack.lts <- ltsreg(stack.x, stack.loss)
> stack.lts
$coefficients:
 (Intercept)  Air Flow Water Temp  Acid Conc.
   -35.66978 0.7301577  0.3566785 0.006565819

(7.1)

(7.2)

b̂LTS

r i( )
2

b( )
i 1=

q

∑

r i( ) b( )

b̂LS

r i
2
b( )

i 1=

n

∑

b̂̂LS
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7. Regression and Smoothing for Continuous Response Data
$residuals:
 [1]  9.04248471  4.04905053  8.40006437  9.26849051
 [5] -0.01815256 -0.37483103  0.22909559  1.22909559
 [9] -0.45420019  0.37515288  0.31606051 -0.32069520
[13] -2.63797876 -2.06688124  0.15732218 -0.82298037
[17] -0.08773737 -0.13369810  0.50305761  2.10897972
[21] -8.17232057

$fitted.values:
 [1] 32.957515 32.950949 28.599936 18.731509 18.018153
 [6] 18.374831 18.770904 18.770904 15.454200 13.624847
[11] 13.683939 13.320695 13.637979 14.066881 7.842678
[16]  7.822980  8.087737  8.133698  8.496942 12.891020
[21] 23.172321

$objective:
[1] 0.1436481

$stock:
$stock[[1]]:
[1] 17 10 5 17 5 12 15

$births.n:
[1] 440

(You will probably get a slightly different answer each time you call ltsreg.
Because the objective is hard to compute exactly, ltsreg uses a random
algorithm.) Comparing the coefficients to those for the least-squares fit, we
observe that the LTS values are noticeably different:

> coef(stack.lm)
 (Intercept)  Air.Flow Water.Temp Acid.Conc. 
   -39.91967 0.7156402   1.295286 -0.1521225
> coef(stack.lts)
 (Intercept)  Air Flow Water Temp  Acid Conc.
   -35.66978 0.7301577  0.3566785 0.006565819

A plot of the residuals versus the fitted values for the two fits is also revealing:

> graphsheet()
> par(mfrow=c(1,2))
> plot(fitted(stack.lm), resid(stack.lm),
+ ylim=range(resid(stack.lts)))
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Robust Regression
> plot(fitted(stack.lts), resid(stack.lts))

The resulting plot is shown in figure 7.10. The plot on the left shows the
residuals scattered with no apparent pattern; the plot on the right shows four
clear outliers—three at the top and one at the bottom.

The LTS estimator has the highly attractive robustness property that its
breakdown point is approximately 1/2 (if q is the right fraction of n). The
breakdown point of a regression estimator is the largest fraction of data which
may be replaced by arbitrarily large values without making the Euclidean

norm  of the resulting estimate tend to ∞. The Euclidean norm is

defined as follows: .

To illustrate the concept of breakdown point, consider the simple problem of
estimating location, where often the estimator is the sample mean

. The breakdown point of the mean estimator is 0, since if

any single , then . On the other hand, the sample median

has breakdown point approximately 1/2, since, taking the case of an odd
sample size n for convenience, one can move (n - 1)/2 of the observations yi

to ±∞ without taking the median to ±∞.

Any estimator with breakdown point approximately 1/2 is called a high
breakdown point estimator. Thus, the LTS estimator is a high breakdown

Figure 7.10:  Residual plots for least-squares (left) and least trimmed
squares regression.
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7. Regression and Smoothing for Continuous Response Data
point regression estimator.

The high breakdown point of the LTS estimator means that the values

, i = 1, ..., n , fit the bulk of the data well, even when the bulk of the

data may consist of only somewhat more than 50% of the data.

Correspondingly, the residuals  will reveal the

outliers quite clearly. Least squares residuals  and M-

estimate residuals  often fail to reveal problems in the

data. This can be illustrated as follows.

First construct an artificial data set with 60 percent of the data scattered
about the line yi = xi and the remaining 40 percent in an outlying cluster
centered at (6, 2).

> set.seed(14) #set the seed to reproduce this example
> x30 <- runif(30, .5, 4.5)
> e30 <- rnorm(30, 0, .2); y30 <- 2+x30+e30
> x20 <- rnorm(20, 6, .5); y20 <- rnorm(20, 2, .5)
> x <- c(x30, x20)
> y <- c(y30, y20)

Plot the data, then fit and label 3 different regression lines: the ordinary least
squares line, an M-estimate line, and the least trimmed squared residuals line.

> plot(x, y)
> abline(lm(y ~ x))
> text(5, 3.4, "LS")
> abline(rreg(x, y))
> text(4, 3.2, "M")
> abline(ltsreg(x, y))
> text(4, 6.5, "LTS")

The resulting plot is shown in figure 7.11. 

The outlying points pull both the ordinary least squares line and the M-
estimate away from the bulk of the data. Neither of these two fitting methods
is robust to outliers in the x direction. (Such outliers are called leverage points
in the literature.) The LTS line recovers the linear structure in the bulk of the
data and essentially ignores the outlying cluster. In higher dimensions such
outlying clusters are very hard to identify using classical regression
techniques.

x i
T
b̂LTS

r i b̂LTS( ) yi xi
T
b̂LTS–=

r i b̂̂LS( ) yi xi
T
b̂̂LS–=

r i b̂M( ) yi x i
T
b̂M–=
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Robust Regression
Least Absolute 
Deviation 
Regression

The idea of least absolute deviation regression, or L1 regression, is actually
older than that of least-squares, but until the development of high-speed
computers, it was too cumbersome to have wide applicability. S-PLUS has the
function l1fit (note that the second character in the function name is the
number “1”, not the letter “l”) for computing least absolute deviation
regression. As its name implies, least absolute deviation regression finds the

estimate  that minimizes the sum of the absolute values of the residuals

.

As an example, consider again the stack loss data. We construct the L1
regression using l1fit as follows:

> stack.l1 <- l1fit(stack.x, stack.loss)
> stack.l1
$coefficients:
 Intercept  Air Flow Water Temp  Acid Conc. 
 -39.68984 0.8318844 0.5739114 -0.06086962

Figure 7.11:  Least trimmed squares regression, compared to least-squares
and M-estimates.
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7. Regression and Smoothing for Continuous Response Data
$residuals:
 [1]  5.06086922  0.00000000  5.42898512  7.63478470
 [5] -1.21739304 -1.79130435 -1.00000000  0.00000000
 [9] -1.46376634 -0.02029470  0.52752948  0.04057107
[13] -2.89855528 -1.80290544  1.18260598  0.00000000
[17] -0.42608732  0.00000000  0.48695821  1.61739087
[21] -9.48116493

Plotting the residuals against fitted values and comparing the plot to the
corresponding plot for the least-squares fit shows the outliers clearly, though
not so clearly as for the ltsreg plot.

> plot(fitted(stack.lm), resid(stack.lm))
> plot(stack.loss - resid(stack.l1), resid(stack.l1))

The plot is shown in figure 7.12.

M-estimates of 
Regression

The M-estimator of regression was introduced by Huber, 1973. An M-

estimate  of regression is the b which minimizes

for a given ρ. Least squares corresponds to ρ(x) = x2 and least absolute
deviation regression corresponds to ρ(x) = |x|. Generally, although not in the

two cases mentioned above, the value of  is dependent on the value of σ,
which is usually unknown.

Figure 7.12:  Residual plots for least-squares (left) and least absolute
deviation regression.
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Robust Regression
Although M-estimates are protected against wild values in the response y,
they are susceptible to high leverage points—that is, points which have quite
different x-values relative to the other observations. In particular, a
typographical error in an explanatory variable can have a dramatic affect on
an M-estimate, while least trimmed squares regression handles this situation
easily. One advantage of M-estimates is that they can be computed in much
less time than least trimmed squares or other high-breakdown estimates.

M-estimates in S-PLUS are calculated using the rreg function to perform an
iteratively reweighted least-squares fit. What this means is that S-PLUS

calculates an initial fit (using traditional weighted least-squares, by default),
then calculates a new set of weights based on the results of the initial fit. The
new weights are then used in another weighted least-squares fit, new weights
are calculated, and so on, iteratively, until either some convergence criteria
are satisfied or a specified maximum number of iterations is reached.

The only required arguments to rreg are x, the vector or matrix of
explanatory variables, and y, the vector response:

> stack.M1 <- rreg(stack.x, stack.loss)
> stack.M1
$coefficients:
 (Intercept)  Air Flow Water Temp Acid Conc. 
   -42.07438 0.8978265   0.731816 -0.1142602

$residuals:
 [1]   2.65838630  -2.45587390   3.72541082   6.78619020
 [5]  -1.75017776  -2.48199378  -1.52824862  -0.52824862
 [9]  -1.89068795  -0.03142924   0.99691253   0.61446835
[13]  -2.80290885  -1.27786270   2.17952419   0.83674360
[17]  -0.49471517   0.30510621   0.68755039   1.52911203
[21] -10.01211661

$w:
 [1] 0.87721539 0.91831885 0.77235329 0.41742415 0.95387576
 [6] 0.90178786 0.95897484 0.99398847 0.93525890 0.99958817
[11] 0.97640677 0.98691782 0.89529949 0.98052477 0.92540436
[16] 0.98897286 0.99387986 0.99933718 0.99574820 0.96320721
[21] 0.07204303

You control the choice of ρ in rreg by specifying a weight function as the
method argument. There are eight weight functions built into S-PLUS; there
is not yet a consensus on which is “best.” See the rreg help file for details on
the weight functions. The default weight function uses Huber’s weight
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7. Regression and Smoothing for Continuous Response Data
function until convergence, then a bisquare weight function for two more
iterations. The following call to rreg defines a simple weight function that
corresponds to the least-squares choice ρ = x2:

> stack.MLS <- rreg(stack.x,stack.loss,
+ method=function(u) 2*abs(u),iter=100)
Warning messages:
failed to converge in 100 steps in:
rreg(stack.x, stack.loss, method = function(u) ....
> stack.MLS$coef
 (Intercept)  Air Flow Water Temp Acid Conc.
   -39.70404 0.7165807   1.298218 -0.1561163
 > coef(stack.lm)
 (Intercept)  Air.Flow Water.Temp Acid.Conc. 
   -39.91967 0.7156402   1.295286 -0.1521225
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Polynomial Regression
7.10 POLYNOMIAL REGRESSION
Thus far in this chapter, we’ve dealt with data sets for which the graphical
evidence clearly indicated a linear relationship between the predictors and the
response. For such data, the linear model is a natural and elegant choice,
providing a simple and easily analyzed description of the data. But what
about data that does not exhibit a linear dependence? For example, consider
the scatter plot shown in figure 7.13. Clearly, there is some functional
relationship between the predictor E (for Ethanol) and the response NOx (for
Nitric Oxide), but just as clearly the relationship is not a straight line.

How should we model such data? One approach is to add polynomial terms
to the basic linear model, then use least-squares techniques as before. The
classical linear model (with the intercept term represented as the coefficient
of a dummy variable X0 of all 1s) is represented by an equation of the
following form:

Figure 7.13:  Scatter plot showing nonlinear dependence.
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7. Regression and Smoothing for Continuous Response Data
where the predictors Xk enter the equation as linear terms. More generally,
classical linear regression techniques apply to any equation of the form

where the Zk are new variables formed as combinations of the original
predictors. For example, consider a cubic polynomial relationship given by
the following equation:

Taking X = X1 = X2 = X3, we can convert this to the desired form by the
following assignments:

 

Once these assignments are made, the coefficients βk can be determined as
usual using the classical least-squares techniques.

To perform a polynomial regression in S-PLUS, use lm together with the
poly function. Use poly on the right hand side of the formula argument
to lm to specify the independent variable and degree of the polynomial. For
example, consider the following made-up data:

x <- runif(100, 0, 100)
y <- 50 - 43*x + 31*x^2 - 2*x^3 + rnorm(100)

We can fit this as a polynomial regression of degree 3 as follows:

> xylm <- lm(y ~ poly(x, 3))
> xylm
Call:
lm(formula = y ~ poly(x, 3))

(7.2)

(7.3)

Y βkZk ε+
k 0=

n

∑=

Y βk X
k ε+

k 0=

3
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X0 Z0=

X1 Z1=

X2
2 Z2=
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Polynomial Regression
Coefficients:
(Intercept) poly(x, 3)1 poly(x, 3)2 poly(x, 3)3
  -329798.8    -3681644    -1738826   -333975.4

Degrees of freedom: 100 total; 96 residual
Residual standard error: 0.9463133

The coefficients appearing in the object xylm are the coefficients for the
orthogonal form of the polynomial. To recover the simple polynomial form,
use the function poly.transform:

> poly.transform(poly(x,3), coef(xylm))
     x^0       x^1      x^2       x^3
 49.9119 -43.01118 31.00052 -2.000005

These coefficients are very close to the exact values used to create y.

If the coefficients returned from a regression involving poly are so difficult
to interpret, why not simply model the polynomial explicitly? That is, why
not use the formula y ~ x + x^2 + x^3 instead of the formula involving
poly. In our example, there is little difference. However, in problems
involving polynomials of higher degree, severe numerical problems can arise
in the model matrix. Using poly avoids these numerical problems, because
poly uses an orthogonal set of basis functions to fit the various “powers” of
the polynomial.

As a further example of the use of poly, let us consider the ethanol data we
saw at the beginning of this section. From figure 7.13, we are tempted by a
simple quadratic polynomial. However, there is a definite upturn at each end
of the data, so we are safer fitting a quartic polynomial, as follows:

> ethanol.poly <- lm(NOx ~ poly(E,degree=4))
> summary(ethanol.poly)

Call: lm(formula = NOx ~ poly(E, degree = 4))
Residuals:
     Min      1Q   Median     3Q   Max 
 -0.8125 -0.1445 -0.02927 0.1607 1.017

Coefficients:
                        Value Std. Error  t value 
         (Intercept)   1.9574   0.0393    49.8407
poly(E, degree = 4)1  -1.0747   0.3684    -2.9170
poly(E, degree = 4)2  -9.2606   0.3684   -25.1367
poly(E, degree = 4)3  -0.4879   0.3684    -1.3243
poly(E, degree = 4)4   3.6341   0.3684     9.8644
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7. Regression and Smoothing for Continuous Response Data
                     Pr(>|t|) 
         (Intercept)   0.0000
poly(E, degree = 4)1   0.0045
poly(E, degree = 4)2   0.0000
poly(E, degree = 4)3   0.1890
poly(E, degree = 4)4   0.0000

Residual standard error: 0.3684 on 83 degrees of freedom
Multiple R-Squared: 0.8991 
F-statistic: 184.9 on 4 and 83 degrees of freedom, the p-
value is 0 

Correlation of Coefficients:
                     (Intercept) poly(E, degree = 4)1 
poly(E, degree = 4)1 0                               
poly(E, degree = 4)2 0           0                   
poly(E, degree = 4)3 0           0                   
poly(E, degree = 4)4 0           0                   
                     poly(E, degree = 4)2 
poly(E, degree = 4)1                     
poly(E, degree = 4)2                     
poly(E, degree = 4)3 0                   
poly(E, degree = 4)4 0                   
                     poly(E, degree = 4)3 
poly(E, degree = 4)1                     
poly(E, degree = 4)2                     
poly(E, degree = 4)3                     
poly(E, degree = 4)4 0

> poly.transform(poly(E,4), coef(ethanol.poly))
      x^0       x^1      x^2       x^3     x^4 
 174.3601 -872.2071 1576.735 -1211.219 335.356

The summary clearly shows the significance of the 4th order term.

7.11 SMOOTHING
Polynomial regression can be useful in many situations. However, the choice
of terms is not always obvious, and small effects can be greatly magnified or
lost completely by the wrong choice. Another approach to analyzing
nonlinear data, attractive because it relies on the data to specify the form of
the model, is to fit a curve to the data points locally, so that at any point the
curve at that point depends only on the observations at that point and some
specified neighboring points. Because such a fit produces an estimate of the
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Smoothing
response that is less variable than the original observed response, the result is
called a smooth, and procedures for producing such fits are called scatterplot
smoothers. S-PLUS offers a variety of scatterplot smoothers:

• loess.smooth a locally weighted regression smoother.

• smooth.spline a cubic smoothing spline, with local behavior
similar to that of kernel-type smoothers.

• ksmooth a kernel-type scatterplot smoother.

• supsmu a very fast variable span bivariate smoother.

Halfway between the global parameterization of a polynomial fit and the
local, nonparametric fit provided by smoothers are the parametric fits
provided by regression splines. Regression splines fit a continuous curve to the
data by piecing together polynomials fit to different portions of the data.
Thus, like smoothers, they are local fits. Like polynomials, they provide a
parametric fit. In S-PLUS, regression splines can be used to specify the form
of a predictor in a linear or more general model, but are not intended for top-
level use.

Locally 
Weighted 
Regression 
Smoothing

In locally weighted regression smoothing, we build the smooth function s(x)
pointwise as follows:

1. Take a point, say x0. Find the k nearest neighbors of x0, which

constitute a neighborhood N(x0). The number of neighbors k is

specified as a percentage of the total number of points. This
percentage is called the span.

2. Calculate the largest distance between x0 and another point in the

neighborhood:

3. Assign weights to each point in N(x0) using the tri-cube weight

function:

where

∆ x0( ) maxN x0( ) x0 x1–=

W
x0 x1–

∆ x0( )
------------------- 

 

W u( ) 1 u
3

–( )
3
, for 0 u 1<≤

0               otherwise



=
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7. Regression and Smoothing for Continuous Response Data
4. Calculate the weighted least squares fit of y on the neighborhood

N(x0). Take the fitted value .

5. Repeat for each predictor value.

Use the loess.smooth function to calculate a locally weighted regression
smooth. For example, suppose we want to smooth the ethanol data. The
following expressions produce the plot shown in figure 7.14:

> plot(E,NOx)
> lines(loess.smooth(E,NOx))

The plot shown in figure 7.14 shows the default smoothing, which uses a
span of 2/3. For most uses, you will want to specify a smaller span, typically
in the range of 0.3 to 0.5.

Using the 
Super 
Smoother

With loess, the span is constant over the entire range of predictor values.
However, a constant value will not be optimal if either the error variance or
the curvature of the underlying function f varies over the range of x. An
increase in the error variance requires an increase in the span whereas an
increase in the curvature of f requires a decrease. Local cross-validation avoids
this problem by choosing a span for the predictor values xj based on only the

Figure 7.14:  Loess-smoothed ethanol data.
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Smoothing
leave-one-out residuals whose predictor values xi are in the neighborhood of
xj. The super smoother, supsmu, uses local cross-validation to choose the
span. Thus, for one-predictor data, it can be a useful adjunct to loess.
For example, figure 7.15 shows the result of super smoothing the response
NOx as a function of E in the ethanol data (dotted line) superimposed on
a loess smooth. To create the plot, use the following commands:

> scatter.smooth(E,NOx, span=1/4)
> lines(supsmu(E,NOx), lty=2)

Local Cross-
Validation

Let s(x|k) denote the linear smoother value at x when span k is used. We wish
to choose k = k(X) so as to minimize the mean squared error

where we are considering the joint random variable model for (X, Y ). Since

we would like to choose k = k(x) to minimize

Figure 7.15:  Super Smoothed ethanol data (dotted line).
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7. Regression and Smoothing for Continuous Response Data
 .

However, we have only the data (xi, yi), i = 1, ..., n, and not the true
conditional distribution needed to compute EY|X=x, and so we cannot
calculate . Thus we resort to cross-validation and try to minimize the
cross-validation estimate of :

.

Here s(i)(xi|k) is the “leave-one-out” smooth at xi , that is, s(i)(xi|k) is

constructed using all the data (xj, yj), j = 1, ..., n , except for (xi, yi), and then
the resultant local least squares line is evaluated at xi thereby giving s(i)(x|k).

The leave-one-out residuals

are easily obtained from the ordinary residuals

using the standard regression model relation

.

Here hii , i = 1, ..., n, are the diagonals of the so-called “hat” matrix, H = X

(XTX )-1XT , where, for the case at hand of local straight-line regression, X is a
2-column matrix.

Using the 
Kernel 
Smoother

A kernel-type smoother is a type of local average smoother that, for each

target point xi in predictor space, calculates a weighted average  of the
observations in a neighborhood of the target point:

where

ex
2

k( ) EY X x Y s X k( )–[ ]2
= =

EY X x Y s x k( )–[ ]2
==

ex
2 k( )

ex
2 k( )

êCV
2

k( ) yi s i( ) xi k( )–[ ]2

i 1=

n

∑=

r i( ) k( ) yi s i( ) xi k( )–=

r i k( ) yi s xi k( )–=

r i( ) k( )
r i k( )
hii

-----------=

(7.4)
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Smoothing
.

are weights which sum to one:

.

The function K used to calculate the weights is called a kernel function,
which typically has the following properties:

• (a) 

• (b) 

• (c) 

Note that properties (a) and (b) are those of a probability density function.
The parameter b is the bandwidth parameter, which determines how large a
neighborhood of the target point is used to calculate the local average. A large
bandwidth generates a smoother curve, while a small bandwidth generates a
wigglier curve. Hastie and Tibshirani (1990), point out that the choice of
bandwidth is much more important than the choice of kernel. To perform
kernel smoothing in S-PLUS, use the ksmooth function. The kernels
available in ksmooth are shown in table 7.1.

Of the available kernels, the default "box" kernel gives the crudest smooth.
For most data, the other three kernels yield virtually identical smooths. We
recommend "triangle" because it is the simplest and fastest to calculate.

The intuitive sense of the kernel estimate  is clear: Values of yj such that xj

is close to xi get relatively heavy weights, while values of yj such that xj is far
from xi get small or zero weight. The bandwidth parameter b determines the
width of K(t/b), and hence controls the size of the region around xi for which

yj receives relatively large weights. Since bias increases and variance decreases
with increasing bandwidth b, selection of b is a compromise between bias
and variance in order to achieve small mean squared error. In practice this is
usually done by trial and error. For example, we can compute a kernel

wij K̃
xi xj–

b
-------------- 

 
K

xi xj–

b
-------------- 

 

K
xi xk–

b
-------------- 

 
k 1=

n

∑
-----------------------------------= =

wij 1=
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n

∑

K t( ) 0 for all t≥

K t( ) td
∞–

∞
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K t–( ) K t( ) for all t (symmetry)=

ŷi
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7. Regression and Smoothing for Continuous Response Data
smooth for the ethanol data as follows:

> plot(E,NOx)
> lines(ksmooth(E,NOx, kernel="triangle", bandwidth=.2))
> lines(ksmooth(E,NOx, kernel="triangle", bandwidth=.1),
+ lty=2)
> legend(.54,4.1,c("bandwidth=.2", "bandwidth=.1"),
+ lty=c(1,2))

The resulting plot is shown in figure 7.16.

Table 7.1: Kernels available for ksmooth.

Kernel Explicit form

"box"

"triangle"1

"parzen"2

"normal"

In convolution form, 

In convolution form, 

The constants shown in the explicit forms above are used to scale the
resulting kernel so that the upper and lower quartiles occur at ±.25. Also,
the is taken to be 1 and the dependence of the kernel on the bandwidth is
suppressed. 

Kbox t( )
1 ,       t 0.5≤
0 ,       t 0.5>




=

Ktri t( )
1 t C⁄  ,       – t

1
C
----≤

0 ,       t
1
C
---->






=

Kpar t( )

k1 t2–( ) k2⁄  ,       t C1≤

t2 k3⁄( ) k4 t k5 ,       +– C1 t C2≤<

0 ,       C2 t<





=

Knor t( ) 1 2πk6⁄( ) exp t2 2k
6
2⁄–( )=

Ktri t( ) Kbox * Kbox t( )=

Kpar t( ) Ktri * Kbox t( )=
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Smoothing
Smoothing 
Splines

A cubic smoothing spline behaves approximately like a kernel smoother, but it

arises as the function  that minimizes the penalized residual sum of squares
given by

over all functions with continuous first and integrable second derivatives.
The parameter λ is the smoothing parameter, corresponding to the span in
loess or supsmu or the bandwidth in ksmooth.

To generate a cubic smoothing spline in S-PLUS, use the function
smooth.spline smooth to the input data:

> plot(E,NOx)
> lines(smooth.spline(E,NOx))

Figure 7.16:  Kernel smooth of ethanol data for two bandwidths.
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7. Regression and Smoothing for Continuous Response Data
You can specify a different λ using the spar argument, although it is not
intuitively obvious what a “good” choice of λ might be. When the data is
normalized to have a minimum of 0 and a maximum of 1, and when all
weights are equal to 1, l=spar. More generally, the relationship is given by

l=(max(x)-min(x))3·mean(w)·spar. You should either let S-PLUS choose the
smoothing parameter, using either ordinary or generalized cross-validation,
or supply an alternative argument, df, which specifies the degrees of freedom
for the smooth. For example, to add a smooth with approximately 5 degrees
of freedom to our previous plot, use the following:

> lines(smooth.spline(E,NOx, df=5), lty=2)

The resulting plot is shown in figure 7.17.

Comparing 
Smoothers

The choice of a smoother is somewhat subjective. All the smoothers discussed
in this section can generate reasonably good smooths; you might select one or
another based on theoretical considerations or the ease with which one or
another of the smoothing criteria can be applied. For a direct comparision of
these smoothers, consider the artificial data constructed as follows:

Figure 7.17:  Smoothing spline of ethanol data with cross-validation
(solid line) and pre-specified degrees of freedom.
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Additive Models
> set.seed(14) # set the seed to reproduce this example
> e <- rnorm(200)
> x <- runif(200)
> y <- sin(2*pi*(1-x)2)+x*e

A “perfect” smooth would recapture the original signal, f(x) = sin(2π(1-x)2),
exactly. The following commands sort the input and calculate the exact
smooth:

> sx <- sort(x)
> fx <- sin(2*pi*(1-sx)2)

The following commands create a scatter plot of the original data, then
superimpose the exact smooth and smooths calculated using each of the
smoothers described in this chapter:

> plot(x,y)
> lines(sx,fx)
> lines(supsmu(x,y),lty=2)
> lines(ksmooth(x,y),lty=3)
> lines(smooth.spline(x,y),lty=4)
> lines(loess.smooth(x,y),lty=5)
> legend(0,2,c("perfect", "supsmu", "ksmooth",
+ "smooth.spline", "loess"), lty=1:5)

The resulting plot is shown in figure 7.18. This comparison is crude, at best,
because by default each of the smoothers does a different amount of
smoothing. A fairer comparison would adjust the smoothing parameters to
be roughly equivalent.

7.12 ADDITIVE MODELS
An additive model extends the notion of a linear model by allowing some or
all linear functions of the predictors to be replaced by arbitrary smooth
functions of the predictors. Thus, the standard linear model

is replaced by the additive model

.

The standard linear regression model is a simple case of an additive model.

Y β iXi ε+
i 0=

n

∑=

Y α fi Xi( ) ε+
i 1=

n

∑+=
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7. Regression and Smoothing for Continuous Response Data
Because the forms of the fi are generally unknown, they are estimated using
some form of scatterplot smoother.

To fit an additive model in S-PLUS, use the gam function, where gam stands
for generalized additive model. You provide a formula which may contain
ordinary linear terms as well as terms fit using any of the following:

• loess smoothers, using the lo function;

• smoothing spline smoothers, using the s function;

• natural cubic splines, using the ns function;

• B-splines, using the bs function;

• polynomials, using poly.

The three functions ns, bs, and poly result in parametric fits; additive
models involving only such terms can be analyzed in the classical linear
model framework. The lo and s functions introduce nonparametric fitting
into the model. For example, the following call takes the ethanol data and
models the response NOx as a function of the loess-smoothed predictor E:

> attach(ethanol)
> ethanol.gam <- gam(NOx ~ lo(E, degree=2))

Figure 7.18:  Comparison of S-PLUS smoothers.
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Additive Models
> ethanol.gam
Call:
gam(formula = NOx ~ lo(E, degree = 2))

Degrees of Freedom: 88 total; 81.1184 Residual
Residual Deviance: 9.1378

In the call to lo, we specify that the smooth is to be locally quadratic by
using the argument degree = 2. For data that is less obviously nonlinear,
we would probably be satisfied with the default, which is locally linear fitting.
The printed gam object closely resembles a printed lm object from linear
regression—the call producing the model is shown, followed by the degrees
of freedom and the residual deviance which serves the same role as the residual
sum of squares in the linear model. The deviance is a function of the log-
likelihood function, which is related to the probability mass function f(yi; µi)

for the observation yi given µi. The log-likelihood for a sample of n

observations is defined as follows:

The deviance  is then defined as

where m* maximizes the log-likelihood over m unconstrained, and φ is the
dispersion parameter. For a continuous response with normal errors, as in the
models we’ve been considering in this chapter, the dispersion parameter is
just the variance σ2, and the deviance reduces to the residual sum of squares.
As with the residual sum of squares, the deviance can be made arbitrarily
small by choosing an interpolating solution. As in the linear model case,
however, we generally have a desire to keep the model as simple as possible.
In the linear case, we try to keep the number of parameters, that is, the
quantities estimated by the model coefficients, to a minimum. Additive
models are generally nonparametric, but we can define for nonparametric
models an equivalent number of parameters, which we would also like to keep
as small as possible.

The equivalent number of parameters for gam models is defined in terms of
degrees of freedom, or df. In fitting a parametric model, one degree of freedom
is required to estimate each parameter. For an additive model with parametric
terms, one degree of freedom is required for each coefficient the term

l m; y( ) log f yi ; µi( )
i 1=

n

∑=

D y; m( )

D y; m( )
φ

-------------------- 2l m∗; y( ) 2l m; y( )–=
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7. Regression and Smoothing for Continuous Response Data
contributes to the model. Thus, for example, consider a model with an
intercept, one term fit as a cubic polynomial, and one term fit as a quadratic
polynomial. The intercept term contributes one coefficient and requires one
degree of freedom, the cubic polynomial contributes three coefficients and
thus requires three degrees of freedom, and the quadratic polynomial
contributes two coefficients and requires two more degrees of freedom. Thus,
the entire model has six parameters, and uses six degrees of freedom. A
minimum of six observations is required to fit such a model. Models
involving smoothed terms use both parametric and nonparametric degrees of
freedom—parametric degrees of freedom result from fitting a linear
(parametric) component for each smooth term, while the nonparametric
degrees of freedom result from fitting the smooth after the linear part has
been removed. The difference between the number of observations and the
degrees of freedom required to fit the model is the residual degrees of freedom.
Conversely, the difference between the number of observations and the
residual degrees of freedom is the degrees of freedom required to fit the
model, which is the equivalent number of parameters for the model.

The summary method for gam objects shows the residual degrees of freedom,
the parametric and nonparametric degrees of freedom for each term in the
model, together with additional information:

> summary(ethanol.gam)

Call: gam(formula = NOx ~ lo(E, degree = 2))
Deviance Residuals:
        Min         1Q      Median        3Q      Max
 -0.6814987 -0.1882066 -0.01673293 0.1741648 0.8479226

(Dispersion Parameter for Gaussian family taken to be 
0.1126477 )

Null Deviance: 111.6238 on 87 degrees of freedom

Residual Deviance: 9.137801 on 81.1184 degrees of freedom

Number of Local Scoring Iterations: 1

DF for Terms and F-values for Nonparametric Effects

                  Df Npar Df   Npar F        Pr(F)
      (Intercept)  1
lo(E, degree = 2)  2     3.9 35.61398 1.110223e-16
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Additive Models
The Deviance Residuals are, for Gaussian models, just the ordinary

residuals . The Null Deviance is the deviance of the model

consisting solely of the intercept term.

The ethanol data set contains a third variable, C, which measures the
compression ratio of the engine. Figure 7.19 shows pairwise scatter plots for
the three variables. Let’s incorporate C as a linear term in our additive model:

> attach(ethanol)
> ethanol2.gam <- gam(NOx ~ C + lo(E, degree = 2))
> ethanol2.gam

Call:
gam(formula = NOx ~ C + lo(E, degree = 2))

Degrees of Freedom: 88 total; 80.1184 Residual
Residual Deviance: 5.16751
> summary(ethanol2.gam)

Figure 7.19:  Pairs plot of the ethanol data.
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7. Regression and Smoothing for Continuous Response Data
Call: gam(formula = NOx ~ C + lo(E, degree = 2))
Deviance Residuals:
        Min        1Q    Median        3Q       Max
 -0.6113908 -0.166044 0.0268504 0.1585614 0.4871313

(Dispersion Parameter for Gaussian family taken to be 
0.0644985 )

Null Deviance: 111.6238 on 87 degrees of freedom

Residual Deviance: 5.167513 on 80.1184 degrees of freedom

Number of Local Scoring Iterations: 1

DF for Terms and F-values for Nonparametric Effects

                  Df Npar Df   Npar F Pr(F)
      (Intercept)  1
                C  1
lo(E, degree = 2)  2     3.9 57.95895     0

We can use the anova function to compare this model with the simpler
model involving E only:

> anova(ethanol.gam, ethanol2.gam, test="F")
Analysis of Deviance Table

Response: NOx
                  Terms Resid. Df Resid. Dev Test Df
1     lo(E, degree = 2)   81.1184   9.137801
2 C + lo(E, degree = 2)   80.1184   5.167513   +C  1
  Deviance  F Value        Pr(F)
1
2 3.970288 61.55632 1.607059e-11

The model involving C is clearly better, since the residual deviance is cut
almost in half by expending only one more degree of freedom.

Is the additive model sufficient? Additive models stumble when there are
interactions among the various terms. In the case of the ethanol data, there
is a significant interaction between C and E. In such cases, a full local
regression model, fit using the loess function, is often more satisfactory. We
discuss the ethanol data more thoroughly in the chapter Local Regression
Models.
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More on Nonparametric Regression
7.13 MORE ON NONPARAMETRIC REGRESSION
The additive models fitted by gam in the section Additive Models are simple
examples of nonparametric regression. The machinery of generalized additive
models, proposed by Hastie and Tibshirani (1990), is just one approach to
such nonparametric models. S-PLUS includes several other functions for
performing nonparametric regression, including the ace function, which
implements the first proposed technique for nonparametric regression—
alternating conditional expectations. S-PLUS also includes AVAS (Additive
and VAriance Stabilizing transformations) and projection pursuit regression.
This section describes these varieties of nonparametric regression.

Alternating 
Conditional 
Expectations

Alternating conditional expectations or ace, is an intuitively appealing
technique introduced by Breiman and Friedman (1985). The idea is to find
nonlinear transformations θ(y), φ1(x1), φ2(x2),…, φp(xp) of the response y
and predictors x1, x2,…, xp, respectively, such that the additive model

is a good approximation for the data yi, xi1,…, xip, i = 1,…, n. Let yi, x1,

x2,…, xp be random variables with joint distribution F, and let expectations

be taken with respect to F. Consider the goodness-of-fit measure

The measure e2 is the fraction of variance not explained by regressing θ(y) on

φ(x1),…,φ(xp) . The data-based version of e2 is

(7.5)

(7.6)

(7.7)

θ y( ) φ1 x1( ) φ2 x2( ) … φp xp( ) ε+ + + +=

e
2

e
2 θ, φ1, ...,φp( )

E θ y( ) φk xk( )
k 1=

p

∑–

2

Eθ2
y( )

------------------------------------------------------= =

ê2

θ̂ yi( ) φ̂k xik( )
k 1=

p

∑–

2

i 1=

n

∑

θ̂2 yi( )
i 1=

n

∑
--------------------------------------------------------------=
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7. Regression and Smoothing for Continuous Response Data
where  and the , estimates of θ and the φj, are standardized so that 

and the  have mean zero:  and ,

k=1,…,p. For the usual linear regression case, where

and

with  the least squares regression coefficients, we have

and the squared multiple correlation coefficient is given by .

The transformations , ,…,  are chosen to maximize the correlation

between  and . Although ace is a useful

exploratory tool for determining which of the response y and the predictors
x1,…,xp  are in need of nonlinear transformations and what type of
transformation is needed, it can produce anomalous results if errors ε and the

 fail to satisfy the independence and normality assumptions.

To illustrate the use of ace, construct an artificial data set with additive errors

with the εi’s being N(0, 10) random variables (that is, normal random
variables with mean 0 and variance 10 ), independent of the xi’s, with the xi’s
being U(0, 2) random variables (that is, random variables uniformly
distributed on the interval from 0 to 2).

> set.seed(14) # set the seed to reproduce this example
> x <- 2*runif(200)

θ̂ φ̂j θ̂ yi( )

φ̂ j xi j( ) θ̂ yi( )
i 1=

n

∑ 0= φ̂k xik( )
i 1=

n

∑ 0=

θ̂ yi( ) yi y–=

φ̂1 xi 1 x1–( ) xi 1 x1–( )β̂1 ,…, φ̂p xip xp–( ) xip xp–( )β̂p==

β̂1 ,…, β̂p

êLS
2 RSS

SSY
----------

yi y–( ) xik xk–( )β̂k

k 1=

p

∑–

2

i 1=

n

∑

yi y–( )2

i 1=

n

∑
------------------------------------------------------------------------------≡=

R2 1 eLS
2–=

θ̂ φ̂1 φ̂p

θ̂ yi( ) φ̂ xi1( ) … φ̂ xip( )+ +

φ̂1 xi( )

yi e1 2xi+ ε i i  , i= 1,…,200+=
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More on Nonparametric Regression
> e <- rnorm(200, 0, sqrt(10))
> y <- exp(1+2*x) + e

Now use ace:

> a <- ace(x,y)

Set graphics for 3 × 2 layout of plots:

> par(mfrow=c(3,2))

Make plots to do the following:

1. Examine original data;

2. Examine transformation of y ;

3. Examine transformation of x ;

4. Check linearity of the fitted model;

5. Check residuals versus the fit:

The following S-PLUS commands provide the desired plots:

> plot(x, y, sub="Original Data")
> plot(x, a$tx, sub="Transformed x vs. x")
> plot(y, a$ty, sub="Transformed y vs. y")
> plot(a$tx, a$ty, sub="Transformed y vs.
+      Continue string: Transformed x")
> plot(a$tx, a$ty - a$tx, xlab="tx",
+ ylab="residuals", sub="Residuals vs. Fit")

These plots are displayed in figure 7.20, where the transformed values 

and  are denoted by ty and tx, respectively. The estimated

transformation tx =  seems close to exponential, and except for the small

bend at the lower left, the estimated transformation ty =  seems quite
linear. The linearity of the plot of ty versus tx reveals that a good additive
model of the type shown in equation (7.5) has been achieved. Furthermore,
the error variance appears to be relatively constant, except at the very lefthand

end. The plot of residuals,  versus the fit 

gives a clearer confirmation of the behavior of the residuals’ variance.

θ̂ y( )

φ̂ y( )

φ̂ x( )

θ̂ y( )

r i θ̂ yi( ) φ̂ xi( )–= tx φ̂ xi( )=
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7. Regression and Smoothing for Continuous Response Data
Figure 7.20:  ace example with additive errors
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More on Nonparametric Regression
Additive and 
Variance 
Stabilizing 
Transformation

The term “avas” stands for additivity and variance stabilizing
transformation. Like ace, avas tries to find transformations θ(y), φ1(x1),…,
φp(xp) such that

provides a good additive model approximation for the data yi, xi1,…, xip, i=1,

2,…,n. However, avas differs from ace in that it chooses θ(y) to achieve a
special variance stabilizing feature. In particular the goal of avas is to
estimate transformations θ, φ1,…, φp which have the properties

and

Here E[z|w] is the conditional expectation of z given w. The additivity
structure 7.9 is the same as for ace, and correspondingly the φi’s are

calculated by the backfitting algorithm

cycling through k = 1, 2,…, p until convergence. The variance stabilizing

aspect comes from equation (7.9). As in the case of ace, estimates  and

, k = 1, 2,…, p are computed to approximately satisfy equations 7.8

through 7.11, with the conditional expectations in 7.8 and 7.11 estimated
using the super smoother scatterplot smoother (see supsmu function
documentation). The equality 7.9 is approximately achieved by estimating
the classic stabilizing transformation.

To illustrate the use of avas, construct an artificial data set with additive
errors

(7.8)

(7.9)

(7.10)

(7.11)

θ y( ) φ1 x1( ) φ2 x2( ) … φp xp( ) ε+ + + +=

E θ y( ) x1 … xp, ,[ ] φ i xi( )
i 1=

p

∑=

var θ y( ) φi xi( )
i 1=

p

∑ constant=

φk xk( ) E θ y( ) φi xi( ) xk
i k≠
∑–=

θ̂ yi( )

φj xik( )
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7. Regression and Smoothing for Continuous Response Data
with the εi’s being N(0, 10) random variables (that is, normal random

variables with mean 0 and variance 10), independent of the xi’s, with the xi’s

being U(0, 2) random variables (that is, random variables uniformly
distributed on the interval from 0 to 2).

> set.seed(14) #set the seed to reproduce this example > x 
<- runif(200, 0, 2)
> e <- rnorm(200, 0, sqrt(10))
> y <- exp(1+2*x) + e

Now use avas:

> a <- avas(x, y)

Set graphics for a 3 × 2 layout of plots:

> par(mfrow=c(3,2))

Make plots to: (1) examine original data; (2) examine transformation of x;
(3) examine transformation of y; (4) check linearity of the fitted model;
(5) check residuals versus the fit:

> plot(x, y, sub="Original data")
> plot(x, a$tx, sub="Transformed x vs. x")
> plot(y, a$ty, sub="Transformed y vs. y")
> plot(a$tx, a$ty, sub="Transformed y vs. Transformed x")
> plot(a$tx, a$ty - a$tx, ylab="Residuals",
+ sub="Residuals vs. Fit")

These plots are displayed in figure 7.9 where the transformed values 

and  are denoted by ty and tx, respectively. The estimated

transformation tx =  seems close to exponential, and the estimated

transformation ty =  seems linear. The plot of ty versus tx reveals that a
linear additive model holds; that is, we have achieved a good additive
approximation of the type 7.8. In this plot the error variance appears to be

relatively constant. The plot of residuals, ri = , versus the fit tx

=  gives further confirmation of this.

yi e1 2xi+ ε i i  , i= 1, …, 200+=

θ̂ y( )

φ̂ x( )

φ̂ x( )

θ̂ y( )

θ̂ yi( ) φ̂ xi( )–

φ̂ xi( )
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More on Nonparametric Regression
Figure 7.21:  avas example with additive errors.
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7. Regression and Smoothing for Continuous Response Data
KEY PROPERTIES • Suppose that the true additive model is

with ε independent of x1, x2, ..., xp, and var(ε ) = constant. Then the

iterative avas algorithm for 7.9 – 7.11, described below for the data

versions of 7.9 – 7.11, yields a sequence of transformations ,

, ...,  which converge to the true transformation , ,

..., , as the number of iterations j tends to infinity.

Correspondingly, the data-based version of this iteration yields a

sequence of transformations  , , ..., , which, at

convergence, provide estimates , , ..., , of the true model

transformations  , , ..., .

• avas appears not to suffer from some of the anomalies of ace, e.g.,
not finding good estimates of a true additive model (equation 7.12)
when normality of ε and joint normality of φ1(x1), …, φp(xp) fail to

hold. See the example below.

• avas is a generalization of the Box and Cox (1964) maximum-
likelihood procedure for choosing power transformation yλ  of the
response. The function avas also generalizes the Box and Tidwell
(1962) procedure for choosing transformations of the carriers x1, x2,

..., xp, and is much more convenient than the Box-Tidwell

procedure. See also Weisberg (1985).

•  is a monotone transformation, since it is the integral of a
nonnegative function (see Further Details, below). This is important

if one wants to predict y by inverting : monotone transformations
are invertible, and hence we can predict y with

. This predictor has no particular optimality

(7.12)θ0
y( ) φ i

0
xi( )

i 1=

p

∑ ε+=

θ j( )

φ1
j( ) φp

j( ) θ0 φ1
0

φp
0

θ̂
j( )

φ̂1
j( )

φ̂p
j( )

θ̂ φ̂1 φ̂p

θ0 φ1
0 φp

0

θ̂ y( )

θ̂

ŷ θ̂G
1– φ̂i xi( )

i 1=

p

∑=
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More on Nonparametric Regression
property, but is simply one straightforward way to get a prediction of
y once an avas model has been fit.

FURTHER DETAILS Let

where  is an arbitrary transformation of y,  will be the “previous”
estimate of θ(y) in the overall iterative procedure described below. Given the
variance function v(u), it is known that 

will be constant if g is computed according to the rule

for an appropriate constant c. See Box and Cox (1964).

The detailed steps in the population version of the avas algorithm are as
follows:

1. Initialize:

Set  and backfit on x1, ..., xp to get

, ..., . (See description of ace for details of “backfitting”.)

2. Get new transformation of y :
a) Compute variance function

b) Compute variance stabilizing transformation

(7.13)

(7.14)

v u( ) VAR θ̂ y( ) φ i xi( ) u=
i 1=

p

∑=

θ̂ y( ) θ̂ y( )

VAR g θ̂ y( )( ) φi xi( ) u=
i 1=

p

∑

g t( )
ud

v
1 2⁄

u( )
-----------------

c

t

∫=

θ̂ y( ) y Ey–( ) VAR
1 2⁄

y( )⁄=

φ̂1 φ̂p

v u( ) VAR θ̂ y( ) φ̂ i xi( ) u=
i 1=

p

∑=

g t( )
ud

v
1 2⁄

u( )
-----------------

c

t

∫=
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7. Regression and Smoothing for Continuous Response Data
c) Set  and standardize

3. Get new ’s:

 Backfit  on x1, x2, …, xp to obtain new estimates , ...,

.

4. Iterate steps 2 and 3 until

doesn’t change.

Of course the above algorithm is actually carried out using the sample of data
yi, xi1, ..., xip, i = 1, ..., n, with expectations replaced by sample averages,
conditional expectations replaced by scatterplot smoothing techniques and
VAR’s replaced by sample variances.

In particular, super smoother is used in the backfitting step to obtain

, ..., , i = 1, ..., n. An estimate  of v(u) is obtained as

follows: First the scatter plot of  versus

 is smoothed using a running straight lines

smoother. Then the result is exponentiated. This gives an estimate ,

and  is truncated below at 10-10  to insure positivity and avoid dividing
by zero in the integral 7.14. The integration in equation 7.14 is carried out
using a trapezoidal rule.

(7.15)

θ̂ y( ) g θ̂ y( )( )–

θ̂ y( ) θ̂ y( ) Eθ̂ y( )–

VAR
1 2⁄ θ̂ y( )

--------------------------------–

φ̂ i

θ̂ y( ) φ̂1

φ̂p

R
2

1 ê
2

– 1 E θ̂ y( ) φ̂ i xi( )
i 1=

p

∑–

2

–= =

φ̂1 xi 1( ) φ̂p xip( ) v̂ u( )

logr i
2

log θ̂ yi( ) φ̂ j xi j( )
j 1=

p

∑–

2

=

ui φ̂j xi j( )
j 1=
p∑=

v̂ u( ) 0≥
v̂ u( )
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More on Nonparametric Regression
Projection 
Pursuit 
Regression

The basic idea behind projection pursuit regression, ppreg, is as follows. Let
y and x = (x1, x2, ..., xp)

T denote the response and explanatory vector,
respectively. Suppose you have observations yi and corresponding predictors
xi = (xi1, xi2, ..., xip)

T, i = 1, 2, ..., n. Let a1, a2 , ..., denote p-dimensional unit

vectors, as “direction” vectors, and let . The ppreg function

allows you to find M = M0, direction vectors a1, a2, ...,  and good

nonlinear transformations φ1, φ2, ...,  such that

provides a “good” model for the data yi, xi, i = 1, 2, ..., n . The “projection”
part of the term projection pursuit regression indicates that the carrier vector
x is projected onto the direction vectors a1, a2, ...,  to get the lengths aTx,

i = 1, ..., n of the projections, and the “pursuit” part indicates that an
optimization technique is used to find “good” direction vectors a1, a2, ...,

.

More formally, y and x are presumed to satisfy the conditional expectation
model

where µy = E(y), and the φm have been standardized to have mean zero and
unity variance:

The observations yi, xi = (xi1, ..., xip)
T, i = 1, ..., n , are assumed to be

independent and identically distributed random variables like y and x, i.e.,
they satisfy the model in equation 7.17.

(7.16)

(7.17)

y
1
n
--- yi

i 1=

n

∑=

aM0

φM0

y y βmφm am
T x( )

m 1=

M0

∑+≈

aM0

aM0

E y x1, x2, ..., xp[ ] µy βmφm am
T x( )

m 1=

M0

∑+=

        m  = 1, ..., M0. (7.18)Eφm am
T x( ) 0,= Eφm

2
am

T x( ) 1,=
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7. Regression and Smoothing for Continuous Response Data
The true model parameters βm, φm, am, m = 1, ..., M0 in equation 7.17
minimize the mean squared error

over all possible βm, φm, and am.

Equation 7.17 includes the additive ace models under the restriction θ(y) =
y. This occurs when M0 = p and a1 = (1, 0, ..., 0)T, a2 = (0, 1, 0, ..., 0)T, ap = (0,
0, ..., 0, 1)T, and the βm’s are absorbed into the φm’s. Furthermore, the ordinary
linear model is obtained when M0 = 1, assuming the predictors x are
independent with mean 0 and variance 1. Then

, φ1(t) = t, and ,

where the bj are the regression coefficients.

The projection pursuit model in equation 7.17 includes the possibility of
having interactions between the explanatory variables. For example, suppose
that

This is described by 7.17 with µy = 0, M0 = 2, , ,

, φ1(t) = t2, and φ2(t) = -t2. For then

so that

.

Neither ace nor avas is able to model interactions. It is this ability to pick
up interactions that led to the invention of projection pursuit regression by
Friedman and Stuetzle (1981), and it is what makes ppreg a useful
complement to ace and avas.

(7.19)

E[y|x1, x2] = x1x2. (7.20)

E y µy– βmφm am
T x( )

m 1=

M0

∑–

2

aT b1, ..., bp( ) b1
2
 + … + bp

2⁄= β1 b1
2
 + …  + bp

2
=

β1 β2
1
4
---= = a1

T 1 1,( )=

a2
T 1 1–,( )=

φ1 a1
Tx( ) x1 x2+( )2

x1
2

2x1x2 x2
2

+ += =

φ2 a2
Tx( ) x1 x2–( )2

– x– 1
2

2x1x2 x2
2

–+= =

βmφm aTx( )
m 1=

2

∑ x1x2=
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More on Nonparametric Regression
The two variable interactions shown above can be used to illustrate the
ppreg function. The two predictors, x1 and x2 are generated as uniform
random variates on the interval - 1 to 1. The response, y, is the product of x1

and x2 plus a normal error with mean zero and variance 0.04.

> set.seed(14)  #set the seed to reproduce this example
> x1 <- runif(400, -1, 1)
> x2 <- runif(400, -1, 1)
> eps <- rnorm(400, 0, .2)
> y <- x1*x2+eps
> x <- cbind(x1, x2)

Now run the projection pursuit regression with max.term set at 3,
min.term set at 2 and with the residuals returned in the ypred component
(the default if xpred is omitted).

> p <- ppreg(x, y, 2, 3)

Make plots (shown in figure 7.22) to examine the results of the regression.

> par(mfrow=c(3, 2))
> plot(x1, y, sub="Y vs X1")
> plot(x2, y, sub="Y vs X2")
> plot(p$z[,1], p$zhat[,1], sub="1st Term:
Continue string: Smooth vs Projection Values z1")
> plot(p$z[,2], p$zhat[,2], sub="2nd Term:
Continue string: Smooth vs Projection Values z2")
> plot(y-p$ypred, y, sub="Response vs Fit")
> plot(y-p$ypred, p$ypred, sub="Residuals vs Fit")

The first two plots show the response plotted against each of the predictors. It
is difficult to hypothesize a function form for the relationship when looking
at these plots. The next two plots show the resulting smooth functions from
the regression plotted against their respective projection of the carrier
variables. Both the plots have a quadratic shape with one being positive and
the other negative, the expected result for this type of interaction function.
The fifth plot shows clearly a linear relationship between the response and
the fitted values. The residuals shown in the last plot do not display any
unusual structure.
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7. Regression and Smoothing for Continuous Response Data
FURTHER DETAILS

The Forward 
Stepwise 
Procedure

An initial M-term model of the form given by the right-hand side of
equation 7.17, with the constraints of equation 7.18 and M > M0, is
estimated by a forward stepwise procedure, as described by Friedman and
Stuetzle (1981).

Figure 7.22:  Projection pursuit example.
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More on Nonparametric Regression
First, a trial direction a1 is used to compute the values , i = 1, ...,

n, where xi = (xi1, ..., xip)
T. Then, with , you have available a

scatter plot of data , i = 1, ..., n, which may be smoothed to obtain

an estimate  of the conditional expectation E[y|z1] = E[yi|zi1] for the

identically distributed random variables yi, . Super Smoother is

used for this purpose; see documentation for supsmu. This  depends

upon the trial direction vector a1, so we write . Now a1 is varied

to minimize the weighted sum of squares,

where for each a1 in the optimization procedure, a new  is computed

using super smoother. The weights wi are user-specified, with the default

being all weights unitary: . The final results of this optimization will

be denoted simply  and , where  has been standardized according to

equation 7.18 and the corresponding value  is computed. We now have
the approximation

 i = 1, ..., n.

Next we treat  as the response, where now

, and fit a second term , where , to this

modified response, in exactly the same manner that we fitted  to

. This gives the approximation

or

(7.21)

zi1 a1
Tx i=

ỹi
1

yi y–=

ỹi zi 1,( )

φ̂1 zi1( )

zi 1 a1
Tx i=

φ̂1

φ1 φ1 a1,=

wi yi φ̂1 a1, zi 1( )–[ ]
2

i 1=

n

∑

φ̂1 a1,

wi 1≡

â1 φˆ 1 φˆ 1

β̂1

yi y β̂1φ̂1 â1
T
xi( )+≈

yi
2( )

yi y β̂1φ̂1 zi1( )––=

zi 1 â1
T
x i= β̂2φ̂2 zi 2( ) zi 2 â2

T
x i=

β̂1φ̂1 â1
T
x i( )

y i
1( )

yi
2( ) β̂2φ̂2 zi 2( )≈

yi y β̂1φ̂1 zi 1( ) β̂2φ̂2 zi 2( )+ +≈
187



7. Regression and Smoothing for Continuous Response Data
Continuing in this fashion we arrive at the forward stepwise estimated model

where , m = 1, ..., M.

The Backward 
Stepwise 
Procedure

Having fit the M term model in equation 7.22 in a forward stepwise manner,
ppreg fits all models of decreasing order m = M - 1, M - 2, ..., Mmin, where M
and Mmin are user-specified. For each term in the model, the weighted sum of
squared residuals

is minimized through the choice of βl, al, φl, l = 1, ..., m. The initial values for
these parameters, used by the optimization algorithm which minimizes
equation 7.23, are the solution values for the m most important out of m + 1
terms in the previous order m + 1 model. Here importance is measured by

where  are the optimal coefficients for the m + 1 term model, m = M-1,
M-2, …, Mmin.

Model Selection 
Strategy

In order to determine a “good" number of terms M0 for the ppreg model,
proceed as follows. First, run ppreg with Mmin = 1 and M set at a value large
enough for the data analysis problem at hand. For a relatively small number
of variables p, say , you might well choose . For large p, you
would probably choose M < p , hoping for a parsimonious representation.

For each order m, , ppreg will evaluate the fraction of
unexplained variance

, i = 1, ..., n . (7.22)yi y β̂mφ̂m zim( )
m 1=

M

∑+≈

zim âm
T

x i=

(7.23)

    l = 1, ..., m + 1 (7.24)
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More on Nonparametric Regression
A plot of e2(m) versus m which is decreasing in m may suggest a good choice
of m = M0. Often e2(m) will decrease relatively rapidly when m is smaller than
a good model order M0 (as the (bias)2 component of prediction mean-
squared error is decreasing rapidly), and then tend to flatten out and decrease
more slowly for m larger than M0. You can choose M0 with this in mind.

The current version of ppreg has the feature that when fitting models having

m = Mmin, Mmin + 1, ..., M terms, all of the values , , ,

, i = 1, ..., n , l = 1, ..., m , and e2(m) are returned for m = Mmin,

whereas all of these except the smoothed values  and their

corresponding arguments zil are returned for all m = Mmin, ..., M. This feature
conserves storage requirements. As a consequence, you must run ppreg
twice for m = Mmin, ..., M, using two different values of Mmin: The first time
Mmin = 1 is used in order to examine e2(m), m = 1, ..., M (among other things)
and choose a good order M0. The second time Mmin = M0 is used in order

obtain all output, including  and zil values.

Multivariate 
Response

All of the preceding discussion has been concentrated on the case of a single
response y, with observed values y1, ..., yn. In fact, ppreg is designed to handle
multivariate responses y1, ..., yq with observed values yij, i = 1, ..., n, j = 1, ..., q

e
2
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7. Regression and Smoothing for Continuous Response Data
. For this case, ppreg allows you to fit a good model

by minimizing the multivariate response weighted sum of squared residuals

and choosing a good value m = M0.

Here the Wj are user-specified response weights (with default ), the wi

are user-specified observation weights (with default ), and

. Note that a single set of ’s is used for all responses yij, j

= 1, ..., q, whereas the different behavior of the different responses is modeled

by different linear combinations of the ’s by virtue of the different sets of

coefficients , j = 1, ..., q.

The ppreg procedure for the multivariate response case is similar to the
single response case. For given values of Mmin and M, ppreg first does a
forward stepwise fitting starting with a single term (m = 1), and ending up
with M terms, followed by a backward stepwise procedure stopping with an
Mmin-term model. When passing from an m + 1 term model to an m-term
model in the multivariate response case, the relative importance of a term is
given by

    l = 1, ..., m + 1

The most important terms are the ones with the largest Il, and the

corresponding values of , , and  are used as initial conditions in the

minimization of SSRq(m) . Good model selection; that is, a good choice m =

(7.25)

(7.26)

yj yj β̂mjφ̂m âm
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M0, can be made just as in the case of a single response, namely, through
examination of the multivariate response fraction of unexplained variation

by first using ppreg with Mmin = 1 and a suitably large M. Then ppreg is run
again with Mmin = M0 and the same large M. 
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GENERALIZING THE LINEAR MODEL 8
The use of least squares estimation of regression coefficients for linear models
dates back to the early nineteenth century. It met with immediate success as a
simple way of mathematically summarizing relationships between observed
variables of real phenomena. It quickly became and remains one of the most
widely used statistical methods of practicing statisticians and scientific
researchers.
Because of the simplicity, elegance, and widespread use of the linear model,
researchers and practicing statisticians have tried to adapt its methodology to
different data configurations. For example, there is no reason conceptually
why a categorical response or some transformation of it could not be related
to a set of predictor variables in a similar way to the continuous response of
the linear model. Although conceptually plausible, developing regression
models for categorical responses lacked solid theoretical foundation until the
introduction of the generalized linear model by Nelder and Wedderburn
(1972). 

This chapter focuses on generalized linear models and their generalization,
generalized additive models, as they apply to categorical responses. In
particular, we focus on logistic and Poisson regressions and also include a
brief discussion of the fitting of models when you can’t specify an exact
likelihood, using the quasi-likelihood method.

8.1 LOGISTIC REGRESSION
To fit a logistic regression model, use either the glm  function or the gam
function with a formula to specify the model and the family argument set
to binomial. In this case the response variable is necessarily binary or two-
valued. As an example, consider the built-in data frame kyphosis. A
summary of the data frame produces the following: 

> attach(kyphosis) 
> summary(kyphosis) 
 
  Kyphosis         Age            Number         Start 
absent :64     Min. : 1.00     Min. : 2.000    Min. : 1.00 
present:17   1st Qu.: 26.00  1st Qu.: 3.000  1st Qu.: 9.00
             Median : 87.00  Median : 4.000  Median :13.00 
             Mean   : 83.65    Mean : 4.049    Mean :11.49 
             3rd Qu.:130.00  3rd Qu.: 5.000  3rd Qu.:16.00 
             Max.   :206.00    Max. :10.000    Max. :18.00
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8. Generalizing the Linear Model
The four variables in kyphosis are defined as follows:

Kyphosis A binary variable indicating the presence/absence of a
postoperative spinal deformity called Kyphosis.

Age The age of the child in months.

Number The number of vertebrae involved in the spinal operation.

Start The beginning of the range of the vertebrae involved in the
operation.

A convenient way of examining the bivariate relationship between each
predictor and the binary response, Kyphosis, is with a set of boxplots
produced by plot.factor:

> par(mfrow=c(1,3), cex = .7) 
> plot.factor(kyphosis)

Setting the mfrow parameter to c(1,3) produces three plots in a row. The

character expansion is set to 0.7 times the normal size using the cex
parameter of the par function. Figure 8.1 displays the result.
Both Start and Number show strong location shifts with respect to the
presence or absence of Kyphosis. Age does not show such a shift in
location.

Fitting a 
Linear Model

The logistic model we start with relates the probability of developing
Kyphosis to the three predictor variables, Age, Number and Start. We fit
the model using glm  as follows:

> kyph.glm.all <- glm(Kyphosis ~ Age + Number + Start, 
+ family = binomial, data = kyphosis)

Figure 8.1:  Boxplots of the predictors of kyphosis versus Kyphosis.
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Logistic Regression
The summary function produces a summary of the resulting fit:  

> summary(kyph.glm.all) 
Call: glm(formula = Kyphosis ~ Age + Number + Start, 
family = binomial, data = kyphosis) 
Deviance Residuals: 
      Min         1Q     Median         3Q     Max 
-2.312363 -0.5484308 -0.3631876 -0.1658653 2.16133 

Coefficients: 
                  Value Std. Error   t value 
(Intercept) -2.03693225 1.44918287 -1.405573 
Age          0.01093048 0.00644419  1.696175 
Number       0.41060098 0.22478659  1.826626 
Start       -0.20651000 0.06768504 -3.051043 

(Dispersion Parameter for Binomial family taken to be 1 ) 

    Null Deviance: 83.23447 on 80 degrees of freedom 

Residual Deviance: 61.37993 on 77 degrees of freedom 

Number of Fisher Scoring Iterations: 5 

Correlation of Coefficients: 
       (Intercept)        Age     Number 
   Age -0.4633715 
Number -0.8480574   0.2321004 
 Start -0.3784028  -0.2849547  0.1107516

The summary includes:

1. a replica of the call that generated the fit,

2. a summary of the deviance residuals (more on these later),

3. a table of estimated regression coefficients, their standard errors, and
the partial t-test of their significance,

4. estimates of the null and residual deviances (more on these later),
and

5. a correlation matrix of the coefficient estimates.

The partial t-tests indicate that Start is important even after adjusting for
Age and Number, but they provide little information on the other two
variables.
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8. Generalizing the Linear Model
You can produce an analysis of deviance for the sequential addition of each
variable by using the anova function, specifying the chi-square test to test for
differences between models:

> anova(kyph.glm.all, test = "Chi") 
Analysis of Deviance Table 

Binomial model 

Response: Kyphosis 

Terms added sequentially (first to last)  
       Df Deviance Resid. Df Resid. Dev   Pr(Chi) 
  NULL                    80   83.23447 
   Age  1  1.30198        79   81.93249 0.2538510 
Number  1 10.30593        78   71.62656 0.0013260 
Start   1 10.24663        77   61.37993 0.0013693

Here we see that Number is important after adjusting for Age. We already
know that Number loses its importance after adjusting for Age and Start.
Age does not appear to be important as a linear predictor.

You can examine the bivariate relationships between the probability of
Kyphosis and each of the predictors by fitting a “null” mode and then adding
each of the terms, one at a time: 

> kyph.glm.null <- glm(Kyphosis ~ 1, family = binomial, 
+ data = kyphosis) 
> add1(kyph.glm.null, ~ . + Age + Number + Start) 
Single term additions 

Model: Kyphosis ~ 1 
              Df Sum of Sq      RSS       Cp 
<none>                     81.00000 83.02500 
Age            1   1.29546 79.70454 83.75454 
Number         1  10.55222 70.44778 74.49778 
Start          1  16.10805 64.89195 68.94195

The Cp statistic is used to compare models that are not nested. A small Cp
corresponds to a better model in the sense of smaller residual deviance
penalized by the number of parameters that are estimated in fitting the
model.

Clearly Start is the best single variable to use in a linear model. These
statistical conclusions, however, should be verified by looking at graphical
displays of the fitted values and residuals.
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Logistic Regression
The plot method for generalized linear models produces four plots:

1. a plot of deviance residuals versus the fitted values.

2. a plot of the square root of the absolute deviance residuals versus the
linear predictor values.

3. a plot of the response versus the fitted values.

4. a Normal quantile plot of the Pearson residuals.

This set of plots is similar to those produced by the plot method for lm
objects.

Systematic curvature in the residual plots could be indicative of problems in
the choice of link, wrong scale of one of the predictors, or omission of a
quadratic term in a predictor. Large residuals can be also be detected with
these plots. These may be indicative of the need to remove the corresponding
observations and re-fit the model. The plot of the absolute residuals against
predicted values gives a visual check on the adequacy of the assumed variance
function.

The Normal quantile plot is also generated for glm objects. This plot could
be useful in the detection of extreme observations deviating from a general
trend but one should exercise caution in not over-interpreting its shape,
which is not necessarily of interest in the nonlinear context.

Figure 8.2 results from simply plotting the fit. Residual plots are not useful
for binary data, such as Kyphosis, because all of the points line on one of
two curves depending on whether the response is 0 or 1.

> par(mfrow=c(2,2)) 
> plot(kyph.glm.all, ask=F)

A more useful diagnostic plot is produced by plot.gam. By default,
plot.gam plots the estimated relationship between the individual fitted
terms and each of the corresponding predictors. You can request that partial
residuals be added to the plot by specifying the argument resid=T. The scale
argument can be used to keep all of the plots on the same scale to ease
comparison. Figure 8.3  is produced by plot.gam:

> par(mfrow=c(1,3)) 
> plot.gam(kyph.glm.all, resid = T, scale = 6)

These plots give a quick assessment of how well the model fits the data
through examination of the fit of each term in the formula. The plots are of
the adjusted relationship for each predictor versus each predictor. When the
relationship is specified as linear the label on the vertical axis reduces to the
variable name. We will see the utility of this plot method and the reason for
the labels when we plot additive models produced by gam.
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8. Generalizing the Linear Model
Both plot.glm (the underlying plotting method for generalized linear
models) and plot.gam produce multiple plots; you can, however, choose

Figure 8.2:  Plots of the generalized linear model of Kyphosis
predicted by Age, Start, and Number.

Figure 8.3:  Additional plots of the generalized linear model of
Kyphosis predicted by Age, Number, and Start.
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Logistic Regression
which plots you look at by using the argument ask=T (the default). This
produces a menu of available plots; you then select the number of the desired
plot. For example, here is the menu of default GLM plots for the function
kyph.glm.all:

> plot(kyph.glm.all, ask=T) 

Make a plot selection (or 0 to exit): 

1: plot: All 
2: plot: Residuals vs Fitted Values 
3: plot: Sqrt of abs(Residuals) vs Predictions 
4: plot: Response vs Fitted Values 
5: plot: Normal QQplot of Std. Residuals 
Selection:

Fitting an 
Additive Model

So far we have examined only linear relationships between the predictors and
the probability of developing Kyphosis. We can assess the validity of the
linear assumption by fitting an additive model with relationships estimated
by smoothing operations (cubic splines or local regression) and comparing it
to the linear fit. We use the gam  function to fit additive models.

> kyph.gam.all <- 
+ gam(Kyphosis ~ s(Age) + s(Number) + s(Start), 
+ family = binomial, data = kyphosis)

Including each variable as an argument to the s function instructs gam to
estimate the “smoothed” relationships with each predictor by using cubic B-
splines. Alternatively we could have used the lo  function for local regression
smoothing (loess). A summary of the fit is:

> summary(kyph.gam.all) 

Call: gam(formula = Kyphosis ~ s(Age) +s(Number)+ s(Start),
family = binomial, data = kyphosis) 
Deviance Residuals: 
Min 1Q Median 3Q Max 
-1.351358 -0.4439636 -0.1666238 -0.01061843 2.10851 

(Dispersion Parameter for Binomial family taken to be 1 )

    Null Deviance: 83.23447 on 80 degrees of freedom 

Residual Deviance: 40.75732 on 68.1913 degrees of freedom 
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8. Generalizing the Linear Model
Number of Local Scoring Iterations: 7 

DF for Terms and Chi-squares for Nonparametric Effects 

            Df Npar Df Npar Chisq    P(Chi) 
(Intercept)  1 
     s(Age)  1     2.9   5.782245 0.1161106 
  s(Number)  1     3.0   5.649706 0.1289318 
   s(Start)  1     2.9   5.802950 0.1139286

The summary of a gam fit is similar to the summary of a glm fit. One
noticeable difference is the analysis of deviance table. For the additive fit the
tests correspond to approximate partial tests for the importance of the smooth
for each term in the model. These tests are typically used for screening
variables for inclusion in the model. The approximate nature of these tests is
discussed in detail in Hastie and Tibshirani (1990). For a single variable in
the model, this is equivalent to testing for a difference between a linear fit
and a smooth fit which includes a linear term along with the smooth term.

Now let’s fit two additional models, adding a smooth of each of Age and
Number to the base model which has a smooth of Start.

> kyph.gam.start.age <- 
+       gam(Kyphosis ~ s(Start) + s(Age), 
+       family = binomial, data = kyphosis) 
> kyph.gam.start.number <- 
+       gam(Kyphosis ~ s(Start) + s(Number), 
+       family = binomial, data = kyphosis)

We produce the following analysis of deviance tables:

> anova(kyph.gam.start, kyph.gam.start.age, test="Chi")
Analysis of Deviance Table 

Response: Kyphosis 

              Terms Resid. Df Resid. Dev 
1          s(Start)  76.24543   59.11262 
2 s(Start) + s(Age)  72.09458   48.41713 
     Test        Df  Deviance   Pr(Chi) 
1 
2 +s(Age)  4.150842  10.69548  0.0336071 
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Logistic Regression
> anova(kyph.gam.start, kyph.gam.start.number,
+ test="Chi") 
Analysis of Deviance Table 

Response: Kyphosis 

               Terms Res.Df Res.Dev 
1           s(Start) 76.245 59.1126 
2 s(Start)+s(Number) 72.180 54.1790 
        Test       Df Deviance   Pr(Chi) 
1 
2 +s(Number) 4.064954 4.933668 0.3023856

The indication is that Age is important in the model even with Start
included whereas Number isn’t important under the same conditions.

You can plot the fit with a smooth on Age and Start adding partial residuals
while maintaining all figures on the same scale as follows:

> par(mfrow = c(2,2)) 
> plot(kyph.gam.start.age, resid = T, scale = 8)

Or you can simply plot the fit adding pointwise confidence intervals for the
fit.

> plot(kyph.gam.start.age, se = T, scale = 10)

Figure 8.4 displays the resulting plots produced by plot.gam. Notice the
vertical axes labels now. They reflect the smoothing operation included in the
modeling.

The summary of the additive fit with smooths of Age and Start included
appears as follows:

> summary(kyph.gam.start.age) 

Call: gam(formula = Kyphosis ~ s(Start) + s(Age), 
family = binomial, data = kyphosis) 
Deviance Residuals: 
       Min         1Q     Median          3Q      Max 
 -1.694389 -0.4212112 -0.1930565 -0.02753535 2.087434 

(Dispersion Parameter for Binomial family taken to be 1 )

    Null Deviance: 83.23447 on 80 degrees of freedom 

Residual Deviance: 48.41713 on 72.09458 degrees of freedom
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8. Generalizing the Linear Model
Number of Local Scoring Iterations: 6 

DF for Terms and Chi-squares for Nonparametric Effects 
            Df Npar Df Npar Chisq    P(Chi) 
(Intercept)  1 
   s(Start)  1     2.9   7.729677 0.0497712 
     s(Age)  1     3.0   6.100143 0.1039656

Figure 8.4:  The partial fits for the generalized additive logistic regression
model of Kyphosis with Age and Start as predictors.
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Logistic Regression
Returning to 
the Linear 
Model

The plots of the fits of the additive model displayed in figure 8.4 suggest a
quadratic relationship for Age and a piecewise linear relationship for Start.
It is useful to fit these suggested relationships as a linear model if the model is
further simplified without losing too much precision in predicting the
response.

For Age we fit a second degree polynomial. For Start, recall that its values
indicate the beginning of the range of the vertebrae involved in the
operation. Values less than or equal to 12 correspond to the thoracic region of
the spine and values greater than 12 correspond to the lumbar region. Since
the relationship for Start is fairly flat for values of Start approximately less
than or equal to 12, and then drops off linearly for values greater than 12, we
will try fitting a linear model with the term I((Start - 12) * (Start >
12)). The I function is used here to prevent the "*" from being used for
factor expansion in the formula sense.

Figure 8.5 displays the resulting fit along with the partial residuals as well as
the fit along with two standard errors bands.

The summary of the fit follows:
> summary(kyph.glm.istart.age2) 

Call: glm(formula = Kyphosis ~ poly(Age, 2) + 
   I((Start - 12) * (Start > 12)), family = binomial, 
   data = kyphosis)

Deviance Residuals: 
     Min         1Q     Median          3Q      Max 
-1.42301 -0.5014355 -0.1328078 -0.01416602 2.116452 
Coefficients: 
                               Value Std. Error   t value 
             (Intercept)  -0.6849607  0.4570976 -1.498500 
           poly(Age, 2)1   5.7719269  4.1315471  1.397038 
           poly(Age, 2)2 -10.3247767  4.9540479 -2.084109 
I((Start-12)*(Start>12))  -1.3510122  0.5072018 -2.663658 

(Dispersion Parameter for Binomial family taken to be 1 ) 

    Null Deviance: 83.23447 on 80 degrees of freedom 

Residual Deviance: 51.95327 on 77 degrees of freedom 

Number of Fisher Scoring Iterations: 6 
205



8. Generalizing the Linear Model
Correlation of Coefficients: 
                        (Intercept) poly(Age,2)1 poly(Age,2)2
           poly(Age, 2)1 -0.1133772 
           poly(Age, 2)2  0.5625194  0.0130579 
I((Start-12)*(Start>12)) -0.3261937 -0.1507199 -0.0325155

Figure 8.5:  The partial fits for the generalized linear logistic regression
model of Kyphosis with quadratic fit for Age and piecewise linear fit
for Start.
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Poisson Regression
Contrasting the summary of this linear fit (kyph.glm.istart.age2) with
the additive fit with smooths of Age and Start (kyph.gam.start.age)
we can see the following important details:

1. The linear fit is more parsimonious; the effective number of
parameters being estimated is approximately 5 less than for the
additive model with smooths.

2. The residual deviance has increased by only about 3.5 even with a
decrease in the effective number of parameters in fitting the linear
model by about five. We use the anova function to verify that there
is no difference between these models.

> anova(kyph.glm.istart.age2, kyph.gam.start.age, 
+         test="Chi")

Analysis of Deviance Table 

Response: Kyphosis 
 
                                 Terms  Res. Df Res. Dev 
1 poly(Age,2)+I((Start-12)*(Start>12)) 77.00000 51.95327 
2                    s(Start) + s(Age) 72.09458 48.41713 

     Test       Df Deviance   Pr(Chi) 
1 
2 1 vs. 2 4.905415 3.536134 0.6050618

3. Having fit a linear model, we can produce an analytical expression
for the model, which we can’t do for an additive model with smooth
fits. This is because for a linear model, coefficients are estimated for
a parametric relationship whereas for an additive model with smooth
fits, the smooths are nonparametric estimates of the relationship. In
general, these nonparametric estimates have no analytical form and
are based on an iterative computer algorithm. This is an important
distinction between linear models and additive models with smooth
terms.

8.2 POISSON REGRESSION
To fit a Poisson regression model use either the glm function or the gam
function with a formula to specify the model and the family argument set
to poisson. In this case the response variable is discrete taking on non-
negative integer values. Count data is frequently modeled as a Poisson
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8. Generalizing the Linear Model
distribution. As an example, consider the built-in data frame
solder.balance. A summary of the data frame produces the following:

> attach(solder.balance) 
> summary(solder.balance)  
Opening    Solder    Mask   PadType  Panel        skips 
S:240   Thin :360 A1.5:180  L9 : 72  1:240  Min.   : 0.000 
M:240   Thick:360 A3  :180  W9 : 72  2:240  1st Qu.: 0.000 
L:240             B3  :180  L8 : 72  3:240  Median : 2.000 
                  B6  :180  L7 : 72           Mean : 4.965 
                            D7 : 72         3rd Qu.: 6.000 
                            L6 : 72           Max. :48.000 
                        (Other):288

The solder experiment, contained in solder.balance, was designed and
implemented in one of AT&T’s factories to investigate alternatives in the
“wave-soldering” procedure for mounting electronic components on circuit
boards. Five different factors were considered as having an effect on the
number of solder skips. A brief description of each of the factors follows. For
more details, see the paper by Comizzoli, Landwehr, and Sinclair (1990).

Opening amount of clearance around the mounting pad

Solder amount of solder

Mask type and thickness of the material used for the solder mask

PadType the geometry and size of the mounting pad

Panel each board was divided into three panels, with three runs on a
board

skips number of visible solder skips on a circuit board.

Two useful preliminary plots of the data are a histogram of skips, the
response, and plots of the mean response for each level of the predictor.
Figure 8.6 and figure 8.7 display the resulting plots.

> par(mfrow=c(1,1)) 
> hist(skips) 
> plot(solder.balance)

The histogram of skips in figure 8.6 shows the skewness and long-tailedness
typical of count data. We will model this using a Poisson distribution.

The plot of the mean skips for different levels of the factors displayed in
figure 8.7 shows a very strong effect due to Opening. For levels M and L only
about two skips were seen on average, whereas for level S, more then 10 skips
were seen. Effects almost as strong were seen for different levels of Mask.

If we do boxplots of skips for each level of the two factors, Opening and
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Poisson Regression
Figure 8.6:  A histogram of skips for solder data.

Figure 8.7:  A plot of the mean response for each level of each factor.
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8. Generalizing the Linear Model
Mask, we get an idea of the distribution of the data across levels of the
factors. Figure 8.8 displays the results of doing “factor” plots on these two
factors.

> par(mfrow=c(1,2)) 
> plot.factor(skips ~ Opening + Mask)

On examining figure 8.8, it is clear that the variance of skips increases as its
mean increases. This is typical of Poisson distributed data.

We proceed now to model skips, using glm, as a function of the controlled
factors in the experiment declaring family = poisson. We start with a
simple-effects model for skips as follows:

> paov <- glm(skips ~ . , family = poisson, 
+             data = solder.balance) 
> anova(paov, test = "Chi") 
Analysis of Deviance Table 

Poisson model 

Response: skips 

Terms added sequentially (first to last) 
        Df Deviance Resid. Df Resid. Dev      Pr(Chi) 
   NULL                   719   6855.690 
Opening  2 2524.562       717   4331.128 0.000000e+00 

Figure 8.8:  Boxplots for each level of the two factors Opening and Mask.
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Poisson Regression
 Solder  1  936.955       716   3394.173 0.000000e+00 
   Mask  3 1653.093       713   1741.080 0.000000e+00 
PadType  9  542.463       704   1198.617 0.000000e+00 
  Panel  2   68.137       702   1130.480 1.554312e-15

The chi-squared test is requested in this case because glm assumes φ = 1 (no
under- or over-dispersion). We use the quasi-likelihood family, quasi, when
we want to estimate the scale parameter as part of the model fitting
computations for binomial or Poisson families. We could also set the
argument disp in the summary function to 0 to obtain this estimate while
summarizing the fitted model.

According to the analysis of deviance, it appears that all of the factors
considered have a very significant influence on the number of solder skips.
The solder experiment contained in solder.balance is balanced, so we
need not be concerned with the sequential nature of the analysis of deviance
table above; the tests of a sequential analysis are identical to the partial tests of
a regression analysis when the experiment is balanced.

Now let’s fit a second order model. We fit all the simple effects and all the
second order terms except those including Panel (we have looked ahead and
discovered that the interactions with Panel are non-significant, marginal, or
of less importance than the other interactions). The analysis of deviance table
follows:

> paov2 <- glm(skips ~ . + 
+          (Opening + Solder + Mask + PadType)  2, 
+               family = poisson, data = solder.balance) 
> anova(paov2, test = "Chi") 
Analysis of Deviance Table 

Poisson model 

Response: skips 

Terms added sequentially (first to last) 
                Df Deviance Res.Df Resid. Dev      Pr(Chi) 
           NULL                719   6855.690 
        Opening  2 2524.562    717   4331.128 0.0000000000 
         Solder  1  936.955    716   3394.173 0.0000000000 
           Mask  3 1653.093    713   1741.080 0.0000000000 
        PadType  9  542.463    704   1198.617 0.0000000000 
          Panel  2  68.137     702   1130.480 0.0000000000 
 Opening:Solder  2  27.978     700   1102.502 0.0000008409 
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8. Generalizing the Linear Model
   Opening:Mask  6  70.984     694   1031.519 0.0000000000 
Opening:PadType 18  47.419     676    984.100 0.0001836068 
    Solder:Mask  3  59.806     673    924.294 0.0000000000 
 Solder:PadType  9  43.431     664    880.863 0.0000017967 
   Mask:PadType 27  61.457     637    819.407 0.0001694012

All of the interactions estimated in paov2 are quite significant.

To verify the fit we do several different kinds of plots. The first four result
from doing the standard plot for a "glm" object.

> par(mfrow=c(2,2)) 
> plot(paov2)

The resulting plot is displayed in figure 8.9. The plot of the observations

versus the fitted values shows no great departures from the model. The plot
of the absolute deviance residuals shows striations due to the discrete nature
of the data. Otherwise the deviance residual plot doesn’t reveal anything to
make us uneasy about the fit.

The other set of plots useful for examining the fit is produced by plot.gam.
These are plots of the adjusted fit with partial residuals overlaid for each
predictor variable. Since all the variables are factors, the resulting fit is a step
function; a constant is fitted for each level of a factor. Figure 8.10  displays
the resulting plots.

Figure 8.9:  Plots of the second order model of skips.
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Generalized Linear Models
> par(mfrow=c(2,3)) 
> plot.gam(paov2, resid = T)

The plot.gam function adds a bit of random noise to the coded factor levels
to spread the plotted points out so that it is easier to see their vertical
locations. (Note: the warning message about interaction terms not being
saved can be safely ignored here.)

These plots also indicate that the data is modeled reasonably well. Please
note, however, that the default plots will show only glaring lack of fit.

8.3 GENERALIZED LINEAR MODELS
The linear model discussed in chapter 7, Regression and Smoothing for
Continuous Response Data, is a special case of the generalized linear model.
A linear model provides a way of estimating the response variable, Y,

Figure 8.10:  Partial residual plots of the second order model of skips.
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8. Generalizing the Linear Model
conditional on a linear function of the values, x1, x2, ..., xp, of some set of
predictors variables, X1, X2, ..., Xp. Mathematically, we write this as:

For the linear model the variance of Y is assumed constant and denoted by
var(Y)=σ2.

A generalized linear model provides a way to estimate a function (called the
link function) of the mean response as a linear function of the values of some
set of predictors. This is written as:

where g is the link function. The linear function of the predictors, η(x), is
called the linear predictor. For the generalized linear model, the variance of Y
may be a function of the mean response µ:

The logistic regression and Poisson regression examples we have seen are
special cases of the generalized linear model. To do a logistic regression we
declare the binomial family which uses the logit link function defined by

and variance function defined by

where p is the probability of an event occurring. The parameter p
corresponds to the mean response of a binary (0-1) variable. In logistic
regression, we model the probability of some event occurring as a linear
function of a set of predictors. Usually, for the logistic regression problem φ is
fixed to be 1 (one).

(8.1)

(8.2)

E Y x( ) β0 β i xi

i 1=

p

∑+=

g E Y x( )( ) g µ( )= β0 βixi
i 1=

p

∑+ η x( )= =

var Y( ) φ V µ( )=

g p( ) logit p( )
p

1 p–
------------log= =

var Y( ) φ p
1 p–
------------=
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Generalized Linear Models
When we cannot assume that φ = 1 (this is the case of over- or under-
dispersion discussed in McCullagh and Nelder (1989)), we must use the
quasi family for quasi-likelihood estimation. The quasi-likelihood “family”
allows us to estimate the parameters in the model without specifying what
the distribution function is. In this case the link and variance functions are all
that is used for fitting the model. Once these are known, the same iterative
procedure that is used for fitting the other families can be used to estimate
the model parameters. For more detail, see Chambers and Hastie (1992) and
McCullagh and Nelder (1989).

The Poisson regression example declares a poisson family with the log link
function

and the variance defined by

The binomial and Poisson families are for fitting regression models to
categorical response data. For the binomial case, the response is a binary
variable indicating whether or not some event has occurred. The most
common example of using the binomial family is the logistic regression
problem where we try to predict the probability of the event occurring as a
function of the predictors. Some examples of a binary response are presence/
absence of AIDS, presence/absence of a plant species in a vegetation sample,
failure/non-failure of a electronic component in a radio.

The Poisson family is useful for modeling counts which typically follow a
Poisson distribution. Our earlier example modeled the number of soldering
skips as a function of various controlled factors in the solder experiment.

Other families are available for modeling other kinds of data. For example
normal (the linear model special case) and inverse normal distributions are
modeled with the gaussian and inverse.gaussian families. Table 8.1
lists the distribution families available for use with either the glm or the gam
function. 

Each of these families represents an exponential family of distributions of a
particular form. The link function for each family listed in table 8.1 is
referred to as the canonical link because it relates the canonical parameter of
the distribution family to the linear predictor, η(x). For more details, on the
parameterization of these distributions, see McCullagh and Nelder (1989).

The estimates of the regression parameters in a glm  are maximum likelihood
estimates, produced by iteratively reweighted least-squares (IRLS).

g µ( ) µ( )log=

var Y( ) φµ=
215



8. Generalizing the Linear Model
Essentially, the log-likelihood, l(β,y), is maximized by solving the score
equations, defined by:

Since the score equations are nonlinear in β, they are solved iteratively. This
iterative procedure is what is referred to as IRLS. For more details, see
Chambers and Hastie (1992) or McCullagh and Nelder (1989). 

8.4 GENERALIZED ADDITIVE MODELS
Section 8.3, Generalized Linear Models, discusses an extension of linear
models to data with error distributions other than normal or Gaussian. By
using glm , we can fit data with Gaussian, binomial, Poisson, gamma, or
inverse Gaussian errors, which extends dramatically the kind of data for
which we can build regression models. The primary restriction of a glm  is the
fact that it is still a linear model. The linear predictor is just that, a linear
function of the parameters of the model.

The generalized additive model, gam , extends the glm  by fitting
nonparametric functions to estimate the relationships between the response
and the predictors. The nonparametric functions are estimated from the data
using smoothing operations.

Table 8.1: Link and variance functions for the generalized linear and
generalized additive models.

Distribution Family Link Variance

Normal/Gauss-
ian

gaussian 1

Binomial binomial

Poisson poisson

Gamma gamma

Inverse Normal/
Gaussian

inverse.
gaussian

Quasi quasi

(8.3)

µ

log µ 1 µ–( )⁄( ) µ 1 µ–( ) n⁄

log µ( ) µ

1 µ⁄ µ2

1 µ2⁄ µ3

g µ( ) V µ( )

∂l β y,( ) ∂β⁄ 0=
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Quasi-Likelihood Estimation
The general form of a gam  is:

where g is the link function, a is a constant intercept term, fi corresponds to
the nonparametric function describing the relationship between the
transformed mean response (the link transform function) and the ith
predictor. In this context, h(x) is referred to as the additive predictor and is
entirely analogous to the linear predictor of a glm  defined in (8.2). As for a
glm , the variance of Y may be function of the mean response m:

All of the distribution families listed in table 8.1 are available for gam s. Thus
fully nonparametric, nonlinear additive regression models can be fit to
binomial data (logistic regression) and count data (Poisson regression) as
presented in sections 8.1 and 8.2 as well as to data with error distributions
that are modeled by the other families listed in table 8.1.

Two functions that are useful for fitting a gam  are s and lo. Both of these
functions are for fitting smooth relationships between the transformed
response and the predictors. The s function fits cubic B-splines to estimate
the smooth and lo fits a locally weighted least-squares regression to estimate
the smooth. For more detail on using these functions, see their help files.

8.5 QUASI-LIKELIHOOD ESTIMATION
Quasi-likelihood estimation allows you to estimate regression relationships
without fully knowing the error distribution of the response variable.
Essentially, you provide link and variance functions which are used in the
estimation of the regression coefficients. Although the link and variance
functions are typically associated with a theoretical likelihood, the likelihood
need not be specified and fewer assumptions are made in estimation and
inference.

As a simple analogy, there is a connection between normal-theory regression
models and least-squares regression estimates. Least-squares estimation gives
identical parameter estimates to those produced from normal-theory models.
However, least-squares estimation assumes far less; only second moment
assumptions are made by least-squares compared to full distribution
assumptions of normal-theory models.

(8.4)g E Y( x )( ) g µ( ) α fi xi( )
i 1=

p

∑+ η x( )= = =

VAR Y( ) φV µ( )=
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8. Generalizing the Linear Model
Quasi-likelihood estimation for the distributions of table 8.1 is analogous to
least-squares estimation for the normal distribution. For the Gaussian family,
IRLS is equivalent to standard least-squares estimation. Used in this context,
quasi-likelihood estimation allows us to estimate the dispersion parameter in
under- or over-dispersed regression models. For example, an under- or over-
dispersed logistic or Poisson regression model can be estimated by using
quasi-likelihood methodology and supplying the appropriate link and
variance functions for the binomial and Poisson families, respectively.

However, quasi-likelihood estimation extends beyond the families
represented in table 8.1. Any modeling situation for which suitable link and
variance functions can be derived can be modeled using the quasi-likelihood
methodology. Several good examples of this kind of application are presented
in McCullagh and Nelder (1989).

For our example of quasi-likelihood estimation, let’s go back to the the
Poisson regression example using the solder.balance data frame. Recall
that we modeled skips as a function of all the factors plus all the two-way
interactions except those including Panel. The modeling call was:

> glm(formula = skips ~ . + 
+      (Opening + Solder + Mask + PadType)^2, 
+            family = poisson, data = solder.balance)

When we declare the family argument to be either Poisson or binomial,
the dispersion parameter is set to a constant equal to one. In many problems
this assumption is not valid. We can use quasi-likelihood estimation to force
the estimation of the dispersion parameter for these families. For the solder
experiment we do it as follows:

> paov3 <-glm(formula = skips ~ . + 
+   (Opening + Solder + Mask + PadType) ^ 2, 
+  family = quasi(link = "log", var = "mu"), 
+          data = solder.balance)

A summary of the fit reveals that the dispersion parameter is estimated to be
1.4, suggesting over-dispersion. We now recompute the ANOVA table,
computing F-statistics for testing for effects:

> anova(paov3, test = "F") 
Analysis of Deviance Table 

Quasi-likelihood model 

Response: skips 
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Residuals
Terms added sequentially (first to last) 
                Df Deviance R.Df Res. Dev  F Value      Pr(F) 
           NULL              719 6855.690 
        Opening  2 2524.562  717 4331.128 901.1240 0.00000000 
         Solder  1  936.955  716 3394.173 668.8786 0.00000000 
           Mask  3 1653.093  713 1741.080 393.3729 0.00000000 
        PadType  9  542.463  704 1198.617  43.0285 0.00000000 
          Panel  2   68.137  702 1130.480  24.3210 0.00000000 
 Opening:Solder  2   27.978  700 1102.502   9.9864 0.00005365 
   Opening:Mask  6   70.984  694 1031.519   8.4457 0.00000001 
Opening:PadType 18   47.419  676  984.100   1.8806 
0.01494805 
    Solder:Mask  3   59.806  673  924.294  14.2316 0.00000001 
 Solder:PadType  9   43.431  664  880.863   3.4449 0.00036929 
   Mask:PadType 27   61.457  637  819.407   1.6249 0.02466031

All of the factors and interactions are still significant even when we model the
over-dispersion. This gives us more assurance in our previous conclusions.

8.6 RESIDUALS
Residuals are our principal tool for assessing how well a model fits the data.
For regression models, residuals are used to assess the importance and
relationship of a term in the model as well as to search for anomalous values.
For generalized models we have the additional task of assessing and verifying
the form of the variance as a function of the mean response.

Generalized models require a generalization of the residual which will be
applicable to all the distributions which replace the normal or Gaussian
distribution and which can be used in the same way as the normal residuals
of the linear model. In fact, four different kinds of residuals are defined for
use in assessing how well a model fits, in determining the form of the
variance function, and in diagnosing problem observations.

"deviance"  Deviance residuals are defined as:

where di is the contribution of the ith observation to the
deviance.

The deviance itself is . Consequently, these

residuals are reasonable for use in detecting observations with
unduly large influence in the fitting process, since they reflect
the same criterion as used in the fitting.

r i
D

sign yi µ̂i–( ) di=

D ri
D( )

2

i∑=
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8. Generalizing the Linear Model
"working" Working residuals are the difference between the working
response and the linear predictor at the final iteration of the
IRLS algorithm. They are defined as:

These residuals are the ones you get when you extract the
residuals component directly from the glm object.

"pearson" The Pearson residuals are defined as:

Their sum-of-squares,

is the chi-squared statistic. Pearson residuals are a rescaled
version of the working residuals. When proper account is

taken of the associated weights, .

 "response" The response residuals are simply .

You compute residuals for "glm" and "gam" objects with the residuals
function, abbreviated resid (or resid for short) function. The type
argument allows you to specify one of "deviance", "working",
"pearson", or "response". By default you get the deviance residuals, so to
plot the deviance residuals versus the fitted values of a model you just do:

> plot(fitted(glmobj), resid(glmobj))

Alternatively, to plot the Pearson residuals versus the fitted values you do:

> plot(fitted(glmobj), resid(glmobj, type = "pearson"))

Selecting which residual to plot is somewhat a matter of personal preference.
The deviance residual is the default because a large deviance residual
corresponds to an observation which does not fit the model well in the same
sense that a large residual for the linear model doesn’t fit well. You can find
additional detail on residuals in McCullagh and Nelder (1989).

8.7 PREDICTION FROM THE MODEL
Prediction for generalized linear models, glm , and generalized additive
models, gam , is similar to prediction for linear models. The only important

r i
W yi µ̂ i–( )

η̂i∂
µ̂i∂

--------=

r i
P yi µ̂i–

V µ̂i( )
------------------=

X
2 yi µ̂i–( )

2

V µ̂ i( )
----------------------

i 1=

n

∑=

r i
P wi r i

W
=

yi µ̂i–
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Prediction From the Model
point to remember is that for either of the generalized models predictions can
be on one of two scales. You can predict:

1. on the scale of the linear predictor, which is the transformed/ scale
after applying the link function, or

2. on the scale of the original response variable.

Since prediction is based on the linear predictor, h(x), computing predicted
values on the scale of the original response effectively transforms the linear
predictor evaluated at the predictor data back to the scale of the response via
the inverse link function.

The type argument to either predict.glm or predict.gam allows you to
choose one of three options for predictions:

"link" Computes predictions on the scale of the linear predictor (the
link scale).

"response" Computes predictions on the scale of the response.

"terms" Computes a matrix of predictions on the scale of the linear
predictor, one column for each term in the model.

Specifying type = "terms" allows you to compute the component of the
prediction for each term separately. Summing the columns of the matrix and
adding the constant (intercept) term is equivalent to specifying type =
"link".

Predicting the 
Additive Model 
of Kyphosis

As an example, consider the generalized additive model of Kyphosis modeled
as smooths of Start and Age. Recall the fit was saved as
kyph.gam.start.age:

> kyph.gam.start.age 
Call: 
gam(formula = Kyphosis ~ s(Start) + s(Age), 
family = binomial, data = kyphosis) 

Degrees of Freedom: 81 total; 72.09458 Residual 
Residual Deviance: 48.41713

If we are interested in plotting the prediction surface over the range of the
data we start by generating appropriate sequences of values for each predictor
and storing them in a data frame with variable labels that correspond to the
variables in the model:

> attach(kyphosis) 
> kyph.margin <- 
+    data.frame(Start = seq(from = min(Start), 
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8. Generalizing the Linear Model
+    to = max(Start), len = 40), Age = 
+    seq(from = min(Age), to = max(Age), len = 40) )

Since a gam  is additive, we need to do predictions only at the margins and
then sum them together to form the entire prediction surface. We produce
the marginal fits by specifying type = "terms".

> margin.fit <- predict(kyph.gam.start.age, kyph.margin, 
+               type="terms")

Now generate the surface for the marginal fits.

> kyph.surf <- outer(margin.fit[,1], margin.fit[,2], "+") 
> kyph.surf <- kyph.surf + attr(margin.fit, "constant") 
> kyph.surf <- binomial()$inverse(kyph.surf)

The first line adds the marginal pieces of the predictions together to create a
matrix of surface values, the second line adds in the constant intercept term,
and the third line applies the inverse link function to transform the
predictions back to the scale of the original response. Now we produce the
plot using the persp function (or contour or image if we wish):

> persp(kyph.margin[,1], kyph.margin[,2], kyph.surf, 
+ xlab = "Start", ylab = "Age", zlab = "Kyphosis")

Figure 8.11 displays the resulting plot.

Figure 8.11:  Plot of the probability surface for developing Kyphosis
based age in months and start position.
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Prediction From the Model
Safe Prediction Prediction for linear and generalized linear models is a two-step procedure.

1. Compute a model matrix using the new data where you want
predictions.

2. Multiply the model matrix by the coefficients extracted from the
fitted model.

This procedure works perfectly fine as long as the model has no composite
terms which are dependent on some overall summary of a variable such as
any of the following:

(x - mean(x))/sqrt(var(x)) 
(x - min(x))/diff(range(x)) 
poly(x) 
bs(x) 
ns(x)

The reason the procedure doesn’t work for such composite terms is that the
resulting coefficients are dependent on the summaries used in computing the
terms. If the new data are different from the original data used to fit the
model (which is more than likely when you provide new data), the
coefficients are inappropriate. One way around this problem is to eliminate
such dependencies on data summaries. For example, change mean(x) and
var(x) to their numeric values rather than computing them from the data at
the time of fitting the model. For the spline functions, bs and ns, provide
the knots explicity in the call to the function rather than letting the function
compute them from the overall data. If the removal of dependencies on the
overall data is possible, prediction can be made safe for new data. However,
when the dependencies cannot be removed (e.g., using s or lo in a gam),
there is a function for doing prediction in as safe a way as possible given the
need for generality. The function is predict.gam, which works as follows
when new data is supplied:

1. A new data frame, both.data, is constructed by combining the
data used to produce the fit, say old.data, and the new data in
new.data.

2. The model frame and model matrix are constructed from the
combined data frame both.data. The model matrix is separated

into two pieces X 0and X n corresponding to the old and new data.

3. The parametric part of fit is refit using X 0.
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8. Generalizing the Linear Model
4. The coefficients from this new fit are then applied to X n to obtain
the new predictions.

5. For "gam" objects with both parametric and nonparametric
components, an additional step is taken to evaluate the fitted
nonlinear functions at the new data values.

This procedure works perfectly for terms with mean and var in them as well
as for poly. For other kinds of composite therms, it works approximately. For
example, for bs knots are placed at equally spaced (in terms of percentiles)
quantiles of the distribution of the predictor. Because the knots produced by
the combined data will, in general, be different from the knots produced by
the original data there will be some error in predicting the new data. If the
old data and the new data have roughly the same distribution the error in
predicting the new data should be small.
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Local regression models provide greater flexibility in 
fitting a surface to data.
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LOCAL REGRESSION MODELS 9
In both chapter 7, Regression and Smoothing for Continuous Response
Data, and chapter 8, Generalizing the Linear Model, we discuss fitting curves
or surfaces to data. In both of these earlier chapters, a significant limitation
on the surfaces considered was that the effects of the terms in the model were
expected to enter the model additively, without interactions between terms.
Local regression models provide much greater flexibility in that the model is
fitted as a single smooth function of all the predictors. There are no
restrictions on the relationships among the predictors.

Local regression models in S-PLUS are created using the loess function,
which uses locally weighted regression smoothing, as described in
section 7.11, Locally Weighted Regression Smoothing. In that section, the
focus was on the smoothing function as an estimate of one predictor’s
contribution to the model. In this chapter, we use locally weighted regression
to fit the complete regression surface.

9.1 FITTING A SIMPLE MODEL
As a simple example of a local regression model, we return to the ethanol
data discussed in chapter 7, Regression and Smoothing for Continuous
Response Data. We start by considering only the two variables NOx and E.
We smoothed these data with loess.smooth in section 7.11. Now we use
loess to create a complete local regression model for the data.

We fit an initial model to the ethanol data as follows, using the argument
span=1/2 to specify that each local neighborhood should contain about half
of the observations: 

> ethanol.loess <- loess(NOx ~ E, data = ethanol,
+ span = 1/2) 
> ethanol.loess
Call:
loess(formula = NOx ~ E, data = ethanol, span = 1/2)

Number of Observations:          88
Equivalent Number of Parameters: 6.2
Residual Standard Error:         0.3373
Multiple R-squared:              0.92
Residuals:
    min   1st Q   median  3rd Q    max
-0.6656 -0.1805 -0.02148 0.1855 0.8656
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9. Local Regression Models
The equivalent number of parameters gives an estimate of the complexity of
the model. The number here, 4.3, indicates that the local regression model is
somewhere between a cubic polynomial and a quartic polynomial in
complexity. The default print method for "loess" objects also includes the

residual standard error, multiple R2, and a five number summary of the
residuals.

9.2 DIAGNOSTICS: EVALUATING THE FIT
How good is our initial fit? The following function calls plot the loess
object against a scatter plot of the original data:

> attach(ethanol) 
> plot(ethanol.loess, xlim=range(E),
+ ylim=range(NOx,fitted(ethanol.loess)))
> points(E, NOx) 

The resulting figure, shown in figure 9.1, captures the trend reasonably well.
The following expressions plot the residuals against the predictor E to check
for lack of fit:

Figure 9.1:  Locally weighted smooth of ethanol data.
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Diagnostics: Evaluating the Fit
> scatter.smooth(E, resid(ethanol.loess), span=1, degree =1) 
> abline(h=0)  

The resulting plot, shown in figure 9.2, indicates no lack of fit.

Is there a surplus of fit? That is, can we increase the span of the data and still
get a good fit? To see, let’s refit our model, using update:

> ethanol.loess2 <- update(ethanol.loess, span=1)
> ethanol.loess2
Call:
loess(formula = NOx ~ E, data = ethanol, span = 1)
Number of Observations:          88
Equivalent Number of Parameters: 3.5
Residual Standard Error:         0.5126
Multiple R-squared:              0.81
Residuals:
    min   1st Q median  3rd Q    max
-0.9791 -0.4868 -0.064 0.3471 0.9863

Figure 9.2:  Residual plot for loess smooth.
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9. Local Regression Models
By increasing the span, we reduce somewhat the equivalent number of
parameters; this model is thus more parsimonious than our first model. We do
seem to have lost some fit and gained some residual error. The diagnostic
plots, shown in figure 9.3, reveal a less satisfying fit in the main plot, and

much obvious structure left in the residuals. The residuals are also more
broadly spread than those of the first model. We confirm this with a call to
anova as follows:

> anova(ethanol.loess2, ethanol.loess)
Model 1:
loess(formula = NOx ~ E, data = ethanol, span = 1)
Model 2:
loess(formula = NOx ~ E, data = ethanol, span = 1/2)
Analysis of Variance Table
      ENP     RSS     Test     F Value      Pr(F)
1     3.5 22.0840   1 vs 2       32.79 8.2157e-15
2     6.2  9.1685

The difference between the models is highly significant, so we stick with our
original model.

9.3 EXPLORING DATA WITH MULTIPLE PREDICTORS

Conditioning 
Plots

The ethanol data set actually has three variables, with the compression
ratio, C, of the engine as another predictor joining the equivalence ratio E and
the response, nitric oxide emissions, NOx. A summary of the data is shown
below:

Figure 9.3:  Diagnostic plots for loess fit with span 1.
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Exploring Data with Multiple Predictors
> summary(ethanol)
      NOx               C                E
Min.   :0.370   Min.   : 7.500   Min.   :0.5350
1st Qu.:0.953   1st Qu.: 8.625   1st Qu.:0.7618
Median :1.754   Median :12.000   Median :0.9320
Mean   :1.957   Mean   :12.030   Mean   :0.9265
3rd Qu.:3.003   3rd Qu.:15.000   3rd Qu.:1.1100
Max.   :4.028   Max.   :18.000   Max.   :1.2320

A good place to start an analysis with two or more predictors is a pairwise
scatter plot,  as generated by the pairs function:

> pairs(ethanol)

The resulting plot is shown in figure 9.4. The top row shows the nonlinear

dependence of NOx on E, and no apparent dependence of NOx on C. The
middle plot in the bottom row shows E plotted against C—this plot reveals
no apparent correlation between the predictors, and shows that the
compression ratio C takes on only 5 distinct values.

Figure 9.4:  Pairs plot of ethanol data.
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9. Local Regression Models
Another useful plot for data with two predictors is the perspective plot.  This
lets us view the response as a surface over the predictor plane.

> persp(interp(E, C, NOx))

The resulting plot is shown in figure 9.5.

One conclusion we cannot draw from the pairwise scatter plot is that there is
no effect of C on NOx. Such an effect might well exist, but be masked by the
strong effect of E. Another type of plot, the conditioning plot, or coplot, can
reveal such hidden effects.

A coplot shows how a response depends upon a predictor given other
predictors. Basically, the idea is to create a matrix of conditioning panels; each
panel graphs the response against the predictor for those observations whose
value of the given predictor lie in an interval.

To create a coplot:

1. (Optional.) Create the conditioning values. The coplot function
creates default values if conditioning values are omitted, but they are
not usually as good as those created specifically for the data at hand.

2. Use the coplot function to create the plot.

We discuss these steps in detail in the following subsections.

Figure 9.5:  Perspective plot of ethanol data.
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Exploring Data with Multiple Predictors
Creating 
Conditioning 
Values

How you create conditioning values depends on the nature of the values
taken on by the predictor, whether continuous or discrete.

For continuous data, the conditioning values are intervals, created using the
function co.intervals. For example, the following call creates nine
intervals for the predictor E: 

> E.intervals <- co.intervals(E, number = 9, overlap = 1/4) 

For data taking on discrete values, the conditioning values are the sorted,
unique values. For example, the following call creates the conditioning values
for the predictor C: 
> C.points <- sort(unique(C)) 

Constructing a 
Conditioning 
Plot

To construct a conditioning plot, use coplot using a formula with the
special form A ~ B | C, where A is the response, B is the predictor of
interest, and C is the given predictor. Thus, to see the effect of C on NOx given
E, use the formula NOx ~ C | E.

In most cases, you also want to specify one or both of the following
arguments:

• given.values: the conditioning values created above.

• panel: a function of x and y used to determine the method of
plotting in the dependence panels. The default is points.

To create the conditioning plot shown in figure 9.6, 

> coplot(NOx ~ C | E, given.values = E.intervals)  

Analyzing 
Conditioning 
Plots

To read the coplot, move from left to right, bottom to top. The scatter plots
on the bottom row show an upward trend, while those on the upper two rows
show a flat trend. We can more easily see the trend by using a smoothing
function inside the conditioning panels, which we can do by specifying the
panel argument to coplot as follows: 
> coplot(NOx ~ C | E, given.values = E.intervals,
+ panel = function(x, y) panel.smooth(x, y,
+ degree = 1, span = 1))  

The resulting plot is shown in figure 9.7. This plot clearly shows that for low
values of E, NOx increases linearly with C, while for higher values of E, NOx
remains constant with C.  

Conversely, the coplot for the effects of E on NOx given C is created with the
following call to coplot, and shown in figure 9.8:

> coplot(NOx ~ E | C, given.values = C.points,
+ panel = function(x, y) panel.smooth(x,y, degree =2,
+ span = 2/3))
233



9. Local Regression Models
Comparing the two coplots, we can see that NOx changes more rapidly as a
function of E with C fixed than as a function of C with E fixed. Also, the
variability of the residuals is small compared to the effect of E, but noticeable
compared to the effect of C.

Figure 9.6:  Conditioning plot of ethanol data.
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Exploring Data with Multiple Predictors
Figure 9.7:  Smooth conditioning plot of ethanol data.
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9. Local Regression Models
9.4 FITTING A MULTIVARIATE LOESS MODEL
We have learned quite a bit about the ethanol data without fitting a model:
there is a strong nonlinear dependence of NOx on E and there is an
interaction between C and E. We can use this knowledge to shape our initial
local regression model. First, we specify a formula that includes as predictors

Figure 9.8:  Smooth conditioning plot of ethanol data, conditioned on C.
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Fitting a Multivariate Loess Model
both E and C, namely NOx ~ C * E. Then, we accept the default of local
quadratic fitting to better model the nonlinear dependence. Our 

> ethanol.m <- loess(NOx ~ C * E, data = ethanol) 
> ethanol.m
Call:
loess(formula = NOx ~ C * E, data = ethanol)

Number of Observations:          88
Equivalent Number of Parameters: 9.4
Residual Standard Error:         0.3611
Multiple R-squared:              0.92
Residuals:
    min   1st Q   median 3rd Q    max
-0.7782 -0.3517 -0.05283 0.195 0.6338 

We search for lack of fit by plotting the residuals against each of the
predictors: 

> par(mfrow=c(1,2)) 
> scatter.smooth(C, residuals(ethanol.m),span=1, deg=2) 
> abline(h=0) 
> scatter.smooth(E, residuals(ethanol.m),span=1, deg=2) 
> abline(h=0)  

The resulting plot is shown in figure 9.9. The right-hand plot shows
considerable lack of fit, so we reduce the span from the default 0.75 to 0.4: 

> ethanol.m2 <- update(ethanol.m, span = .4) 
> ethanol.m2

Figure 9.9:  Diagnostic plot for loess model of ethanol data.
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9. Local Regression Models
Call: loess(formula = NOx ~ C * E, data = ethanol, span = 
0.4)

Number of Observations:          88
Equivalent Number of Parameters: 15.3
Residual Standard Error:         0.2241
Multiple R-squared:              0.97
Residuals:
    min   1st Q   median  3rd Q    max
-0.4693 -0.1865 -0.03518 0.1027 0.3739  

Repeating the commands for generating the diagnostic plots with
ethanol.m2 replacing ethanol.m yields the plot shown in figure 9.10.

The right-hand plot looks better but still has some quadratic structure, so we
shrink the span still further, and try again: 

> ethanol.m3 <- update(ethanol.m, span = .25) 
> ethanol.m3
Call:
loess(formula = NOx ~ C * E, data = ethanol, span = 0.25)

Number of Observations:          88
Equivalent Number of Parameters: 21.6 
Residual Standard Error:         0.1761
Multiple R-squared:              0.98
Residuals:
    min    1st Q  median   3rd Q    max
-0.3975 -0.09077 0.00862 0.06205 0.3382  

Figure 9.10:  Diagnostic plot for first revised model.
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Fitting a Multivariate Loess Model
Again, we create the appropriate residuals plots to check for lack of fit. The
result is shown in figure 9.11. This time the fit is much better.

Another check on the fit is provided by coplots using the residuals as the
response variable: 

> coplot(residuals(ethanol.m3) ~ C | E, given = E.intervals,
+ panel= function(x,y)
+ panel.smooth(x,y, degree=1, span=1, zero.line=TRUE)) 
> coplot(residuals(ethanol.m3) ~ E | C, given = C.points,
+ panel= function(x,y)
+ panel.smooth(x,y, degree=1, span=1, zero.line=TRUE))    

The resulting plots are shown in figure 9.12 and figure 9.13. The middle row
of figure 9.12 shows some anomalies—the residuals are virtually all positive.
However, the effect is small, and limited in scope, so it can probably be
ignored.

As a final test, we make several more diagnostic plots to check the
distribution of the error terms (figure 9.14): 

> par(mfrow=c(2,2)) 
> plot(fitted(ethanol.m3), sqrt(abs(resid(ethanol.m3)))) 
> plot(C, sqrt(abs(resid(ethanol.m3)))) 
> plot(E, sqrt(abs(resid(ethanol.m3)))) 
> qqnorm(resid(ethanol.m3)) 
> qqline(resid(ethanol.m3))
NULL  

The model passes these checks—the errors appear to be Gaussian, or nearly
so.

Figure 9.11:  Diagnostic plot for second revised model.
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9. Local Regression Models
Figure 9.12:  Conditioning plot on E for second revised model.
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Fitting a Multivariate Loess Model
Figure 9.13:  Conditioning plot on C for second revised model.
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9. Local Regression Models
9.5 LOOKING AT THE FITTED MODEL
Examining the fitted model graphically is no less important than graphically
examining the data. One way to test the model is to compare the predicted
surface with the data surface shown in figure 9.5 . We can create the
corresponding perspective plot for the model as follows. First, define an
evenly-spaced grid of points spanning the range of E and C:  

> newC <- seq(from = min(C), to = max(C), length = 40) 
> newE <- seq(from = min(E), to = max(E), length = 40) 
> new.ethanol <- expand.grid(E = newE, C = newC) 

The expand.grid function returns a data frame with 1600 rows and 2
columns, corresponding to all possible combinations of newC and newE.  We
can then use predict with the fitted model and these new data points to
calculate predicted values for each of these grid points: 

Figure 9.14:  Diagnostic plots for second revised model.
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Looking at the Fitted Model
> eth.surf <- predict(ethanol.m3, new.ethanol) 

The perspective plot of the surface is then created readily as follows: 

> persp(newE, newC, eth.surf, xlab = "E",
+ ylab = "C")  

The resulting plot is shown in figure 9.15. Not surprisingly, the surfaces look
quite similar, with the model surface somewhat smoother than the data
surface. The data surface has a noticeable wrinkle for E < 0.7, C < 14. This
wrinkle is smoothed out in the model surface. Another graphical view is
probably worthwhile.

The default graphical view for "loess" objects with multiple predictors is a
set of coplots,  one per predictor, created using the plot function. 

> par(ask=T) 
> plot(ethanol.m3, confidence = 7)    

The resulting plots are shown in figure 9.16 and figure 9.17. One feature that
is immediately apparent, and somewhat puzzling, is the curvy form of the
bottom row of figure 9.16. Our preliminary coplots revealed that the
dependence of NOx on C was approximately linear for small values of E. Thus,
the model as fitted has a noticeable departure from our understanding of the
data.

Figure 9.15:  Perspective plot of the model.
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9. Local Regression Models
Figure 9.16:  Default conditioning plot of the model, first predictor.
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Improving the Model
9.6 IMPROVING THE MODEL
The model in ethanol.m3 is fit using local quadratic fitting for all terms
corresponding to C*E. This means that the model contains the following

fitting variables: a constant, E, C, EC, C2, and E2. However, our original look
at the data led us to believe that the effect of C was piecewise linear; it thus

Figure 9.17:  Default conditioning plot of the model, second predictor.
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9. Local Regression Models
makes sense to fit C parametrically, and drop the quadratic term. We can
make these changes using the update function as follows: 
> ethanol.m4 <- update(ethanol.m3, drop.square="C",
+ parametric = "C") 
> ethanol.m4
Call:
loess(formula = NOx ~ C * E, span = 0.25, parametric = "C", 
drop.square = "C")

Number of Observations:          88
Equivalent Number of Parameters: 18.2
Residual Standard Error:         0.1808
Multiple R-squared:              0.98
Residuals:
    min    1st Q    median   3rd Q    max
-0.4388 -0.07358 -0.009093 0.06616 0.5485  

The offending coplot, figure 9.18 and figure 9.19, now shows the
appropriate linear fit, and we have introduced no lack of fit, as shown by the
residuals plots in figure 9.20.  In fact, comparing the plot of residuals against
E for the latest model with that for ethanol.m3 (figure 9.21) indicates we
may be able to increase the span for the latest model and not introduce any
lack of fit:      

> ethanol.m5 <- update(ethanol.m4, span = 1/2) 
> ethanol.m5
Call:
loess(formula = NOx ~ C * E, span = 1/2, parametric = "C", 
drop.square = "C")

Number of Observations:          88
Equivalent Number of Parameters: 9.2
Residual Standard Error:         0.1842
Multiple R-squared:              0.98
Residuals:
    min   1st Q  median   3rd Q    max
-0.5236 -0.0972 0.01386 0.07326 0.5584  
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Improving the Model
Figure 9.18:  Default conditioning plot of improved model, first
predictor.
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9. Local Regression Models
We gain a much more parsimonious model—the Equivalent Number of
Parameters drop from approximately 18 to about 9. An F-test using anova
shows no significant difference between our first acceptable model and the
latest, more parsimonious model:  

Figure 9.19:  Default conditioning plot of improved model, second
predictor.
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Improving the Model
> anova(ethanol.m3,ethanol.m5)
Model 1:
loess(formula = NOx ~ C * E, span = 0.25) 
Model 2:
loess(formula = NOx ~ C * E, span = 1/2, parametric = "C", 
drop.square = "C")
Analysis of Variance Table
      ENP     RSS     Test      F Value     Pr(F)
1    21.6  1.7999   1 vs 2         1.42   0.16486
2     9.2  2.5433 

Figure 9.20:  Residual plot of improved model.

Figure 9.21:  Comparison of residual plots for original and improved
models.
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9. Local Regression Models
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Tree-based models uncover structure in data.

CLASSIFICATION AND 
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CLASSIFICATION AND REGRESSION 
TREES 10

Tree-based modeling is an exploratory technique for uncovering structure in
data, increasingly used for:

• devising prediction rules that can be rapidly and repeatedly evaluated

• screening variables

• assessing the adequacy of linear models

• summarizing large multivariate datasets

Tree-based models are useful for both classification and regression problems.
In these problems, there is a set of classification or predictor variables (x), and
a single-response variable (y).

If y is a factor, classification rules are of the form:

if  and 

then y is most likely to be in level 5.

If y is numeric, regression rules for description or prediction are of the form:

if  and  and 

then the predicted value of y is 4.75.

A classification or regression tree is the collection of many such rules
displayed in the form of a binary tree, hence the name. The rules are
determined by a procedure known as recursive partitioning. Tree-based
models provide an alternative to linear and additive models for regression
problems, and to linear and additive logistic models for classification
problems.

Compared to linear and additive models, tree-based models have the
following advantages:

• Easier to interpret when the predictors are a mix of numeric variables
and factors.

• Invariant to monotone re-expressions of predictor variables.

• More satisfactorily treat missing values.

• More adept at capturing nonadditive behavior.

• Allow more general (that is, other than of a particular multiplicative
form) interactions between predictor variables.

x1 2.3≤( ) x3 A B,{ }∈( )

x2 2.3≤( ) x9 C D F, ,{ }∈( ) x5 3.5≤( )
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10. Classification and Regression Trees
• Can model factor response variables with more than two levels.

This chapter is organized around the following topics:

• Growing trees

• Displaying tree fits

• Prediction and Residuals

• Missing Values

• Pruning and Shrinking

• Interacting with trees

10.1 GROWING TREES
We describe the tree-growing function tree by presenting several examples.
The tree function generates objects of class "tree". This function
automatically decides whether to fit a regression or classification tree,
according to whether the response variable is numeric or a factor. We also
show two types of displays, generated by generic functions: a tree display
produced by plot and a table produced by print.
In general, the response y and predictors x may be any combination of
numeric or factor types. In fact, the predictors can be a mix of numeric and
factor. However, no factor predictor can have no more than 32 levels, and no
factor response can have more than 128 levels. In both of the examples below,
the predictors are all numeric. The numeric response example illustrates a
regression tree. The factor response example illustrates a classification tree.

Numeric 
Response and 
Predictor

In the first example, we grow a regression tree relating the numeric response
Mileage to the predictor variable Weight from the data frame
car.test.frame. The resulting tree is given the name auto.tree, which
is then plotted by the generic plot function and labeled by the generic text
function (see figure 10.1).

> attach(car.test.frame) 
> auto.tree <- tree(Mileage ~ Weight, car.test.frame)
> plot(auto.tree,type="u") 
> text(auto.tree) 
> title("A Tree-Based Model\nfor Mileage versus Weight") 

In describing tree-based models, the terminology mimics real trees:

• root The top node of the tree

• leaf A terminal node of the tree
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Growing Trees
• split A rule for creating new branches

In growing a tree, the binary partitioning algorithm recursively splits the data
in each node until either the node is homogeneous or the node contains too
few observations ( , by default).

In order to predict mileage from weight, one follows the path from the root,
to a leaf, according to the splits at the interior nodes. The tree in figure 10.1
is interpreted in the following way:

• Automobiles are first split according to whether they weigh less than
2567.5 pounds.

• If so, they are again split according to weight being less than 2280
pounds.

Figure 10.1:  Display of a tree-based model with a numeric response,
Mileage and one numeric predictor, Weight.

|Weight<2567.5

Weight<2280 Weight<3087.5

Weight<2747.5

Weight<2882.5

Weight<3637.5

Weight<3322.5
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25.62

23.33 24.11

20.60 20.40

22.00

18.67

A Tree-Based Model
for Mileage versus Weight

5≤
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10. Classification and Regression Trees
• Lighter cars (< 2280 pounds) have a predicted mileage of 34 mpg.

• Heavier cars ( ) have a mileage of 28.9
mpg.

• For those automobiles weighing more than 2567.5 pounds, seven
weight classes are formed.

• The predicted mileage ranges from a high of 25.6 mpg to a low of
18.7 mpg.

• Overall, heavier cars get poorer mileage than lighter cars.

• It appears that doubling the weight of an automobile approximately
halves its mileage.

Factor 
Response and 
Numeric 
Predictor

In this classification example, we model the probability of developing
Kyphosis, using the kyphosis data frame with predictors Age, Start, and
Number.

First, use boxplots to plot the distributions of the predictor variables as a
function of Kyphosis in figure 10.2. Start appears to be the single best
predictor of Kyphosis since Kyphosis is more likely to be present among

individuals with .

> kyph.tree <- tree(Kyphosis ~ Age + Number + Start, 
+ data = kyphosis) 

Since Kyphosis is a factor response, the result kyph.tree is a classification

2280 Weight 2567.5<≤

Start 12≤

Figure 10.2:  Boxplots of the predictors of Kyphosis.
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Growing Trees
tree.

Either the formula or data arguments to the tree function may be
missing. Without the formula argument, a tree is constructed from the data
frame using the first variable as the response. Hence the Kyphosis example
could have been constructed as follows: 

> auto.tree <- tree(car.test.frame) 

Without the data argument, the variables named in formula are expected
to be in the search list. The Kyphosis tree could also have been grown with 

> attach(car.test.frame) 
> auto.tree <- tree(Mileage ~ Weight) 

The only meaningful operator on the right side of a formula is "+". Since
tree-based models are invariant to monotone re-expressions of individual
predictor variables, functions like log, I, and ^ have little use. Also, tree-
based models capture interactions without explicit specification.

This time, we display the fitted tree using the generic function, print,
which is called automatically simply by typing the name of the tree object.
This tabular representation is most useful when the details of the fitting
procedure are of interest. Indentation is added as a key to the underlying
structure.
> kyph.tree 
node), split, n, deviance, yval, (yprob) 
      * denotes terminal node
1) root 81 83.230 absent ( 0.7901 0.20990 ) 
  2) Start<12.5 35 47.800 absent ( 0.5714 0.42860 ) 
    4) Age<34.5 10 6.502 absent ( 0.9000 0.10000 ) 
    8) Age<16 5 5.004 absent ( 0.8000 0.20000 ) * 
    9) Age>16 5 0.000 absent ( 1.0000 0.00000 ) * 
  5) Age>34.5 25 34.300 present ( 0.4400 0.56000 ) 
   10) Number<4.5 12 16.300 absent ( 0.5833 0.41670 ) 
     20) Age<127.5 7 8.376 absent ( 0.7143 0.28570 ) * 
     21) Age>127.5 5 6.730 present ( 0.4000 0.60000 ) * 
   11) Number>4.5 13 16.050 present ( 0.3077 0.69230 ) 
     22) Start<8.5 8 6.028 present ( 0.1250 0.87500 ) * 
     23) Start>8.5 5 6.730 absent ( 0.6000 0.40000 ) * 
3) Start>12.5 46 16.450 absent ( 0.9565 0.04348 ) 
  6) Start<14.5 17 12.320 absent ( 0.8824 0.11760 ) 
   12) Age<59 5 0.000 absent ( 1.0000 0.00000 ) * 
   13) Age>59 12 10.810 absent ( 0.8333 0.16670 ) 
     26) Age<157.5 7 8.376 absent ( 0.7143 0.28570 ) * 
     27) Age>157.5 5 0.000 absent ( 1.0000 0.00000 ) * 
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10. Classification and Regression Trees
  7) Start>14.5 29 0.000 absent ( 1.0000 0.00000 ) * 

The first number in each row of the output is a node number. The nodes are
numbered to index the tree for quick identification. For a full binary tree, the

nodes at depth d are integers n, . Usually, a tree is not full,
but the numbers of the nodes that are present are the same as they would be
in a full tree.
In the print output, the nodes are ordered according to a depth-first
traversal of the tree, printed output.

Let us first examine one row of the output: 

2) Start<12.5 35 47.800 absent ( 0.5714 0.42860 ) 

This row is for node 2. Following the node number is the split, Start<12.5.
This states the the observations in the parent (root) node with Start<12.5
were put into node 2.

The next number after the split is the number of observations, 35. The
number 47.8 is the  deviance, the measure of node heterogeneity used in the
tree-growing algorithm. A perfectly homogeneous node has deviance zero.
The fitted value, yval, of the node is absent. Finally, the numbers in
parentheses ( 0.5714 0.42860 ), yprob, are the estimated probabilities of the
observations in that node not having, and having, kyphosis. Therefore the
observations with Start<12.5 have a 0.5714 chance of not having kyphosis
under this tree model.

An interpretation of the table follows:

• The split on Start partitions the 81 observations into groups of 35
and 46 individuals (nodes 2 and 3) with probability of Kyphosis
0.429 and 0.043, respectively.

• The group at node 2 is then partitioned into groups of 10 and 25
individuals (nodes 4 and 5) depending on whether Age is less than
34.5 years or not.

• The group at node 4 is divided in half depending on whether Age is
less than 16 or not. If Age >16 none of the individuals have
Kyphosis (probability of Kyphosis is 0). These subgoups are divided
no further.

• The group at node 5 is subdivided into groups of size 12 and 13
depending on whether or not Number is less than 4.5. The respective
probabilities of Kyphosis for these groups is 0.417 and 0.692.

• The procedure continues, yielding 10 distinct groups with
probabilities of Kyphosis ranging from 0.0 to 0.875.

2d n 2d 1+<≤
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• Asterisks signify terminal  nodes; that is, those that are not split.

10.2 DISPLAYING TREES
The generic functions print, plot, and summary work as expected for
"tree" objects. We have already encountered the first two functions in the
examples above. A further interesting feature of plot is that an optional
type argument controls node placement. The type argument can have
either of the two values:

• "" Produces nonuniform spacing as the default. The more important
the parent split, the further the children node pairs are spaced from
their parents.

• "u" Produces uniform spacing.

In the car mileage example, we used uniform spacing in order to label the
tree. However, if the goal is tree simplification, we gain insight into the
relative importance of the splits by using the default type, i.e., nonuniform
spacing. This is shown in figure 10.3.

When you first plot the tree using plot, the nodes and splits will be
displayed without any text labels. The generic text function, described in
the S-PLUS User’s Guide, uses the same arguments to rotate and adjust text in
tree plots that it uses with most other types of plots.

The summary function has a tree-specific method which indicates the tree
type (regression/classification), a record of how the tree was created, the
residual mean deviance, and other information.

The residual deviance is the sum, over all the observations, of terms which
vary according to type (regression/classification) of tree. The residual mean
deviance is then obtained after dividing by the degrees of freedom (number
of observations minus the number of terminal nodes).

The following summary is typical for regression: 
> summary(auto.tree)

Regression tree: 
tree(formula = Mileage ~ Weight, data = car.test.frame) 
Number of terminal nodes: 9 
Residual mean deviance: 4.289 = 218.7 / 51 
Distribution of residuals: 
   Min. 1st Qu. Median Mean 3rd Qu. Max. 
 -3.889 -1.111 0 0 1.083 4.375 

The regression tree has nine terminal nodes. Under a normal (Gaussian)
assumption, the terms in the residual mean deviance are the squared
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10. Classification and Regression Trees
differences between the observations and the predicted values. See the section
Prediction and Residuals for a discussion of prediction and residuals. The
summary function also summarizes the distribution of residuals.

The following summary is typical for classification trees: 
> summary(kyph.tree)

Classification tree: 
tree(formula = Kyphosis ~ Age + Number + Start) 
Number of terminal nodes: 10 
Residual mean deviance: 0.5809 = 41.24 / 71
Misclassification error rate: 0.1235 = 10 / 81 

Note that, for classification trees, the summary function gives the
misclassification error rate instead of distribution of residuals. First, predicted
classifications are obtained as described in the section Prediction and
Residuals. The error rate is then obtained by counting the number of
misclassified observations, and dividing by the number of observations. The

Figure 10.3:  Plot of the car mileage tree with non-uniform node
placement.

|
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Prediction and Residuals
terms in the residual mean deviance are based on the multinomial
distribution (see Chambers and Hastie (1992)).

10.3 PREDICTION AND RESIDUALS
Once a tree is grown, an important use of the fitted tree is to predict the value
of the response variable for a set of predictor variables.
For concreteness, consider just one observation x on the predictor variables.
In prediction, the splits direct x through the tree. The prediction is taken to be
the the yval at the deepest node reached. Usually this corresponds to a leaf
node. However, in certain situations, a prediction may reside in a
nonterminal node (Chambers and Hastie (1992)). In particular this may
happen if missing values occur in x, and the tree was grown with only
complete observations.

The generic function predict has a tree-specific method. It takes a tree
object and, optionally, a data frame as arguments. If the data frame is not
supplied, predict returns the fitted values for the data originally used to
construct the tree. The function returns predicted values either as a vector
(the default) or a tree object (type="tree").

The residuals can then be obtained either by subtracting the fitted values
from the response variable, or directly using the function residuals.
Figure 10.4 presents a plot of the residuals versus the predicted values and a
normal probability of the residuals for the auto.tree model.

Figure 10.4:  Residuals versus predicted values and a normal probability plot of the residuals for
a "tree" object.
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10. Classification and Regression Trees
10.4 MISSING DATA
Missing values, NAs, can occur either in data used to build trees, or in a set of
predictors for which the value of the response variable is to be predicted.

For data used to build trees, the tree function permits NAs only in predictor
variables, but only if the argument na.action = na.tree.replace. For
any predictor with missing values, the na.tree.replace function creates a
new factor variable, with an added level named "NA" (numeric predictors are
first quantized).

In prediction, suppose an observation is missing a value for the variable V.
Further, suppose there were no missing values for V in the training data. The
observation follows its path down the tree until it encounters a node whose
split is based upon V. The prediction is then taken to be the yval at that
node. If values of several variables are missing, the observation stops at the
first such variable split encountered.

To clarify this, let us return to the automobile example, where some of the
data are missing values on the variable Reliability. We first fit a tree on
the data with no missing values. The resulting tree is displayed in figure 10.5.
Notice the split on the variable Reliability.

To create the tree shown in figure 10.5, first create a new data set from
car.test.frame, omitting those observations which are missing data for
Reliability:
> car.test.no.miss <-
+ car.test.frame[!is.na(car.test.frame[,3]),] 

Now grow the tree using the cleansed data:
> car.tree <- tree(Mileage ~ Weight + Reliability,
+ car.test.no.miss) 

Next, we predict the data with values missing on Reliability, by
extracting those observations that were omitted from car.test.no.miss,
and then calling predict on the resulting data set:

> car.test.miss <-
+ car.test.frame[is.na(car.test.frame[,3]),] 
> pred.miss <- 
+ predict(car.tree,car.test.miss,type="tree") 
> pred.miss 
node), split, n, deviance, yval 
      * denotes terminal node
1) root 11 245.300 24.80 
  2) Weight<2600 3 65.940 30.92 
    4) Weight<2280 1 0.000 34.00 * 
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Missing Data
    5) Weight>22figz80 2 26.000 29.00 * 
  3) Weight>2600 8 81.060 22.58 
    6) Weight<3087.5 3 11.770 24.32 
     12) Reliability:2 0 0.000 22.60 * 
     13) Reliability:1,3,4,5 0 0.000 24.93 
       26) Weight<2777.5 0 0.000 26.40 * 
       27) Weight>2777.5 0 0.000 24.11 * 
    7) Weight>3087.5 5 10.680 20.65 

Figure 10.5:  Display of tree relating Mileage to Weight and
Reliability. All of the data used to fit the data are complete.
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10. Classification and Regression Trees
     14) Weight<3637.5 4 17.000 21.50 
       28) Weight<3322.5 3 8.918 20.86 * 
       29) Weight>3322.5 1 5.760 22.40 * 
     15) Weight>3637.5 1 0.160 18.60 * 

Notice that there are no observations in the nodes (12, 13, 26, 27) at or
below the split on Reliability.

10.5 PRUNING AND SHRINKING
Since tree size is not limited in the growing process, a tree may be more
complex than necessary to describe the data. Two functions assess the degree
a tree can be simplified without sacrificing goodness-of-fit. The prune.tree
function achieves parsimonious description by reducing the nodes on a tree,
whereas the shrink.tree function shrinks each node towards its parent.

Both functions take the following arguments:

• tree Fitted model object of class tree.

• k cost complexity parameter (for prune.tree); shrinkage
parameter (for shrink.tree).

• newdata a data frame containing the values at which predictions
are required. if missing, the data used to grow the tree are
used.

Pruning Pruning successively snips off the least important splits. Importance of a
subtree is measured by the cost-complexity measure:

where 

Cost-complexity pruning determines the subtree  that minimizes 

over all subtrees. The larger the k, the fewer nodes there will be.

The prune.tree function takes a cost-complexity parameter argument k,
which can be either a scalar or a vector. A scalar k defines one subtree of tree
whereas a vector k defines a sequence of subtrees minimizing the cost-
complexity measure. If the k argument is not supplied, a nested sequence of
subtrees is created by recursively snipping off the least important splits.

Dk T'( ) D T'( ) k sizeT'( )⋅+=

Dk T'( ) the deviance of the subtree T',=

size T'( ) the number of terminal nodes of T',=

k the cost-complexity parameter. =

T' Dk T'( )
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Pruning and Shrinking
Figure 10.6 shows the deviance decreasing as a function of the number of
nodes and the cost-complexity parameter k. 

> plot(prune.tree(kyph.tree)) 

Since over one half of the reduction in deviance is explained by the first three
nodes, we limit the tree to three nodes.

> plot(prune.tree(kyph.tree, k = 5)) 
> text(prune.tree(kyph.tree, k = 5)) 
> summary(prune.tree(kyph.tree, k = 5)) 
Classification tree: 
prune.tree(tree = kyph.tree, k = 5) 
Variables actually used in tree construction: 
[1] "Start" "Age" 
Number of terminal nodes: 3 
Residual mean deviance: 0.734 = 57.25 / 78
Misclassification error rate: 0.1728 = 14 / 81 

By comparing this to the summary of the full tree in the section Displaying
Trees, we see that reducing the number of nodes from 10 to 3 simplifies the
model, but at the cost of increased misclassification.

Increasing the complexity of the tree to 6 nodes drops the misclassification to
a rate comparable to that of the full tree with 10 nodes:

> summary(prune.tree(kyph.tree, k = 2)) 
Classification tree: 
prune.tree(tree = kyph.tree, k = 2) 
Number of terminal nodes: 6 
Residual mean deviance: 0.6383 = 47.88 / 75
Misclassification error rate: 0.1358 = 11 / 81 

Figure 10.6 shows kyph.tree pruned to 3 and 6 nodes.

Shrinking Shrinking reduces the number of effective nodes by shrinking the fitted value
of each node towards its parent node. Shrunken fitted values, for a shrinking
parameter k, are computed according to the recursion:

where

The shrink.tree function optimally shrinks children nodes to their parent,

based on the magnitude of the difference between  and .

ŷ node( ) k y node( ) 1 k–( ) ŷ parent( )⋅+⋅=

y node( ) the usual fitted value for a node,=

ŷ parent( ) the shrunken fitted value for the node′s parent.=

y node( ) y parent( )
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10. Classification and Regression Trees
The shrinkage parameter argument (0<k<1) may be a scalar or a vector. A

scalar k defines one shrunken version of tree, whereas a vector k defines a
sequence of shrunken trees obtained by optimal shrinking for each value of k.
If the k argument is not supplied, a nested sequence of subtrees is created by
recursively shrinking the tree for a default sequence of values (roughly .05 to
.91) of k.

Figure 10.7 shows the deviance decreasing as a function of the number of
effective nodes and the shrinkage parameter, k. 

Figure 10.6:  A sequence of plots generated by the prune.tree
function.
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Figure 10.7:  A sequence of plots generated by the shrink.tree function.
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10. Classification and Regression Trees
> plot(shrink.tree(kyph.tree)) 

Limit the tree to three effective nodes as done with pruning as follows:

> kyph.tree.sh.25 <- shrink.tree(kyph.tree, k = 0.25) 
> plot(kyph.tree.sh.25) 
> text(kyph.tree.sh.25) 
> title("k = 0.25") 
> summary(kyph.tree.sh.25)

Classification tree: 
shrink.tree(tree = kyph.tree, k = 0.25) 
Number of terminal nodes: 10 
Effective number of terminal nodes: 2.8 
Residual mean deviance: 0.7385 = 57.75 / 78.2
Misclassification error rate: 0.1358 = 11 / 81 

The lower misclassification rate is maintained even with only three effective
nodes.

Expand the tree to three effective nodes as follows: 
> kyph.tree.sh.47 <- shrink.tree(kyph.tree, k = 0.47) 
> plot(kyph.tree.sh.47) 
> text(kyph.tree.sh.47) 
> title("k = 0.47") 
> summary(kyph.tree.sh.47)
Classification tree: 
shrink.tree(tree = kyph.tree, k = 0.47) 
Number of terminal nodes: 10 
Effective number of terminal nodes: 6 
Residual mean deviance: 0.6281 = 47.11 / 75
Misclassification error rate: 0.1358 = 11 / 81 

Note that no change other than a decrease in the residual mean deviance and
an increase in the number of effective nodes.

10.6 GRAPHICALLY INTERACTING WITH TREES
A number of S-PLUS functions use the tree metaphor to diagnose tree-based
model fits. The functions are naturally grouped by components of trees:
subtrees, nodes, splits, and leaves. Except for the leaves functions, these
functions allow you to interact graphically with trees, to perform a what-if
analysis. You can also use these functions noninteractively by including a list
of nodes as an argument. The goal is to better understand the fitted model,
examine alternatives, and interpret the data in light of the model.
You can select subtrees from a large tree, and apply a common function (such
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as a plot) to the stand of resulting trees. Similarly, you can snip subtrees from
the large tree, in order to gain resolution and label the top of the tree.

You can browse nodes to obtain important information too bulky to be
usefully placed on a tree plot. You can obtain the names of observations
which occur in a node. By examining the path (that is, the sequence of splits)
that lead to a node, you can characterize the observations in that node.

You may compare optimal splits (generated by the tree-growing algorithm) to
other potential splits. This helps to discover splits on variables that may shed
light on the nature of the data. Any split divides the observations in a node
into two groups. Therefore, you can compare the distribution of observations
of a chosen variable in each of the two groups. This helps characterize the
two groups, and also find variables with good discriminating abilities. You
may regrow the tree, after designating a different split at a node.

The leaves of the trees represent the most homogeneous partitions of the
data. You can investigate the differences across leaves by studying the
distribution or summary statistics of chosen variables.

Subtrees You can select or delete subtrees by  subscripting  the original tree, or by using
one of the two functions described below.

The function snip.tree function deletes subtrees; that is, it snips branches
off a specified tree. One goal may be to gain resolution at the top of the tree
so that it can be labeled.

The graphical interface, using a mouse, proceeds as follows:

• first click informs you of the change in tree deviance if that branch is
snipped off.

• second click removes the branch from the tree.
Figure 10.8 shows the result of snipping three branches off kyph.tree. 
> par(mfrow=c(3,1)) 
> plot(kyph.tree) 
> plot(kyph.tree) 
> kyph.tree.sn <- snip.tree(kyph.tree) 
node number: 4 
   tree deviance = 41.24 
   subtree deviance = 42.74 
node number: 10 
   tree deviance = 42.74 
   subtree deviance = 43.94 
node number: 6 
   tree deviance = 43.94 
   subtree deviance = 47.88 
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> plot(kyph.tree.sn) 
> text(kyph.tree.sn,cex=1) 

For noninteractive use, we can equivalently supply the node numbers in
snip.tree(kyph.tree,c(4,10,6)). Negative subscripting is a conve-
nient shorthand: kyph.tree[-c(4,10,6)].

Similarly, the function select.tree function selects subtrees of a specified
tree. For each node specified in the argument list or selected interactively, the
function returns a tree object rooted at that node. These can in turn be
plotted, etc.

Nodes Several S-PLUS functions encourage the user to obtain more detailed
information about nodes. Each of them take a tree object as a required
argument, and an optional list of nodes. If the node list is omitted, graphical
interaction is expected. The functions return a list, with one component for

Figure 10.8:  A sequence of plots created by snipping branches from the top tree.

|

|

|Start<12.5

Age<34.5

Number<4.5
Start<8.5

Start<14.5

absent
absent

present absent

absent absent
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each node.
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10. Classification and Regression Trees
The browser function returns a summary of the information contained in a
node. Interactively, you obtain information on the second and fifth nodes of
kyph.tree by:

> browser(kyph.tree) 
node number: 2 
 split: Start<12.5 
 n: 35 
 dev: 47.800 
 yval: absent 
        absent present 
[1,] 0.5714286 0.4285714 
node number: 5 
 split: Age>34.5 
 n: 25 
 dev: 34.300 
 yval: present 
     absent present 
[1,]   0.44    0.56 

Alternatively, provide a list of nodes as an argument:

> browser(kyph.tree,c(2,5)) 
     var  n      dev   yval splits.cutleft splits.cutright 
2    Age 35 47.80357 absent          <34.5           >34.5 
5 Number 25 34.29649 present          <4.5            >4.5
  yprob.absen yprob.present 
2   0.5714286     0.4285714 
5   0.4400000     0.5600000 

The identify function is another generic function with a tree-specific
method. The following noninteractive call lists the observations in the eighth
and ninth nodes of kyph.tree:

> identify(kyph.tree,nodes=c(8,9)) 
$"8": 
[1] "4" "14" "26" "29" "39"
$"9": 
[1] "13" "21" "41" "68" "71" 

The function path.tree returns the path (sequence of splits) from the root
to any node of a tree. This is useful in those cases where overplotting results if
the tree is labeled indiscriminately. As an example, we interactively look at
the path to the rightmost terminal node of the kyphosis tree:
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> path.tree(kyph.tree)

 node number: 27 
   root 
   Start>12.5 
   Start<14.5 
   Age>59 
   Age>157.5 

By examining the path, we can determine that the children in this node are
more than 157.5 months old, and the beginnings of the range of vertebrae
involved are between 12.5 and 14.5.

Splits The recursive partitioning algorithm underlying the tree function chooses
the “best” set of splits that partition the predictor variable space into
increasingly homogeneous regions. However, it is important to remember
that this is just an algorithm. There may be other splits that also help you
understand the data. The functions in this section help to examine alternative
splits.

Using the burl.tree function, you can select a node either interactively or
through the argument list, and observe the goodness-of-split for each predictor
in the model formula. The goodness-of-split criterion is the difference in
deviance between the node and its children (defined by the tentative split).
Large differences correspond to important splits. Reduction in deviance is
plotted against a quantity which depends upon the form of the predictor:

• numeric each possible cut-point split.

• factor a decimal equivalent of the binary representation of each
possible subset split. The plotting character is a string
labeling the left split.

In the following example and figure 10.9, competing splits are plotted for
each of the four predictor variables in the cu.summary data frame.

> reliab.tree <- tree(Reliability ~ 
+ Price + Country + Mileage + Type, 
+ na.action = na.tree.replace, data = cu.summary) 
> tree.screens() #establish plotting regions 
[1] 1 2 
> plot(reliab.tree,type="u") 
> text(reliab.tree) 
> burl.tree(reliab.tree) # Now click at the root node 
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10. Classification and Regression Trees
The burl.tree function returns a list. For each variable there is a
component which contains the necessary information for doing each of the
plots.

The burl plots show that the most important splits involve the variable
Country. The candidate splits on this variable divide into two groups; the
top group discriminates better than the bottom. The very best split is the one
labeled ef = Japan, Japan/USA. Moreover, this occurs in all candidate
splits in the top group. Therefore, we conclude that this is a meaningful split.

The function hist.tree requires a list of variable names, in addition to the
tree object (and, optionally, a list of nodes). Unlike burl.tree, the variables
need not be predictors. For a given node, a side-by-side histogram is plotted
for each variable. The histogram on the left displays the distribution of the

Figure 10.9:  A tree for Reliability in the cu.summary data frame with a burl plot of the
four predictors for the root node.
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observations following the left split; similarly the histogram on the right
displays the distribution of the observations following the right split.

Figure 10.10 is produced by the following expression: 

> reliab.tree.2 <- tree(Reliability ~ 
+ Country + Mileage + Type, 
+ na.action = na.tree.replace, data = cu.summary) 
> tree.screens() #establish plotting regions 

[1] 1 2 
> plot(reliab.tree.2, type="u") 
> text(reliab.tree.2) 
> hist.tree(reliab.tree.2, Price, Mileage, nodes=1) 

The figure shows that Japanese cars manufactured here or abroad tend to be
less expensive and more fuel efficient than others. The lower portion of the

Figure 10.10:  A tree for Reliability in the cu.summary data frame.
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plot displays a side-by-side histogram for each of the variables Price and
Mileage. Note that it is possible to get a histogram of this variable even
though the formula for this tree does not include Price.

Manual 
Splitting and 
Regrowing

After examining competitor splits at a node, you may wonder what the tree
would look like if the node were split differently. You can achieve this by
using the edit.tree function.

The arguments to edit.tree are:

• object fitted model object of class "tree".

• node number of the node to edit.

• var character string naming variable to split on.

• splitl left split. Numeric for continuous variables; character
string of levels that go left for a factor.

• splitr right split. Character string of levels that go right for a
factor.

As an example, look at a burl of kyph.tree at the root node for the variable
Start. 

> kyph.burl <- burl.tree(kyph.tree, node = 1) 
> kyph.burl$Start 
   Start       dev numl 
 1   1.5  1.001008    5 
 2   2.5  1.887080    7 
 3   4.0  2.173771   10 
 4   5.5  5.098140   13 
 5   7.0 11.499747   17 
 6   8.5 17.946393   19 
 7   9.5 12.812267   23 
 8  10.5 12.821041   27 
 9  11.5 10.136948   30 
10  12.5 18.977175   35 
11  13.5 13.927629   47 
12  14.5 17.508746   52 
13  15.5 12.378558   59 
14  16.5  2.441679   76 

Use edit.tree to regrow the tree with a designated split at Start = 8.5.
The result is shown in figure 10.11. 
> kyph.tree.edited <- edit.tree(kyph.tree, node = 1, 
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+ var = "Start", splitl = 8.5)  

Leaves Two noninteractive functions show the distribution of a variable over all
terminal nodes of a tree.

The function tile.tree plots histograms of a specified variable for
observations in each leaf. This function can be used, for example, to display

Figure 10.11:  kyph.tree regrown at the root node with a split at Start = 8.5.
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class probabilities across the leaves of a tree. Figure 10.12 shows the
distribution across leaves for Kyphosis.

> tree.screens() #split plotting screen 
> plot(kyph.tree,type="u") 

Figure 10.12:  A tree of the kyphosis data with a tile plot of Kyphosis.
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> text(kyph.tree) 
> tile.tree(kyph.tree, Kyphosis) 

A related function, rug.tree, shows the average value of a variable over the
leaves of a tree. The optional argument FUN allows you to summarize the
variable with something other than the mean (for example, trimmed means,
medians). Figure 10.13 shows the rug plot of medians for Start.

|Start<12.5
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absent absent
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> rug.tree(kyph.tree, Start, FUN = median) 

10.7 REFERENCES
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Figure 10.13:  A tree of the kyphosis data with a rug plot of Start.
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LINEAR AND NONLINEAR MIXED-EFFECTS 
MODELS 11

Mixed-effects models provide a powerful and flexible tool for analyzing
clustered data encountered in repeated-measures and nested designs. The
functions, classes, and methods described here extend the S-PLUS 3.3 linear
and nonlinear modeling facilities such as lm, varcomp, and nls. They are
applied to six examples of repeated-measures data generated by observing a
number of clusters repeatedly under varying experimental conditions. 
In the first part of this chapter, analysis of repeated-measures data using linear
mixed-effects models is illustrated with the new S-PLUS function lme. The
major distinction between lme and the linear model function lm is that lme
considers random effects and within-cluster (or within-subject) covariance.

Following the general discussion of the lme class, specifications for the
structured covariance matrix for random-effects parameters and within-
cluster errors are described. Beyond the available covariance structures,
customized structures can also be designed by the user. Examples of the
construction of covariance matrices illustrate the power of lme in handling
complex problems. 

In the second part of this chapter, analysis of repeated-measures data using
nonlinear mixed-effects models is illustrated with the new S-PLUS function
nlme. The nlme class inherits from the lme class, so many methods designed
for lme are also incorporated into nlme. For example, the methods used to
design the covariance matrix for the random-effects parameters in lme are
applicable to nlme.

11.1 LINEAR MIXED-EFFECTS MODELS
In repeated-measures data, multiple measurements are obtained from
individuals on different occasions. For each individual, serial correlation
usually exists, so a multivariate approach with structured covariance for
individuals is very appealing. Although the distribution for the response is
the same for each individual, some parameters might vary over individuals.
The following examples show the features of such data and illustrate the new
S-PLUS function lme. 

Example: 
Orthodont  Data

These repeated-measures data come from an orthodontic study presented in
Potthoff and Roy (1964). They consist of four measurements of the distance
in millimeters from the center of the pituitary to the pteryomaxillary fissure
made at ages 8, 10, 12, and 14 years on 16 boys and 11 girls. The purpose of
the study is to model the distance as a function of age, with consideration of
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11. Linear and Nonlinear Mixed-Effects Models
gender difference. The data are available in a data frame called Orthodont,
with columns Subject, Sex, age, and distance as indicated below.

> Orthodont 

    Subject Sex age distance
  1       1   0   8     26.0
  2       1   0  10     25.0
  3       1   0  12     29.0
  4       1   0  14     31.0
  . . .
105      27   1   8     24.5
106      27   1  10     25.0
107      27   1  12     28.0
108      27   1  14     28.0

Exploratory Data 
Analysis

In the Orthodont data set, subjects are classified into two groups by Sex, an
indicator variable assuming the value 0 for boys and 1 for girls. Each subject
has four measures of distance, and the 108 total records are grouped into 27
clusters by Subject. They are displayed in figure 11.1 using the code found
below. You can also use Trellis graphics to visualize these repeated-measures
data, as indicated.

Figure 11.1:  The plot of the Orthodont data suggests a linear model is
adequate.
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> motif()
> attach(Orthodont)
> plot(age, distance, type="n", xlab="Age (years)",
+   ylab="Distance (mm)")
> points(age[Sex == “0”], distance[Sex == “0”], 
+   type="p", pch=0)
> points(age[Sex == “1”], distance[Sex == “1”], 
+   type="p", pch=5)
> for (i in unique(Subject)) {
+   lines(age[Subject==i], distanceg[Subject==i], 
+   type="l", lty=2) 
+   }
> legend(12, 18.5, marks=c(0,5), legend=c("Boys","Girls"))
> detach(Orthodont)

# Trellis graphics examples:
> trellis.device(motif)
> xyplot(distance ~ age | Subject, data = Orthodont)

# The following function can be used too:
> Orthodont.plot()

The plot suggests that a linear model is adequate to explain distance as a
function of age, but that the intercept and the slope vary with the individual.
To explore this further, one could fit a simple regression to each subject by
using the function lm and plot the parameter estimates. Alternatively, the
new function lmList can be used to fit a linear model to each cluster. For
example, the cluster variable in Orthodont is Subject; a simple regression
using the covariate age for each Subject is fitted by lmList and displayed
by the generic function coef as follows.

> lmList.fit <- lmList(distance ~ age, cluster = ~ Subject,
+                      data = Orthodont)
> coef(lmList.fit)

   (Intercept)   age
 1       17.30 0.950
 2       14.85 0.775
 3       16.00 0.750
 . . . 
25       18.10 0.275
26       13.55 0.450
27       18.95 0.675

> plot(coef(lmList.fit), xlab = "Estimated intercepts",
+      ylab = "Estimated slopes")
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Figure 11.2 shows that the parameter estimates, with one exception, scatter
around 13 to 25 for the intercept and 0.17 to 1.13 for the slope. Our
exploratory analysis indicates that a mixed-effects model is suitable. The

corresponding linear mixed-effects model is 

where dij represents the distance for the ith individual at age j, β0 and β1 are
the population average intercept and the population average slope, bi0 and bi1

are the random effects in intercept and slope associated with the ith
individual, and εij  is the within-subject error term. It is assumed that the

 are independent and identically distributed with a N(0,σ2D)

distribution and that the εij  are independent and identically distributed with
a N(0,σ2) distribution, and are independent of the bi. 

Of interest for these data is whether the curves in figure 11.1 show significant
differences between boys and girls. Model (11.1) can be modified to

Figure 11.2:  The parameter estimates.

(11.1)

(11.2)

dij β0 bi 0+( ) β1 bi 1+( ) age⋅ j ε i j+ +=

bi bi 0 bi 1( , )
T
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dij β00 β01Sexi bi 0+ +( )
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+
+
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to test for sex-related differences in intercept and slope. In model (11.2), the
parameters β00 and β10 represent the population average intercept and slope
for the boys, while β01 and β11 represent the changes in population average
intercept and slope for girls. Differences between boys and girls can be
evaluated by testing whether β01 and β11 are significantly different from zero.
The remaining terms in model (11.2) are defined as in model (11.1). 

Example: Pixel  
Data

These data consist of repeated measures of mean pixel values from CT scans,
taken from an experiment conducted by Deborah Darien at the Department
of Medical Sciences, School of Veterinary Medicine, University of Wisconsin,
Madison. CT scans of the right and the left lymphnodes in the axillary region
of 10 dogs were measured over a period of 21 days after application of
contrast media. The purpose of the experiment was to model the mean pixel
value as a function of time, so as to estimate the time when the maximum
mean pixel value was attained. The data are available in a data frame called
Pixel with columns Dog, Side, day, and pixel as shown below.

> Pixel

    Dog Side day   pixel
  1   1    r   0 1045.81
  2   1    r   1 1044.54
  3   1    r   2 1042.93
  4   1    r   4 1050.44
. . . 
101   9    l   8 1099.52
102  10    l   4 1132.26
103  10    l   6 1154.51
104  10    l   8 1161.07

The 104 total records are grouped into 10 clusters by Dog. For the values of
Dog, up to 14 repeated measures of Pixel by day are nested in the factor
Side. The data are displayed in figure 11.3 using the commands below. You
can also use the function Pixel.plot to display these data with Trellis
graphics. 

> attach(Pixel)
> plot(day, pixel, type="n", ylab="Mean Pixel Value", 
+      xlab="Time (days)")
> for (i in 1:10) {
+ points(day[Side == "r" & Dog == i], 
+        pixel[Side == "r" & Dog == i], 
+        lty=1, pch=letters[i], type="b")
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+ points(day[Side == "l" & Dog == i], 
+        pixel[Side == "l" & Dog == i], 
+        lty=2, pch=letters[i], type="b")
+ }
> legend(16,1147,lty=1:2,legend=c("Right", "Left"))

A preliminary analysis indicated that the intercept varies with Side within
Dog and the linear term varies with Dog, but not with Side. A second-order
polynomial seems adequate for these data.

The corresponding linear mixed-effects model is

where i refers to the dog number (1 through 10), j to the lymphnode side
(1=right, 2=left), and k refers to day. The coefficients β0, β1, and β2 denote

respectively the intercept, the linear term, and the quadratic term fixed
effects; b0ij  denotes the intercept random effect (side-specific, nested within

dog) and b1i denotes the linear term random effect (dog-specific); and εijk

denotes the error term. Assume that the bi = (b0i1, b0i2, b1i)
T are

independent and identically distributed with common distribution
N(0,σ2D) and that the εijk are independent and identically distributed with

Figure 11.3:  The pixel data.

(11.3)pixeli jk β0 b0i j+( ) β1 b1i+( ) dayijk⋅ β2 day⋅ ijk
2 ε ijk+ + +=
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common distribution N(0,σ2) and are independent of the bi. 

A further assumption about the structure of D in model (11.3) is that the
(b0i1,b0i2) have equal variance and are independent of the b1i. This can be

rephrased by saying that the covariance matrix of random effects D can be
partitioned into four blocks as follows.

The (b0i1,b0i2) form a 2×2 block of random effects with compound

symmetry covariance matrix and the b1i form another 1×1 block with an

unstructured covariance matrix. Actually, because all the structured forms for
a block are equivalent when the block contains only one random effect, any
of the structures could be used. Entries in the other two blocks are zero due
to the assumption of independence between (b0i1,b0i2) and b1i. An analysis

of these data is described in the section Design of the Structured Covariance
Matrix for Random Effects.

Example: Ovary  
Data

These data come from an animal study reported in Pierson and Ginther
(1987). The data consist of the number of ovarian follicles greater than 10
mm in diameter recorded daily for each of 11 mares. They were recorded
daily from three days before ovulation until three days after the following
ovulation. The measurement times were scaled so that ovulation for each
mare occurs at times 0 and 1. Since the ovulation cycles vary in length, the
number of measurements and the times at which they occurred vary among
the mares. The data are stored in the data frame called Ovary.

> Ovary

    Mare         Time follicles
1      1  -0.13636364        20
2      1  -0.09090909        15
3      1  -0.04545455        19
. . .
306   11   1.05               7
307   11   1.10               5
308   11   1.15               5

The 308 total records are grouped into 11 clusters by Mare. Negative times
are scaled times which occurred before the current estrus cycle, Time=0

(11.4)D

D11 D12 0

D12 D11 0

0 0 D33

=
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through Time=1. A Trellis graphics function is provided to display these data.

> trellis.device(motif)
> Ovary.plot()

The objective is to model the number of follicles as a function of Time. From
figure 11.4 and also as suggested in Lindstrom and Bates (1988), a sinusoidal
model of the form

might be appropriate for the data. Here yij represents the number of follicles
of mare i at time xij. A simple model would assume that the components of bi

= (bi1, bi2) are independent and identically distributed as N(0,σ2D) and that

the εij  are independent and identically distributed as N(0,σ2).

In repeated-measures data such as Ovary, measurements are often correlated.

An alternative model would assume that  has the

multivariate normal distribution N(0,σ2Λi), where Λi is an ni ×ni positive
definite matrix parametrized by a fixed number of parameters, and ni is the
number of measurements on the ith subject. As in Ovary, the ni are not the
same for different mares. This example shows the serial variations for each
animal over unequal measurement periods. An analysis of these data is
described in the section The Structured Covariance Matrix for Within-
Cluster Errors. 

The lme Class 
and Related 
Methods

This section demonstrates the basic calls to lme and describes in detail its
three major arguments, fixed, random, and cluster. Methods for
summarizing the fitted model and comparing different models are applied to
the Orthodont data. 

The lme Function The lme function is used to fit a linear mixed-effects model, as described in
Laird and Ware (1982), using either maximum likelihood or restricted
maximum likelihood. The approximate standard errors for the fixed effects
are derived using the asymptotic theory described in Pinheiro (1994). The
lme function returns an object of class lme. Numerous optional arguments
can be used with this function, but a typical call can be as brief as
lme(fixed, random, cluster, data).

Only the fixed and cluster arguments are required. The arguments
fixed and random are formulas, as shown below. Any linear model formula
(see chapter 2) is allowed, giving the model specification considerable

(11.5)
yij β1 bi 1+( ) β2 bi 2+( ) 2πxij( )sin⋅

β3 bi 3+( ) 2πxij( )cos⋅ ε i j

+ +
+

=

ε i ε i 1 ε i 2 … ε ini
, , ,( )T

=
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Linear Mixed-Effects Models
flexibility. 

For the Orthodont data these formulas would be written

fixed = distance ~ age, random = ~ age

for model (11.1) and

Figure 11.4:  The plot suggests a sinusoidal model might be appropriate.
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fixed = distance ~ age * Sex, random = ~ age

for model (11.2). Note that the response variable is given only in the formula
for the fixed argument. The intercept is automatically included in the
fixed and random arguments. The cluster argument is a formula or
expression defining the labels for the different subjects in the data. For the
Orthodont data we would use

cluster = ~ Subject

for both model (11.1) and model (11.2). The optional argument data
specifies the data frame containing the variables used in the model. Here is
the call to lme to fit model (11.1).

> Orthodont.fit1 <- lme(fixed = distance ~ age, 
+                   random = ~ age, cluster = ~ Subject,
+                   data = Orthodont)

The following call fits model (11.2).

> Orthodont.fit2 <- lme(fixed = distance ~ age * Sex, 
+                   random = ~ age, cluster = ~ Subject,
+                   data = Orthodont)  

Methods for the 
print , summary , 
and anova  
Functions

The print method for the class lme gives estimates of the standard errors,
correlations of the random effects, the cluster variance, and estimates of the
fixed effects. A more complete description of the estimation is returned by
summary.

> Orthodont.fit1

Call:
  Fixed: distance ~ age
 Random:  ~ age
Cluster:  ~ Subject
   Data: Orthodont

Variance/Covariance Components Estimate(s):

  Structure: unstructured
  Parametrization: matrixlog
  Standard Deviation(s) of Random Effect(s)
 (Intercept)       age
    2.327036 0.2264279
 Correlation of Random Effects
    (Intercept)
age -0.6093333
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 Cluster Residual Variance: 1.716204

Fixed Effects Estimate(s):
  (Intercept)       age
    16.76111 0.6601852

Number of Observations: 108
Number of Clusters: 27

> summary(Orthodont.fit2) 
. . . 
Restricted Loglikelihood: -216.2908
Restricted AIC: 448.5817
Restricted BIC: 470.0387

Variance/Covariance Components Estimate(s):
  Structure: unstructured
  Parametrization: matrixlog
  Standard Deviation(s) of Random Effect(s)
 (Intercept)     age
    2.405606 0.18035
 Correlation of Random Effects
    (Intercept)
age -0.6676482

 Cluster Residual Variance: 1.716195

Fixed Effects Estimate(s):
                   Value Approx. Std.Error  z ratio(C)
(Intercept)  16.3406250        1.01854580  16.0430930
        age   0.7843750        0.08599996   9.1206441
        Sex   1.0321023        1.59575459   0.6467801
    age:Sex  -0.3048295        0.13473604  -2.2624203

 Conditional Correlation(s) of Fixed Effects Estimates
        (Intercept)        age        Sex
    age -0.8801649
    Sex -0.6382847   0.5617958
age:Sex  0.5617958  -0.6382847 -0.8801649

The above results show that the Sex fixed effect is not significant while the
interaction age:Sex fixed effect is significant at α-level 0.05 with a p-value
of 0.04. These indicate that the average intercept is common to boys and
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girls, but the measurement increases faster in boys than in girls. 
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A likelihood ratio test to evaluate the hypothesis of no sex differences in
distance development is returned by the anova method.

> anova(Orthodont.fit1, Orthodont.fit2)

 . . .
               Model Df    AIC    BIC  Loglik
Orthodont.fit1     1  6 454.64 470.73 -221.32
Orthodont.fit2     2  8 448.58 470.04 -216.29
                  Test Lik.Ratio   P value
Orthodont.fit1
Orthodont.fit2 1 vs. 2    10.055 0.0065551

The likelihood ratio test gives strong evidence against the null hypothesis of
no sex differences with a p-value of 0.007. The following uses a likelihood
ratio test to test whether the growth rate is only dependent on sex.

> Orthodont.fit3 <- lme(fixed = distance ~ age +
+ age:Sex, random = ~ age,
+ cluster = ~ Subject, data = Orthodont)

Now use the anova method again.

> anova(Orthodont.fit2, Orthodont.fit3)

 . . .
               Model Df    AIC    BIC  Loglik
Orthodont.fit2     1  8 448.58 470.04 -216.29
Orthodont.fit3     2  7 449.77 468.54 -217.88
                  Test Lik.Ratio P value
Orthodont.fit2
Orthodont.fit3 1 vs. 2    3.1843 0.07435

As expected, the likelihood ratio test based on α-level = 0.05 indicates that
the initial distances do not depend on sex.

The plot  Method Plots of random-effects estimates, residuals, and fitted values can be obtained
using the plot method for the class lme. The following call produces a
scatter plot, shown in figure 11.5, of the estimated random effects for
intercept and slope in model (11.2). 

> plot(Orthodont.fit2,pch="o") 

The outlying point in the upper left corner of figure 11.5 could have a great
impact on the correlation and variance estimates. 

Residual plots are obtained by specifying option=”r” in the plot function.  

> par(mfrow = c(2, 2)) 
> plot(Orthodont.fit3, option="r", pch="o", which=1:2)
> par(fig=c(0,1,0,.5))
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> plot(Orthodont.fit3, option="r", pch="o", which=3)

The resulting plots are shown in figure 11.6. The plot of observed versus
fitted values indicates that the linear mixed-effects model does a reasonable
job of explaining the distance growth. The points fall relatively close to the
45° line, indicating a reasonable agreement between the fitted and the
observed values. The residuals versus fitted values plot suggests the presence
of three outliers in the data. The remaining residuals appear to be
homogeneously scattered around the zero residual line. The boxplots of the
residuals by subject suggest that the outliers occurred for subjects 9 and 13.
There seems to be considerable variation in the within-subject variability, but
it must be remembered that each boxplot represents only four residuals.

Figure 11.7 reproduces the original data plot of figure 11.1, the random-
effects estimates scatter plot of figure 11.5, and the residual versus fitted
values plot of figure 11.6. Subjects 9 and 13 are distinguished in each plot.
These plots show that those extreme values of residuals and estimates of
random effects come from subjects 9 and 13. The first plot also shows that
the data for subject 9 is probably in error because the measurement decreases
substantially between ages 8 and 10 and between ages 12 and 14. The
following commands produce the plots in figure 11.7.

> par(mfrow=c(2,2))
> plot(age, distance, type="n", xlab="Age (years)", 
+                              ylab="Distance (mm)")

Figure 11.5:  Scatter plot: plot(Orthodont.fit2,pch=”0”).
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> for (i in (1:27)[-c(9,13)]) {
+    if (Sex[match(i, Subject)]=="0") {
+    lines(age[Subject==i], distance[Subject==i], 
+          type="l", lty=2)}
+    if (Sex[match(i, Subject)]=="1") {
+    lines(age[Subject==i], distance[Subject==i], 

Figure 11.6:  The plot shows that a linear mixed-effects model provides
reasonable results.
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+          type="l", lty=2)}}
> text(age[Subject==9], distance[Subject==9], labels="9") 
> lines(age[Subject==9], distance[Subject==9], 
+       type="l", lty=8) 
> text(age[Subject==13], distance[Subject==13], labels="13") 
> lines(age[Subject==13], distance[Subject==13], 
+       type="l", lty=8) 
> # Plot of random effects estimates
> b <- Orthodont.fit3$coefficients$random
> plot(b[, 1], b[, 2], 
+      xlab = dimnames(b)[[2]][1], 
+      ylab = dimnames(b)[[2]][2], type="n")
> points(b[-c(9,13), 1], b[-c(9,13), 2], pch="o")
> text(b[9,1], b[9,2], labels="9")
> text(b[13,1], b[13,2], labels="13")
> # Plot of residuals versus fitted values
> par(fig=c(.25,.75,0,.5))
> r <- residuals(Orthodont.fit3)$cluster
> p <- fitted(Orthodont.fit3)$cluster
> plot(p, r, ylab="Residuals", xlab="Fitted Values", 

Figure 11.7:  A plot reproducing the original effects.
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+      type="n")
> abline(0, 0, lty=2)
> points(p[Subject != 9 & Subject != 13],
+        r[Subject != 9 & Subject != 13], pch="o")
> text(p[Subject == 9],r[Subject == 9], labels="9")
> text(p[Subject == 13],r[Subject == 13], labels="13")

Other Methods Standard S-PLUS functions, such as resid, fitted, and coef, for
extracting components of fitted objects have methods for the class lme. The
first two methods return data frames with two columns, population and
cluster, while the last method returns a list with two components,
estimates of the fixed-effects and the random-effects. 
Estimates of the individual parameters are obtained using the coef method.
> coef(Orthodont.fit3)

   (Intercept)       age    age:Sex
 1    18.18846 0.8421782 -0.2281273
 2    15.49069 0.7344114 -0.2281273
 3    16.19283 0.7407887 -0.2281273
 . . . 
27    19.13794 0.8467882 -0.2281273

Predicted values are returned by the predict method. For example, to
predict the average measurement for both boys and girls at ages 14, 15, and
16, as well as for subjects 1 and 20 at age 13, first create a new data frame, say
Orthodont.new, as follows.

> Orthodont.new <-
+   data.frame(Sex = c(0, 0, 0, 1, 1, 1, 0, 1),
+   age = c(14, 15, 16, 14, 15, 16, 13, 13),
+   Subject = c(NA, NA, NA, NA, NA, NA, 1, 20))

Then use 

> predict(Orthodont.fit3, Orthodont.new, ~ Subject)
  cluster fit.cluster fit.population

1      NA          NA       27.30487

2      NA          NA       28.05800

3      NA          NA       28.81113

4      NA          NA       24.11109
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5      NA          NA       24.63609

6      NA          NA       25.16109

7       1    29.13678       26.55175

8      20    22.07238       23.58609

to get the cluster and population predictions.

Design of the 
Structured 
Covariance 
Matrix for 
Random 
Effects

Structured covariance matrices for the random effects can be specified using
the optional argument re.structure in the call to lme. If there are q
random effects, the covariance matrix is a q × q symmetric matrix. Predefined
structures available include

• unstructured for a general covariance matrix (requiring q(q+1)/2
distinct parameters); 

• diagonal for independent random effects with possibly different
variances (q parameters); 

• identity for independent random effects with the same variance
(1 parameter); 

• compsymm for a compound symmetry structure where all random
effects have the same variance and the same correlation (2
parameters); 

• ar1 for a common variance and AR(1) correlation structure (2
parameters) as in Box, Jenkins, and Reinsel (1994).

The random effects can also be grouped into separate blocks, using the
optional argument re.block. Random effects belonging to different blocks
are assumed to be independent. Different covariance structures can be
specified for each block. How to specify a covariance structure is
demonstrated in the following analysis of the Pixel data.

The Structured 
Covariance 
Matrix and 
Random-Effects 
Blocks

The re.block argument to lme is used to specify blocks of random effects
in the form of a list whose components are vectors or scalars defining the
number of the random effects that belong to the block. For model (11.3),
apply lme as follows.

> Pixel.fit <- lme(fixed = pixel ~ day + day^2, 
+           random = ~ Side + day - 1,
+           cluster = ~ Dog, data = Pixel,
+           re.block = list(c(1,2),3),
+           re.structure = c("compsymm", "unstructured"))
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The number assigned to a random effect is established by the way it is
extracted from the random formula. Alternatively, the names of the random
effects can be used in re.block. For example, after the following
assignments
> Side.r <- as.integer(Pixel$Side == "r")
> Side.l <- as.integer(Pixel$Side == "l")

either 

..., random = ~ Side.r + Side.l + day - 1, 
re.block = list(c(Side.r, Side.l), day)

or
..., random = ~ Side + day - 1, 
re.block = list(c("Sider","Sidel"), "day") 

can be used equivalently in the above assignment. 

The re.structure argument is a vector of character strings with length
equal to the number of random-effects blocks defined in re.block. When
the same structure applies to all random-effects blocks, one specification
suffices. Each component of re.structure defines the covariance structure
to be used for the corresponding block of random effects in the re.block
list. Partial matching is used on this argument, so that only the first letter of
the structure name is required; for example, re.structure =
c("c","u") would have the same effect in the assignment to Pixel.fit
above. 

The print method changes slightly when random-effects blocks are used.
> Pixel.fit

Call:
  Fixed: pixel ~ day + day^2
 Random:  ~ Side + day - 1
Cluster:  ~ Dog
   Data: Pixel

Variance/Covariance Components Estimate(s):

 Block: 1
  Structure: compound symmetry
  Standard Deviation(s) of Random Effect(s)
    Sidel    Sider
 31.78052 31.78052
 Correlation of Random Effects
          Sidel
Sider 0.7204526
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 Block: 2
  Structure: unstructured
  Parametrization: matrixlog
  Standard Deviation(s) of Random Effect(s)
      day
 1.782121

 Cluster Residual Variance: 81.46076

Fixed Effects Estimate(s):
  (Intercept)      day   I(day^2)
    1072.681 6.224556 -0.3685574

Number of Observations: 102
Number of Clusters: 10

Custom Methods 
for the 
Structured 
Covariance 
Matrix

Users can define their own covariance structures if desired. The lme function
uses two generic functions, lme.re.param and lme.re.factor, when
estimating the covariance components for the random effects. The
lme.re.param function should return a vector of parameters that define the
parametrizations of a given covariance matrix D. The lme.re.factor
function, given a vector of parameters, should return a matrix L such that

LTL = D. The structure defines a class for which methods for the generic
functions lme.re.param and lme.re.factor are given. By writing
customized methods for these generic functions, you can define special
covariance structures. 
When writing methods for lme.re.param and lme.re.factor, observe
that the optimization algorithm in lme assumes an unrestricted
parametrization of the covariance matrices. The following example illustrates
this issue. Suppose that b0ij  and b1i are not independent as in model (11.3),
but rather have a common, possibly nonzero, correlation. This structure is
not among the available options, so we would write custom methods for
lme.re.param and lme.re.factor. Let D represent the covariance matrix
of bi. Assume that D11 = D22 and D13 = D23. There are a total of four

parameters in D, and D becomes

. (11.6)D

D11 D12 D13

D12 D11 D13

D13 D13 D33

=
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Note that the positive definiteness of D requires both that  and

that . These restrictions can be incorporated, in an

unconstrained framework, by defining

and setting

Customized methods using this structure can be defined as follows.

lme.re.param.mystruct <- function(D)
{
ax1 <- log(D[1,1])
ax2 <- log(D[3,3])
ax3 <- sqrt(D[1,1] * D[3,3])
c(ax1, log((D[1,1] + D[1,2])/(D[1,1] - D[1,2])),
  ax2, log((D[1,3] + ax3)/(ax3 - D[1,3])))
}

lme.re.factor.mystruct <- function(theta, q)
{
ax1 <- exp(theta[1])
ax2 <- ax1 * (exp(theta[2]) - 1)/(exp(theta[2]) + 1)
ax3 <- exp(theta[3])
ax4 <- sqrt(ax1 * ax3) * (exp(theta[4]) - 1)/
           (exp(theta[4]) + 1)
chol(array(c(ax1, ax2, ax4, ax2, ax1, ax4, ax4, ax4, ax3),
           c(3,3)))
}

D12 D11<

D13 D11D33<

θ1 D11( )
θ2

log

D11 D12+( ) D11 D12–( )⁄[ ]
θ3

log

D33( )
θ4

log

D11D13 D13+( ) D11D13 D13–( )⁄[ ]log

=

=

=

=

D11 D22 eθ1

D12 e
θ1 e

θ2 1–( ) e
θ2 1+( )⁄

D33 eθ3

D13 D23 e θ1 θ3+( ) 2⁄[ ] eθ4 1–( ) eθ4 1+( )⁄( ).

= =

=

=

= =
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The following call uses them to fit the desired model.

> Pixel.fit2 <- lme(fixed = pixel ~ day + day^2,
+                   random = ~ Side + day - 1,
+                   cluster = ~ Dog, data = Pixel,
+                   re.structure = "mystruct")

Here is the resulting fit.

> Pixel.fit2

Call:
  Fixed: pixel ~ day + day^2
 Random:  ~ Side + day - 1
Cluster:  ~ Dog
   Data: Pixel

Variance/Covariance Components Estimate(s):

  Structure: mystruct
  Standard Deviation(s) of Random Effect(s)
    Sidel    Sider      day
 33.00453 33.00453 1.842898
 Correlation of Random Effects
           Sidel      Sider
Sider  0.7403167
  day -0.4781016 -0.4781016

 Cluster Residual Variance: 80.91684

Fixed Effects Estimate(s):
  (Intercept)      day   I(day^2)
    1073.343 6.128869 -0.3673046

Number of Observations: 102
Number of Clusters: 10

One can use the anova method to compare Pixel.fit and Pixel.fit2.
The comparison shows that the assumption of independence between
(b0i1,b0i2) and b1i is not unreasonable in this case; the p-value is 0.13.

> anova(Pixel.fit, Pixel.fit2)
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. . .
            Model Df    AIC    BIC  Loglik    Test
 Pixel.fit     1  7 841.54 859.91 -413.77
Pixel.fit2     2  8 841.29 862.29 -412.65  1 vs. 2
           Lik.Ratio P value
 Pixel.fit
Pixel.fit2    2.2448 0.13406

The Structured 
Covariance 
Matrix for 
Within-Cluster 
Errors

The optional arguments serial.structure, serial.covariate,
serial.covariate.transformation,var.function,var.estimate
and var.covariate can be used to specify the covariance structure for
within-cluster errors. The first three arguments correspond to modeling the
correlation structure. The last three arguments correspond to modeling the
variance structure. They are applied to the Ovary data below.
For the Ovary data, you can apply the lme calls described in previous
sections to model  as follows.

> Ovary.fit1 <- lme(follicles ~
+                   I(sin(2*pi*Time))+I(cos(2*pi*Time)),
+                   cluster= ~ Mare, data = Ovary)
> Ovary.fit1

Call:
  Fixed: follicles ~ I(sin(2 * pi * Time)) + I(cos(2 * pi * 
Time))
 Random: follicles ~ I(sin(2 * pi * Time)) + I(cos(2 * pi * 
Time))
Cluster:  ~ Mare
   Data: Ovary

Variance/Covariance Components Estimate(s):

  Structure: unstructured
  Parametrization: matrixlog
  Standard Deviation(s) of Random Effect(s)
 (Intercept) I(sin(2 * pi * Time)) I(cos(2 * pi * Time))
    3.235347              2.095777              1.068676
 Correlation of Random Effects
                      (Intercept) I(sin(2 * pi * Time))
I(sin(2 * pi * Time)) -0.5699137
I(cos(2 * pi * Time)) -0.8011913   0.1786379
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 Cluster Residual Variance: 9.114855

Fixed Effects Estimate(s):
  (Intercept) I(sin(2 * pi * Time)) I(cos(2 * pi * Time))
    12.18591             -3.296668            -0.8731739

Number of Observations: 308
Number of Clusters: 11

Model (11.5) assumes that measurements within each cluster are
independent. From figure 11.4, it is reasonable to assume the existence of
serial correlations. Assume that the correlation matrix is of type AR(1) and
that the variances are the same at all occasions. Two types of AR(1) are
available for the argument serial.structure. They are ar1 and
ar1.continuous, corresponding to an integer-valued or a continuous-
valued covariate, respectively. In the continuous case, the arguments are set as
follows.

serial.structure = “ar1.continuous”, 
serial.covariate = ~ Time,
serial.covariate.transformation = “none”

For simplicity, the discrete case ar1 is applied to the analysis of the Ovary
data. Hence, for the ith mare, with 3 repeated measures at times xij , the

covariance matrix is σ2Λi, where 

The following call fits this model.

> Ovary.fit2 <- lme(follicles ~
+                   I(sin(2*pi*Time)) + I(cos(2*pi*Time)),
+                   serial.structure="ar1",
+                   cluster= ~ Mare, data = Ovary)

. (11.7)Λi

1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

ρuv α
duv= ,  duv u v–=,=
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> Ovary.fit2 

Call:
  Fixed: follicles ~ I(sin(2 * pi * Time)) + I(cos(2 * pi *     
Time))
 Random: follicles ~ I(sin(2 * pi * Time)) + I(cos(2 * pi *     
Time))
Cluster:  ~ Mare
   Data: Ovary

Variance/Covariance Components Estimate(s):

  Structure: unstructured
  Parametrization: matrixlog
  Standard Deviation(s) of Random Effect(s)
 (Intercept) I(sin(2 * pi * Time))
    3.091169              1.408717
 I(cos(2 * pi * Time))
             0.8221724
 Correlation of Random Effects
                      (Intercept)
I(sin(2 * pi * Time)) -0.7399842
I(cos(2 * pi * Time)) -0.9734431
                      I(sin(2 * pi * Time))
I(sin(2 * pi * Time))
I(cos(2 * pi * Time))  0.5663492

 Cluster Residual Variance: 11.46478

 Serial Correlation Structure: ar1
 Serial Correlation Parameter(s): 0.5408387

Fixed Effects Estimate(s):
  (Intercept) I(sin(2 * pi * Time))
    12.18361              -3.01566
 I(cos(2 * pi * Time))
            -0.8703521

Number of Observations: 308
Number of Clusters: 11
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The above fit gives an estimate of 0.54 for α in the covariance matrix. The
estimated correlation between two consecutive measures is 0.54. A likelihood
ratio test of these assumptions shows that correlations exist within cluster.

> anova(Ovary.fit1,Ovary.fit2)

. . . 
       Model Df    AIC    BIC  Loglik    Test Lik.Ratio    P 
value 
Ovary.fit1 1 10 1630.0 1667.3 -805.02                             
Ovary.fit2 2 11 1566.1 1607.1 -772.05 1 vs. 2     65.94 
4.4409e-16
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11.2 NONLINEAR MIXED-EFFECTS MODELS
Nonlinear mixed-effects models, which generalize nonlinear models and
linear mixed-effects models can be analyzed with the new S-PLUS function
nlme. Since the nlme class inherits from the lme class, methods for the lme
class apply to the nlme class.
Structured covariance matrices and random-effects blocks can also be used
for nonlinear mixed-effects models. As in the lme function, the optional
arguments re.structure and re.block provide this capability in nlme.
The usage of these arguments is identical to that in lme, described in the
previous section.

There are many advantages to using nonlinear mixed-effects models. For
example, the expectation function is usually based on the theory about the
mechanism of the data. Nonlinear models are more flexible than linear
models. Further, parameters in the expectation function usually have physical
meaning and are of interest to the investigator. The three data analyses below
demonstrate the use of nlme in a range of applications of nonlinear mixed-
effects models. 

Example: 
Soybean  Data

These data come from an experiment to compare growth patterns of two
genotypes of soybean as described in Davidian and Giltinan (1995). One
genotype is a commercial variety, Forrest (F), and the other is an
experimental strain, Plant Introduction #416937 (P). The data were
collected in the three years from 1988 to 1990. At the beginning of the
growing season in each year, 16 plots were planted with seeds; 8 plots with
each genotype. Each plot was sampled eight to ten times at approximately
weekly intervals. At each sampling time, six plants were randomly selected
from each plot, leaves from these plants were weighed, and the average leaf
weight per plant was calculated for the plot. Different plots in different sites
were used in different years. The data are stored in the data frame Soybean
shown below.

> Soybean

   Plot Variety Year time   weight 
  1    1       F 1988   14  0.10600
  2    1       F 1988   21  0.26100
  3    1       F 1988   28  0.66600
  . . . 
410   48       P 1990   51  6.131667
411   48       P 1990   64 16.411667
412   48       P 1990   79 16.946667
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Exploratory Data 
Analysis

The experiment in the soybean study has a 2×3 block design with repeated
measures at different measurement times in each year. The 412 total records
are grouped into 48 clusters by Plot. The objective is to model the growth
pattern in terms of average leaf weight. From the plot below and as suggested
by Davidian and Giltinan (1995), a logistic function is appropriate. 

> trellis.device(motif)
> xyplot(weight ~ time | Variety * Year, data = Soybean, 
+        panel = function(x, y) { 
+                panel.grid()
+                panel.xyplot(x,y)
+                panel.loess(x,y) },
+        xlab = "Days after planting", 
+        ylab = "Leaf weight/plant (g)")

A logistic model can be written as 

where wij  is the average leaf weight for plot i at time j. The parameters in the
model have special interpretations; αi is the asymptotic leaf weight as time

(11.8)

Figure 11.8:  The objective of the soya bean study is to model growth
patterns.

wij

α i

1 e
xij βi–( )– γi⁄

+
----------------------------------- εi j+=
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goes to infinity, βi is the length of time to reach 50 percent of the asymptotic
leaf weight, αi, and γi is a scale parameter. The εi are assumed to be

independent and identically distributed as N(0,σ2D). Without assuming
random effects and assuming D=I , a nonlinear model can be applied to the
above model. 

To explore whether the data follow a nonlinear mixed-effects model, we can
apply the nonlinear model to each cluster and then plot the fitted parameters.
The new S-PLUS function nlsList creates a list of fits to each cluster. This
function is an extension of the nls function. To call nlsList, the user must
provide either initial estimates or a self-starting function, which will be
discussed later in this chapter. Here the same initial estimates of α, β and γ
will be used for all clusters. They are derived based on an approximation for
α and a simple regression. The mean of the last recorded leaf weights in each
plot is used as the initial estimate of α. The initial estimates of β and γ are
derived from fitting a simple regression on . They are
generated as follows. 

> Soybean.new <- Soybean
> Soybean.new$weight.transf <- numeric(412)
> attach(Soybean.new)
> maxwt <- numeric(48)
> for (i in unique(Plot)) {
+ maxwt[i] <- max(weight[Plot == i])}
> mean(maxwt)

[1] 18.22999

> for (i in 1:length(Soybean.new$weight)) {
+   if(Soybean.new$weight[i] < 18)
+     Soybean.new$weight.transf[i] <- 
+           log(18.22999/Soybean.new$weight[i]-1)
+   else Soybean.new$weight.transf[i] <- log(.01)}

> Soybean.lm <- lm(weight.transf ~ time, data = Soybean.new)
> Soybean.lm

Call:
lm(formula = weight.transf ~ time, data = Soybean.new)

Coefficients:
 (Intercept)       time
    6.906195 -0.1301867

α weight⁄ 1–( )log
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Degrees of freedom: 412 total; 410 residual
Residual standard error: 1.002497

The initial estimates of  and  are computed

from  and . 

The function nlsList is called as follows below, where Asym=α, T50=β, and
scal=γ. The initial estimates are added to the data frame first and then
passed to the nlsList call. S-PLUS functions coef and pairs are used to
print and display the results. 

> param(Soybean.new, "Asym") <- 18.22999
> param(Soybean.new, "T50")  <- 53.04839
> param(Soybean.new, "scal") <- 7.681276
> Soybean.nlsList <- nlsList(weight ~ 
+                     Asym/(1 + exp((( -(time - T50))/scal))),
+                     data = Soybean.new, cluster = ~ Plot)

Error in nls(formula = formula, data = data, contr..: 
step factor reduced below minimum
Dumped
> coef(Soybean.nlsList)

          Asym       T50      scal
 1  20.338845  57.40303  9.605089
 2  19.745594  56.57531  8.406848
. . .
13  17.703854  51.27163  6.809334
14 162.850268 104.85256 17.922592
15  27.485299  61.49776 10.177363
. . .
31  15.472057  46.34357  5.394270
32         NA        NA        NA
33  19.788159  55.68886  9.615056
. . .
45  19.545968  51.15219  7.294325
46  17.688635  50.22827  6.625463
47  19.159893  54.80059 10.846798
48  18.51452   52.44986  8.582159
> pairs(Soybean.nlsList)

The error message above refers to cluster 32 which was not fitted. 

Figure 11.9 shows the parameter estimates as displayed by the pairs
function. With the exception of plot 14, the estimates for Asym range from 8
to 36, those for T50 from 46 to 70, and those for scal from 6 to 13. From

β 53.04839= γ 7.681276=

β γ⁄ 6.906195= 1– γ⁄ 0.1301867–=
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the above analysis, we see that plot 32 cannot be fitted by the logistic model
with the above initial estimates. Plot 14 has distinctly larger parameter
estimates than the other clusters. Figure 11.10 depicts leaf weights of plots

Figure 11.9:  The parameter estimates displayed by the pairs function.

Figure 11.10:  Leaf weights of the selected plots 14, 32, 46 and 48.
313



11. Linear and Nonlinear Mixed-Effects Models
14, 32, 46, and 48. Much variation is discerned in the last three weeks. The
above analysis suggests the existence of random effects in the parameters and
within-cluster covariance. Hence, a nonlinear mixed-effects model is
appealing. 

To see the association between random-effects parameters and covariates, we
can plot the above fitted parameters versus covariates. Figure 11.11 is the
density plot of the estimates for the asymptotic leaf weight Asym, excluding
the problematic plots 14 and 32. It shows that the estimated values of Asym
in 1989 are, in general, smaller than those in other years. Plants of the
experimental strain have smaller fitted values in 1989 and 1988. This plot
suggests that the random-effects parameter Asym is affected by Variety and
Year. No patterns are shown in the plots of the estimates for T50 and scal.

> # Find the invariants in clusters
> Soybean.inv <- Soybean[match(unique(Soybean$Plot),
+                        Soybean$Plot), 2:3]
> augcoef <- cbind(coef(Soybean.nlsList), Soybean.inv)
> Soybean.nlscoef <- augcoef[c(1:13,15:31,33:48),]
> densityplot( ~ Asym | Variety*Year, data =Soybean.nlscoef,
+              layout = c(1,6), aspect = 0.4)

Example: Theoph  
Data

These data come from a study of the kinetics of the anti-asthmatic agent
theophylline reported by Boeckman, Sheiner, and Beal (1992). The objective
of the study was to model the kinetics of theophylline following oral
administration.
In this experiment, the drug was administered orally to twelve subjects, and
then serum concentrations were measured 11 times over the next 25 hours.
The data are stored in the data frame Theoph as shown below. The column
Wt gives the subject’s weight (kg) and conc is the theophylline concentration
in the sample (mg/L). The 132 total records are grouped into 12 clusters by
Subject. 

> Theoph

    Subject   Wt Dose  time conc
  1       1 79.6 4.02  0.00 0.74
  2       1 79.6 4.02  0.25 2.84
  3       1 79.6 4.02  0.57 6.57
  . . . 
130      12 60.5 5.30  9.03 6.11
131      12 60.5 5.30 12.05 4.57
132      12 60.5 5.30 24.15 1.17

Figure 11.12 shows that the concentration has a peak between one to four
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hours following administration.

> trellis.device(motif)
> Theoph.plot()

Figure 11.11:  The density plot for the estimates of the asymptotic leaf
weight.
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A common pharmacokinetic model is the one-compartment open model
with first-order absorption and elimination (Davidian and Giltinan, 1995).
The model can be written as 

Here cij  denotes theophylline concentration for subject i at time tij  (hours)
and di is the dose administered to the subject. The parametrization used here
allows for more stable convergence and also enforces nonnegative estimates.
The parameters have special meaning in pharmacokinetics. The expectation

function is modeled in terms of the clearance, , the absorption rate

Figure 11.12:  The plot shows there is a peak one to four hours after
administration.
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constant, , and the elimination rate constant, . The error terms eij  are

assumed to be independent and identically distributed as N(0,σ2). 

Example: CO2 
Data

These data, described in Potvin and Lechowicz (1990), come from a study of
the cold tolerance of a C4 grass species, Echinochloa crus-galli. A total of
twelve four-week-old plants, six from Québec and six from Mississippi, were
divided into two groups. Control plants were kept at 26° C, and other plants
were subjected to 14 hours of chilling at 7° C. After 10 hours of recovery at

20° C, CO2 uptake rates (in µmol/m2s) were measured for each plant at seven
concentrations (100, 175, 250, 350, 500, 675, 1000 µL/L) of ambient CO2.
Each plant was subjected to the seven concentrations of CO2 in increasing
order. The objective of the experiment was to evaluate the effect of plant type
and chilling treatment on the CO2 uptake. The CO2 uptake data is held in a
data frame called CO2, with columns Plant, Type, Treatment, conc, and
uptake as shown below.
> CO2
  Plant        Type  Treatment conc uptake
 1     1      Quebec nonchilled   95   16.0
 2     1      Quebec nonchilled  175   30.4
 3     1      Quebec nonchilled  250   34.8
 . . .
83    12 Mississippi    chilled  675   18.9
84    12 Mississippi    chilled 1000   19.9

This is an example with repeated measures not on a time-dependent variable.
The experiment has a 2×2 factorial design with repeated measures at seven
levels of concentration. The 84 total records are grouped into 12 clusters by
Plant. The data are plotted in figure 11.13. 

The model used in Potvin and Lechowicz (1990) is as follows.

Here Uij  denotes the CO2 uptake rate of the ith plant at the jth CO2 ambient

concentration; φ1i, φ2i, and φ3i denote respectively the asymptotic uptake

rate, the uptake growth rate, and the maximum ambient CO2 concentration
at which no uptake is verified for the ith plant; Cj denotes the jth ambient

CO2 level; and the εij  are independent and identically distributed error terms

with distribution N(0,σ2).

e
φ2i e

φ3i

(11.10)Uij φ1i 1 e φ– 2i Cj φ3i–( )–[ ] ε i j+=
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The nlme Class 
and Related 
Methods

This section demonstrates the basic call to nlme. The five arguments
object, fixed, random, cluster, and start are described in detail.
Except for the predict method, all methods for the lme class are used for
the nlme class. 

The nlme  
Function

The nlme function is used to fit nonlinear mixed-effects models, as defined
in Lindstrom and Bates (1990), using either maximum likelihood or
restricted maximum likelihood. Many arguments can be used with this
function, though a typical call may be as brief as that below. Only object,
fixed, cluster, and start are required arguments.

> nlme(object, fixed, random, cluster, data, start)

The required argument object consists of a formula specifying the
nonlinear model to be fitted. Any S-PLUS nonlinear formula can be used,
which gives the function considerable flexibility. Applying equation (11.10),
and without incorporating covariates, the parameters become φ1, φ2, φ3 for

all plants. The object argument would be set to

Figure 11.13:  The CO2 experiment was designed to measure the cold
tolerance of certain plants.
318



Nonlinear Mixed-Effects Models
uptake ~ A * (1 - exp(-B * (conc - C)))

where A = φ1, B = φ2, and C = φ3. 

Alternatively, one can set the object argument to a function, say CO2.fun, 

> CO2.fun <- function(conc, A, B, C) 
+            A * (1 - exp(-B * (conc-C)))

and then set object to the following. 

uptake ~ CO2.fun(conc, A, B, C)

The arguments fixed and random are lists of formulas that define the
structures of the fixed and random effects in the model. In these formulas a
period “.” on the right-hand side of a formula indicates that a single
parameter is associated with the effect, but any linear formula in S-PLUS can
be used. Again, this gives considerable flexibility to the model. Time-
dependent parameters are easily incorporated, for example, when a formula
in the fixed list involves a covariate that changes with time. Usually every
parameter in the model has an associated fixed effect, but it may not have an
associated random effect. Since we assumed that all random effects have
mean zero, the inclusion of a random effect without a corresponding fixed
effect would be unusual. Note that the fixed and random formulas could be
directly incorporated in the model declaration.

To fit a model to the CO2 uptake data in which all parameters are random
and no covariates are included, use the following.

fixed = list(A ~ ., B ~ ., C ~ .),
random = list(A ~ ., B ~ ., C ~ .) 

To estimate the effects of plant type and chilling treatment on the parameters
in the model, use the following.

fixed = list(A ~ type*treatment, B ~ type*treatment, 
             C ~ type*treatment),
random = list(A ~ ., B ~ ., C ~ .) 

The cluster argument is required and defines the cluster label of each
observation. Any S-PLUS expression or a formula with no left-hand side can
be used here. The optional argument data names a data frame and start
provides a list of starting values for the iterative algorithm. Only the fixed-
effects starting estimates are required. The default starting estimates for the
random effects are zero. Starting estimates for the scaled covariance matrix D
of the random effects and the cluster variance σ2 are automatically generated
using a formula from Laird, Lange, and Stram (1987) if they are not
supplied. 
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Here is a simple call to nlme to fit model (11.10) without any covariates and
with all parameters as mixed effects. The initial values for the fixed effects
were obtained from Potvin and Lechowicz (1990).

> CO2.fit1 <-
+   nlme(object = uptake ~ CO2.fun(conc, A, B, C),
+        fixed = list(A ~ ., B ~ ., C ~ .),
+        random = list(A ~ ., B ~ ., C ~ .),
+        cluster = ~ Plant, data = CO2,
+        start = list(fixed = c(30, 0.01, 50)))

Since no derivatives are passed to object in the above call, numerical
derivatives are used in the optimization. An alternative approach is to pass
derivatives as the gradient attribute of the value returned by CO2.fun and
to use this in the optimization algorithm. The S-PLUS function deriv can be
used to create expressions for the derivatives which can then be used by the
same nlme call. 

> CO2.fun <- deriv(~ A * (1 - exp(-B * (conc - C))),
+           LETTERS[1:3], function(conc, A, B, C){})

For the theophylline data set, assume that all parameters have random effects
and no covariates are considered. Here is the call to model (11.9), where

, , and . The initial estimates are derived

from a preliminary analysis of the data. 

> Theoph.func <- deriv( ~ Dose * exp(lke) * exp(lka) *
+    (exp(-exp(lke) * time) - exp(-exp(lka) * time)) /
+    (exp(lCl) * (exp(lka) - exp(lke))),
+    c("lCl", "lka", "lke"), 
+    function(Dose, time, lCl, lka, lke){})
> Theoph.fit1 <- nlme(conc ~ 
+    Theoph.func(Dose, time, lCl, lka, lke),
+    fixed = list(lCl ~ ., lka ~ ., lke ~ .),
+    random = list(lCl ~ ., lka ~ ., lke ~ .),
+    cluster = ~ Subject, data = Theoph,
+    start = list(fixed = c(-2.73, 1.6, -2.3)))

Methods for nlme  
Objects

Objects returned by the nlme function are of class nlme which inherits from
lme. All methods described in the sections on lme are available for the nlme
class. In fact, with the exception of the predict method, all methods are
common to both classes. 
The print method provides a brief description of the estimation results. It
gives estimates of the standard errors and correlations of the random effects,
of the cluster variance, and of the fixed effects.

lCl φ1= lka φ2= lke φ3=
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> Theoph.fit1

Call:
  Model: conc ~ Theoph.func(Dose, time, lCl, lka, lke)
  Fixed: list(lCl ~ ., lka ~ ., lke ~ .)
 Random: list(lCl ~ ., lka ~ ., lke ~ .)
Cluster:  ~ Subject
   Data: Theoph

Variance/Covariance Components Estimate(s):

  Structure: matrixlog
  Standard Deviation(s) of Random Effect(s)
       lCl       lka       lke
 0.2499743 0.6396112 0.1285968
 Correlation of Random Effects
           lCl        lka
lka 0.05173928
lke 0.99480761 0.12677231

 Cluster Residual Variance: 0.4655799

Fixed Effects Estimate(s):
        lCl       lka       lke
 -3.213992 0.4511411 -2.431956

Number of Observations: 132
Number of Clusters: 12

> CO2.fit1

Call:
  Model: uptake ~ CO2.func(conc, A, B, C)
  Fixed: list(A ~ ., B ~ ., C ~ .)
 Random: list(A ~ ., B ~ ., C ~ .)
Cluster:  ~ Plant
   Data: CO2

Variance/Covariance Components Estimate(s):

  Structure: matrixlog
  Standard Deviation(s) of Random Effect(s)
        A          B       C
 9.519298 0.00115931 11.1271
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 Correlation of Random Effects
            A           B
B -0.09761193
C  0.99956629 -0.09774343

 Cluster Residual Variance: 3.128036

Fixed Effects Estimate(s):
         A           B        C
 32.54721 0.009466799 41.81611

Number of Observations: 84
Number of Clusters: 12

In the above fits, some random-effects parameters are strongly correlated and
some correlations are close to zero. 

In CO2.fit1, there is a very strong correlation between the φ1(A) and the φ3

(C) random effects and these are almost uncorrelated with the φ2(B) random

effect. The scatter plot matrix of the random effects obtained using the plot
function 

Figure 11.14:  The scatter plot matrix with random effects.
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> plot(CO2.fit1, pch = "o") 

is shown in figure 11.14. It is clear that the φ1 and φ3 random effects are

virtually identical. This correlation may be due to the fact that the plant type
and the chilling treatment, which were not included in the CO2.fit1 model,
are affecting φ1 and φ3 in the same way. 

The powerful integration of analytical and graphical machinery in the
S-PLUS environment is shown in the following analysis of the dependence of
the individual parameters φ1i, φ2i, and φ3i in model (11.10) on plant type

and chilling factor. 

First, save the conditional modes of the random effects obtained in the first
fit in the data frame CO2.random. 

> CO2.random <- data.frame(CO2.fit1$coef$random) 

Next, add a column to CO2.random with the treatment combinations
corresponding to each plant. 

> CO2.random$type.trt <- as.factor(rep(
+      c("Quebec nonchilled", "Quebec chilled", 
+        "Mississippi nonchilled", "Mississippi chilled"),
+      rep(3,4))) 

Finally, plot the conditional modes of the random effects versus the treatment
combinations. The plots are shown in figure 11.15. 

> plot(A ~ type.trt, data = CO2.random) 
> plot(B ~ type.trt, data = CO2.random)
> plot(C ~ type.trt, data = CO2.random) 

These plots indicate that chilled plants tend to have smaller values of φ1 and

φ3, and that the Mississippi plants are much more affected than the Québec

plants, which suggests an interaction effect between plant type and chilling
treatment. There is no clear pattern of dependence between φ2 and the

treatment factors, which suggests that this parameter is not significantly
affected either by plant type or by chilling treatment. 

The above analysis suggests an alternative model with φ1i, φ2i, and φ3i in

model (11.10) reparametrized as follows.
Assuming further that only the intercepts contain random effects, the new
model is fitted below, where A=φ1i, B=φ2i, and C=φ3i. 
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Figure 11.15:  The conditioning modes of the random effects are plotted against the treatment
combinations.

(11.11)

φ1i A0 A1 Typei⋅ A2 Treatmenti A3 Typei Treatmenti×⋅+⋅+ +=

φ2i B=

φ3i C0 C1 Typei⋅ C2 Treatmenti C3 Typei Treatmenti×⋅+⋅+ +=
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> CO2.fit2 <- nlme(object = uptake ~ 
+                  CO2.fun(conc, A, B, C),
+                  fixed = list(A ~ Type*Treatment, B ~ .,
+                               C ~ Type*Treatment),
+                  random = list(A ~ ., B ~ ., C ~ .),
+                           cluster = ~ Plant,
+                  data = CO2, start = list(fixed =
+                  c(30, 0, 0, 0, 0.01, 50, 0, 0, 0)))

The summary method provides detailed information on the new fitted
object.

> summary(CO2.fit2)

 . . . 
Convergence at iteration: 7
Approximate Loglikelihood: -180.7
AIC: 393.4
BIC: 432.3

Variance/Covariance Components Estimate(s):
  Structure: matrixlog
  Standard Deviation(s) of Random Effect(s)
 A.(Intercept)         B C.(Intercept)
          2.28 0.0003264         5.892
 Correlation of Random Effects
              A.(Intercept)        B
            B -0.05615
C.(Intercept)  0.99992      -0.05616

 Cluster Residual Variance: 3.126

Fixed Effects Estimate(s):
                       Value Approx. Std.Error z ratio(C)
   A.(Intercept)  32.451794         0.7236227     44.846
          A.Type  -7.911473         0.7023989    -11.264
     A.Treatment  -4.235456         0.7008491     -6.043
A.Type:Treatment  -2.428173         0.7008658     -3.465
               B   0.009548         0.0005912     16.152
   C.(Intercept)  39.953318         5.6528809      7.068
          C.Type -10.477934         4.2224849     -2.481
     C.Treatment  -7.993575         4.2013654     -1.903
C.Type:Treatment -12.340465         4.2300868     -2.917
 . . .
325



11. Linear and Nonlinear Mixed-Effects Models
The correlation between the φ1 and the φ3 random effects remains very high,

which indicates that the model is probably overparametrized and that fewer
random effects are needed. The analysis here does not pursue the model
building for the CO2 uptake data. The goal is just to illustrate the use of the
methods for the nlme class. 

Use anova to compare CO2.fit1 and CO2.fit2.

> anova(CO2.fit1, CO2.fit2)

 . . .
         Model Df    AIC    BIC Loglik    Test Lik.Ratio
CO2.fit1     1 10 422.81 447.12 -201.4
CO2.fit2     2 16 393.39 432.28 -180.7 1 vs. 2    41.416
            P value
CO2.fit1
CO2.fit2 2.3975e-07

The inclusion of plant type and chilling treatment in the model causes a
substantial increase in the log likelihood, indicating that they have a
significant effect on φ1i and φ3i. 

Diagnostic plots can be obtained by setting option=”r” in the call to plot.

> par(mfrow = c(2,2))
> plot(CO2.fit2, option = "r", pch = "o")

The corresponding plots are shown in figure 11.16. The plot of observed
versus fitted values indicates that the model fits the data well. Most points lie
close to the 45° line. The plot of residuals versus fitted values does not
indicate any departures from the assumptions in the model. No outliers are
apparent and the residuals are symmetrically scattered around the zero
residual line, with similar spread for different levels of the fitted values.

Predictions are returned by the predict function. For example, to obtain
the population predictions of CO2 uptake rate for Québec and Mississippi
plants under chilling and no chilling, at ambient CO2 concentrations of 50,
100, 200, and 500 µL/L, first define 

> CO2.new <- data.frame(Type = rep(c("Quebec", 
+                     "Mississippi"), c(8,8)),
+                     Treatment = rep(rep(c("chilled", 
+                     "nonchilled"), c(4,4)), 2),
+                     conc = rep(c(50, 100, 200, 500), 4))

and then use the following to obtain the predictions.

> predict(CO2.fit2, CO2.new)
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     population
 1   0.05672987
 2  11.88074442
 . . .
15  28.92023612
16  38.00663973

The predict function can also be used for plotting smooth fitted curves by
calculating fitted values at closely spaced concentrations. Figure 11.17
presents the individual fitted curves for all twelve plants evaluated at 200
concentrations between 50 and 1000 µL/L. The code used to produce these
plots is shown below.

> attach(CO2)
> plot(conc, uptake, type="n", xlab="Ambient CO2",
+      ylab="CO2 uptake rate", ylim=c(-15,48))
> pch <- 0
> levs <- unique(Plant)
> n <- length(levs)

Figure 11.16:  The plot of observed versus fitted values, top right,
indicates a good fit.
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> for (i in levs) {
+     if (Type[match(i, Plant)]=="Quebec" &
+         Treatment[match(i, Plant)]=="nonchilled") pch <- 1
+     if (Type[match(i, Plant)]=="Quebec" &
+         Treatment[match(i, Plant)]=="chilled") pch <- 2
+     if (Type[match(i, Plant)]=="Mississippi" &
+         Treatment[match(i, Plant)]=="nonchilled") pch <- 16
+     if (Type[match(i, Plant)]=="Mississippi" &
+         Treatment[match(i, Plant)]=="chilled") pch <- 17
+     points(conc[Plant==i], uptake[Plant==i], 
+          type="p", pch=pch)
+ }
> legend(400,0,marks=c(1,2,16,17),bty="n",
+    legend=c("Quebec Control","Quebec Chilled",
+             "Mississippi Control","Mississippi Chilled"))
> CO2.new2 <- data.frame(Plant = rep(levs, 200),
+     Treatment = rep(Treatment[match(levs, Plant)], 200),
+          Type = rep(Type[match(levs, Plant)], 200),
+          conc = rep(seq(50,1000,length=200),rep(n,200)))
> mypredict <- predict(CO2.fit2, CO2.new2, 

Figure 11.17:  The individual fitted curves for all 12 plants.
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+                      cluster = ~ Plant)
> for (i in levs) lines(CO2.new2[n*(0:199)+i,"conc"],
+           mypredict$fit$cluster[n*(0:199)+i], lty=i)

Self-Starting 
Functions

In applying nlsList and nlme, initial estimates of the fixed-effects
parameters are required, as demonstrated in the previous sections. The
nlsList function requires the initial estimates to be included in the data
frame. The nlme function requires the initial estimates as input to the
argument start. Alternatively, the approach to derive the initial estimates
could be added to the model function as an attribute. With this “initial”
attribute and derivatives, the model function becomes a self-starting
function. When a self-starting function is used in calls to nlsList and
nlme, initial estimates are no longer required. A self-starting function is
considered as a class of models, which are useful for some particular
applications. Several self-starting functions are provided with S-PLUS. For
more information about them, choose Mixed Effects Models under
Categories in the S-PLUS help window and select an entry with the extension
.func. The following four self-starting functions are useful in Biostatistics.

• Biexponential model: biexp(time, A1, A2, lrc1, lrc2)

,

where  is a covariate, and , ,

,  are parameters.

• First Order Compartment model: first.order.log(Dose,
time, lCl, lka, lke)

,

where  is a covariate, and , ,  
are parameters.

• Four-parameter Logistic model: fpl(conc, A, B, ld50, scal)

,

where  is a covariate, and , , , 

 are parameters.

• Logistic model: logistic(time, Asym, T50, scal)

α1e
e–

β1t

α2e
e–

β2t

+

time t= A1 α1= A2 α2=

lrc1 β1= lrc2 β2=

d e
β

e
γ

e e
γ
t–

e e
β
t–

–( )⋅ ⋅ ⋅

e
α

e
β

e
γ

–( )⋅
----------------------------------------------------------

Dose d= lCl α= lka β= lke γ=
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329



11. Linear and Nonlinear Mixed-Effects Models
,

where  is a covariate, and , , 
are parameters.

In our examples, we can apply the self-starting functions logistic and
first.order.log to the Soybean data and the Theoph data, respectively.
Taking the Soybean for example, the nlsList call is as follows.

> Soybean.nlsList2 <- nlsList(weight ~ 
+                      logistic(time, Asym, T50, scal),
+                      cluster = ~ Plot, data = Soybean)

Error in nls(formula = form, data = d..: singular
        gradient matrix
Dumped
Error in nls(formula = form, data = d..: singular
        gradient matrix
Dumped

> coef(Soybean.nlsList2)

 . . .
31  15.472178  46.34389  5.394573
32         NA        NA        NA
33  19.792019  55.69564  9.617943
 . . .
45  19.546035  51.15231  7.294394
46         NA        NA        NA
47  19.158168  54.79723 10.845646
48 18.51233 52.4458 8.579754

The error messages indicate that two clusters could not be fitted by nls. The
object Soybean.nlsList2 is still created by nlsList.The result shows
that plots 32 and 46 do not follow the logistic model if the within-cluster
variations are not adjusted. 

The nlme function can also use the list from nlsList as input. In this case,
all parameters are, by default, considered as both fixed effects and random
effects. The results below show the strength of the nlsList and nlme
functions: population parameters and individual random effects can still be
estimated even though nls does not converge for clusters 32 and 46. 

> Soybean.fit1 <- nlme(Soybean.nlsList2)
> summary(Soybean.fit1)

α
1 e t β–( )– γ⁄+
------------------------------

time t= Asym α= T50 β= scal γ=
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 . . .
Estimation Method: ML
Convergence at iteration: 6
Approximate Loglikelihood: -739.8383
AIC: 1499.677
BIC: 1539.887

Variance/Covariance Components Estimate(s):
  Structure: matrixlog
  Standard Deviation(s) of Random Effect(s)
     Asym      T50     scal
 5.200114 4.198423 1.406313
 Correlation of Random Effects
          Asym       T50
 T50 0.7203619
scal 0.7111132 0.9576767

 Cluster Residual Variance: 1.261742

Fixed Effects Estimate(s):
          Value Approx. Std.Error z ratio(C)
Asym 19.253091         0.8001025   24.06328
 T50 55.020581         0.7246942   75.92249
scal  8.402632         0.3142551   26.73825

 Conditional Correlation(s) of Fixed Effects Estimates
          Asym       T50
 T50 0.7239821
scal 0.6199830 0.8071952

Random Effects (Conditional Modes):
          Asym         T50        scal
 1   0.3328024  1.36946801  0.46828321
 2   0.5208869  1.33405459  0.36772317
 . . .
13  -1.1091253 -3.01949513 -0.98652484
14  13.5427273  8.18357241  2.71451747
15   6.3224302  4.49687021  1.38122773
 . . .
31  -3.3912435 -6.98830083 -2.24939631
32   2.9788882 -0.15444380 -0.39236193
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33  -0.1304603 -0.18269024  0.04448421
 . . .
45   0.4859144 -3.10940467 -0.95349462
46  -1.2782517 -4.00341391 -1.29091905
47  -1.2594776 -1.55326184 -0.23867527
48  -0.7448815 -2.043285   -0.5467887
 . . .

Soybean.fit1 does not incorporate covariates and within-cluster errors.
Comparing the estimated standard deviations and means of Asym, T50, and
scal, the asymptotic weight Asym has the highest coefficient of variation
(0.27). Modeling this random-effects parameter is the focus of the following
analyses. 

As suggested in the exploratory data analysis, the asymptotic weight Asym
can be modeled as a function of the variety of the genotype and planting year.
To model the within-cluster errors, we will assume the serial correlation is of
AR(1). From figure 11.10, the within-cluster variance is assumed to be
proportional to some power of the absolute value of the predictions. Hence,

for the ith plot, the 8×8 covariance matrix σ2D in model (11.8) is now given

by  at time j and  between the

ith and jth measurements.

Two separate nlme calls are performed on the Soybean data below. The first
call uses part of the assumptions in the above model. Only Variety is used
as a predictor. The serial correlation is assumed to be of AR(1) and the
within-cluster variance is assumed to be identity, a default for
var.function in the nlme call. 

In fitting the full model below with the second nlme call, the results from
Soybean.nlsList are used to derive initial estimates in the parametrization
of Asym. 

> Soybean.fit2 <- 
+     nlme(weight ~ logistic(time, Asym, T50, scal),
+          fixed = list(Asym ~ Variety, T50 ~ ., scal ~ .),
+          random = list(Asym ~ ., T50 ~ ., scal ~ .),
+          start = list(fixed = c(19.25309, 0,
+                       55.02058, 8.402632)),
+          serial.structure = "ar1",
+          cluster = ~ Plot, data = Soybean)

var eij( ) σ2
ŷij

2δ
= cor eij eik,( ) ρ k j–

=
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> Soybean.fit2

 . . .
  Standard Deviation(s) of Random Effect(s)
 Asym.(Intercept)      T50     scal
         4.520749 4.223438 1.446683
 Correlation of Random Effects
     Asym.(Intercept)       T50
 T50 0.7216902
scal 0.6259055        0.7851180

 Cluster Residual Variance: 1.110669

 Serial Correlation Structure: ar1
 Serial Correlation Parameter(s): -0.6164418

Fixed Effects Estimate(s):
  Asym.(Intercept) Asym.Variety      T50     scal
         19.39241     2.208246 55.31789 8.647944
 . . .

> # Get initial estimates in modeling Asym
> coef(lm(Asym ~ Variety * Year, Soybean.nlscoef))

 (Intercept) Variety     Year1     Year2
    20.08425 2.03699 -3.785161 0.3036094
 VarietyYear1 VarietyYear2
     1.497311    -1.084704
> Soybean.fit3 <- 
+   nlme(weight ~ logistic(time, Asym, T50, scal),
+        fixed = list(Asym ~ 
+                     Variety * Year, T50 ~ ., scal ~ .),
+        random = list(Asym ~ ., T50 ~ ., scal ~ .),
+        start = list(fixed = c(20.08425, 2.03699, 
+               -3.785161, 0.3036094, 1.497311, 
+               -1.084704, 55.02058, 8.402632)),
+        serial.structure = "ar1", 
+        var.function = "power",
+        cluster = ~ Plot, data = Soybean)
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> Soybean.fit3

 . . .
  Standard Deviation(s) of Random Effect(s)
 Asym.(Intercept)      T50      scal
          1.11527 1.531973 0.1430054
 Correlation of Random Effects
     Asym.(Intercept)       T50
 T50 0.9731252
scal 0.9591480        0.9975064
 Cluster Residual Variance: 0.05957224
 Serial Correlation Structure: ar1
 Serial Correlation Parameter(s): 0.1874778
 Variance Function: power
 Variance Function Parameter(s): 0.9225696
Fixed Effects Estimate(s):
  Asym.(Intercept) Asym.Variety Asym.Year1 Asym.Year2
         17.53656     2.504791  -2.771701    1.21122
 Asym.VarietyYear1 Asym.VarietyYear2      T50
          1.264881        -0.3621853 52.22499
     scal
 7.603832
 . . .

> anova(Soybean.fit1,Soybean.fit2,Soybean.fit3)

 . . . 
             Model Df    AIC    BIC  Loglik    Test
Soybean.fit1     1 10 1499.7 1539.9 -739.84
Soybean.fit2     2 12 1404.6 1452.9 -690.30 1 vs. 2
Soybean.fit3     3 17  679.9  748.2 -322.93 2 vs. 3
             Lik.Ratio P value
Soybean.fit1
Soybean.fit2     99.08       0

Soybean.fit3    734.74       0

The anova function is used to compare these fits. The progress in log
likelihood, AIC, and BIC is tremendous. Figure 11.18 shows the residuals
plots. No patterns are seen in the standardized residuals, even though the
problematic plots 14, 32, and 46 for the nlsList calls are included in these
analyses. After adjustment of random effects and within-cluster errors, their
random effects are derived. Their standardized residuals are within (-1.5,1.5)
except for three with values around 2.5. The variety of the genotype and the
year of planting have large impacts on the limiting leaf weight. The
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experimental strain gains 2.5 grams in the limit. 

> par(mfrow = c(2,2))
> plot(Soybean.fit3, option="s")

> summary(Soybean.fit3)

 . . .
Fixed Effects Estimate(s):
                         Value Approx. Std.Error 
 Asym.(Intercept)  17.5365613         0.4638525
     Asym.Variety   2.5047905         0.2469177
       Asym.Year1  -2.7717008         0.2829921
       Asym.Year2   1.2112198         0.1864453
Asym.VarietyYear1   1.2648812         0.2776887
Asym.VarietyYear2  -0.3621853         0.1844127
              T50  52.2249943         0.5073733
             scal   7.6038318         0.1027588

Figure 11.18:  The residuals plots.
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                   z ratio(C) 
 Asym.(Intercept)   37.806334
     Asym.Variety   10.144233
       Asym.Year1   -9.794270
       Asym.Year2    6.496381
Asym.VarietyYear1    4.555032
Asym.VarietyYear2   -1.963994
              T50  102.932085
             scal   73.996904

 . . .
Random Effects (Conditional Modes):
   Asym.(Intercept)          T50          scal 
 . . .
14      0.049307561  0.018802336  0.0008801504
 . . .
32      0.746219856  1.028182060  0.0951769261
 . . .
46     -0.581105585 -0.801146841 -0.0740665473
47     -0.214035251 -0.252438575 -0.0225885040
48     -0.5266585   -0.7154175   -0.06597178

Standardized Population-Average Residuals:
       Min         Q1        Med        Q3     Max 
 -2.462553 -0.6578548 -0.1209506 0.5526576 4.05955
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Nonlinear models utilize more general formulas and 
starting values to fit a model to experimental data.
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NONLINEAR MODELS 12
This chapter covers the fitting of nonlinear models such as in nonlinear
regression, likelihood models, and Bayesian estimation. Nonlinear models are
more general than the linear models usually discussed. Specifying nonlinear
models typically requires one or more of the following: more general
formulas, extended data frames, starting values and derivatives.
The two most common fitting criteria for nonlinear models considered are
Minimum sum and Minimum sum-of-squares. Minimum sum minimizes
the sum of contributions from observations (the maximum likelihood
problem). Minimum sum-of-squares minimizes the sum of squared residuals
(the nonlinear least-squares regression problem).

The first sections of this chapter summarizes the use of the nonlinear
optimization functions. Starting with the section on Examples of Nonlinear
Models, the use of the ms and nls functions are examined, along with
corresponding examples and theory, in much more detail.

12.1 OPTIMIZATION FUNCTIONS
S-PLUS has several functions for finding roots of equations and local maxima
and minima of functions, as shown in table figure 12.1.

Finding Roots The function polyroot finds the roots (zeros) of the complex-valued

polynomial equation: .

The input to polyroot is the vector of coefficients c(a0, ..., ak). For

example, to solve the equation z^2 + 5z + 6 = 0, use polyroot as
follows:

> polyroot(c(6,5,1)) 
[1] -2+2.584939e-26i -3-2.584939e-26i

The function uniroot finds a zero of a continuous, univariate, real-valued
function within a user-specified interval for which the function has opposite
signs at the endpoints. The input to uniroot includes the function, the
lower and upper endpoints of the interval, and any additional arguments to
the function. For example, suppose you have the function:

> my.fcn 
function(x, amp=1, per=2*pi, horshft=0, vershft=0) 
{
  amp * sin(((2*pi)/per) * (x-horshft)) + vershft

} 

akz
k … a1z a0+ + + 0=
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12. Nonlinear Models
This is the sine function with amplitude abs(amp), period abs(per),
horizontal (phase) shift horshft and vertical shift vershft. To find a root
of the function my.fcn in the interval [π/2, 3π/2] using its default
arguments, type:

> uniroot(my.fcn, interval = c(pi/2, 3*pi/2)) 

$root 
[1] 3.141593 
. . . 

To find a root of my.fcn in the interval [π/4, 3π/4] with the period set to π,
type:

Table 12.1: The range of S-PLUS functions for finding roots, maxima and minima.

Function Description

polyroot Finds the roots of a complex polynomial equation.

uniroot Finds the root of a univariate real-valued function in a user-supplied interval.

peaks Finds local maxima in a set of discrete points.

optimize Approximates a local optimum of a continuous univariate function within a
given interval.

ms Finds a local minimum of a multivariate function.

nlmin Finds a local minimum of a nonlinear function using a general quasi-Newton
optimizer.

nlminb Local minimizer for smooth nonlinear functions subject to bound-con-
strained parameters.

nls Finds a local minimum of the sums of squares of one or more multivariate
functions. 

nlregb Local minimizer for sums of squares of nonlinear functions subject to bound-
constrained parameters.

nnls Finds least-squares solution subject to the constraint that the coefficients be
nonnegative. 
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> uniroot(my.fcn, interval = c(pi/4, 3*pi/4), per=pi)

$root: 
[1] 1.570796 
. . . 
> pi/2 

[1] 1.570796

See the help file for uniroot for information on other arguments to this
function.

Finding Local 
Maxima and 
Minima of 
Univariate 
Functions

The peaks function takes a data object x and returns an object of the same
type with logical values: T if a point is a local maximum, otherwise F:

> peaks(corn.rain) 

1890: F T F F F F T F T F T F T F F F F T F F F F T F F T F 
1917: T F F F T F F T F T F

Use peaks on the data object -x to find local minima:

> peaks(-corn.rain) 

1890: F F F F T F F F F F F T F F F T F F F F F T F T F F T 
1917: F T F F F T F F T F F

To find a local optimum (maximum or minimum) of a continuous univariate
function within a particular interval, use the optimize function. The input
to optimize includes the function to optimize, the lower and upper
endpoints of the interval, which optimum to look for (maximum versus
minimum) and any additional arguments to the function.

> optimize(my.fcn, c(0, pi), maximum=T) 

$maximum: 
[1] 1.570799 

$objective: 
[1] -1 

$nf: 
[1] 10 

$interval: 
[1] 1.570759 1.570840 
. . . 
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> pi/2 

[1] 1.570799 

> optimize(my.fcn, c(0, pi), maximum=F, per = pi) 

$minimum: 
[1] 2.356196 

$objective: 
[1] -1 

$nf: 
[1] 9 

$interval: 
[1] 2.356155 2.356236 
. . . 

> 3*pi/4 

[1] 2.356194

See the help file for optimize for information on other arguments to this
function.

Finding 
Maxima and 
Minima of 
Multivariate 
Functions

S-PLUS has two functions to find the local minimum of a multivariate
function: nlminb (Nonlinear Minimization with Box Constraints) and ms
(Minimize Sums).
The two required arguments to nlminb are objective (the function f to
minimize) and start (a vector of starting values for the minimization). The
function f must take as its first argument a vector of parameters over which
the minimization is carried out. By default, there are no boundary constraints
on the parameters. The nlminb function, however, also takes the optional
arguments lower and upper that specify the bounds on the parameters.
(Other arguments to f can be passed in the call to nlminb.) 

1. Example: Using nlminb to find a local minimum.

> my.multvar.fcn 
function(xvec, ctr = rep(0, length(xvec))) 
{
  if(length(xvec) != length(ctr)) 
     stop("lengths of xvec and ctr do not match") 
  sum((xvec - ctr)^2)
}
> nlminb(start = c(0,0), objective = my.multvar.fcn, 
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+ ctr = c(1,2)) 

$parameters: 
[1] 1 2

$objective: 
[1] 3.019858e-30 

$message: 
[1] "ABSOLUTE FUNCTION CONVERGENCE" 
. . .

To find a local maximum of f, use nlminb on -f. Since unary minus cannot
be performed on a function, you must define a new function that returns -1
times the value of the function you want to maximize: 

2. Example: Using nlminb to find a local maximum.

> fcn.to.maximize 
function(xvec)
{
  - xvec[1]^2 + 2 * xvec[1] - xvec[2]^2 + 20 * xvec[2] + 40 
}

> fcn.to.minimize 
function(xvec)
{
  - fcn.to.maximize(xvec)
}

> nlminb(start = c(0, 0), objective = fcn.to.minimize) 

$parameters: 
[1] 1 10 

$objective: 
[1] -141

$message: 
[1] "RELATIVE FUNCTION CONVERGENCE" 
. . . 

See the help file for nlminb for information on other arguments to this
function. To find the local minimum of a multivariate function subject to
constraints, use nlminb with the lower and/or upper arguments. 
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12. Nonlinear Models
3. Example: Using nlminb to find a constrained minimum.
As an example of using nlminb to find a constrained minimum, consider the
following function norm.neg.2.ll, which is (minus a constant) -2 times
the log-likelihood function of a normal (Gaussian) distribution:

> norm.neg.2.ll <-
+ function(theta, y) 
+ {
+ length(y) * log(theta[2]) + 
+ (1/theta[2]) * sum((y - theta[1])^2)
+ }

This function assumes that observations from a normal distribution are
stored in the vector y. The vector theta contains the mean (theta[1]) and
variance (theta[2]) of this distribution. To find the maximum likelihood
estimates of the mean and variance, we need to find the values of theta[1]
and theta[2] that minimize norm.neg.2.ll for a given set of
observations stored in y. We must use the lower argument to nlminb because
the estimate of variance (theta[2]) must be greater than zero:

> set.seed(12) 
> my.obs <- rnorm(100, mean = 10, sd = 2) 
> nlminb(start = c(0,1), objective = norm.neg.2.ll, 
+ lower = c(-Inf, 0), y = my.obs) 
$parameters: 
[1] 9.863812 3.477773 

$objective: 
[1] 224.6392 

$message: 
[1] "RELATIVE FUNCTION CONVERGENCE" 
. . . 

> mean(my.obs) 
[1] 9.863812 

> (99/100) * var(my.obs) 

[1] 3.477774 

The Minimum Sums function ms also minimizes a multivariate function, but
in the context of the modeling paradigm, so it expects a formula rather than a
function as its main argument. Here is the last example redone with ms (mu is
the estimate of the population mean µ, and ss is the estimate of the

population variance σ2): 
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4. Example: Using ms.

> ms( ~length(y) * log(ss) + (1/ss) * sum((y - mu)^2), 
+ data = data.frame(y = my.obs), 
+ start = list(mu = 0, ss = 1)) 

value: 224.6392 
parameters: 
      mu       ss 
9.863813 3.477776 

formula:  ~length(y) * log(ss) + (1/ss) * sum((y-mu)^2)

1 observations 

call: ms(formula = ~length(y) * log(ss) + (1/ss) *
        sum((y - mu)^2),
data = data.frame(y=my.obs), start=list(mu=0, ss=1))

5. Example: Using ms with several observations.

> ms( ~log(ss) + (1/ss) * (y - mu)^2, 
+ data = data.frame(y = my.obs), 
+ start = list(mu = 0, ss = 1))

value: 224.6392 

parameters: 
      mu       ss
9.863813 3.477776

formula:  ~log(ss) + (1/ss) * (y - mu)^2 

100 observations 
call: ms(formula =  ~log(ss) + (1/ss) * (y - mu)^2,
data = data.frame(y=my.obs), start=list(mu=0,ss=1))

Hint: the ms function does not do minimization subject to constraints on the parameters.

If there are multiple solutions to your minimization problem, you may not get the answer you
want using ms. In the above example, the ms function tells us we have “1 observations" because
the whole vector y was used at once in the formula. The Minimum Sum function minimizes the
sum of contributions to the formula, so we could have gotten the same estimates mu and ss with
the formula shown in example 5.
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If the function you are trying to minimize is fairly complicated, then it is
usually easier to write a function to supply as the formula:

6. Example: Using ms with a formula function.

> ms( ~norm.neg.2.ll(theta,y), data=data.frame(y=my.obs),
+ start = list(theta = c(0,1))) 

value: 224.6392

parameters: 
  theta1   theta2
9.863813 3.477776

formula:  ~norm.neg.2.ll(theta, y)

1 observations 

call: ms(formula = ~norm.neg.2.ll(theta, y), data =
  data.frame(y = my.obs),
start = list(theta = c(0, 1)))

Solving 
Nonnegative 
Least Squares 
Problems

Given an m × n matrix A and a vector b of length m, the linear nonnegative
least squares problem is to find the vector x of length n that minimizes

, subject to the constraint that  for i in 1, ..., n. 

To solve nonnegative least squares problems in S-PLUS, use the nnls.fit
function. For example, consider the following fit using the stack data:
$coefficients 
  Air Flow Water Temp Acid Conc. 
0.2858057  0.05715152          0 

$residuals: 
[1]  17.59245246 12.59245246 14.13578403 
[4]   8.90840973 -0.97728723 -1.03443875 
[7]  -0.09159027  0.90840973 -2.89121593 
[10] -3.60545832 -3.60545832 -4.54830680 
[13] -6.60545832 -5.66260984 -7.31901267 
[16] -8.31901267 -7.37616419 -7.37616419 
[19] -6.43331572 -2.14814995 -6.14942983 

$dual: 
    Air Flow   Water Temp Acid Conc. 
3.637979e-12 5.400125e-13 -1438.359 

Ax b– xi 0≥
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$rkappa: 
     final    minimum 
0.02488167 0.02488167 

$call: 
nnls.fit(x = stack.x, y = stack.loss) 

You can also use nlregb to solve the nonnegative least squares problem,
since the nonnegativity constraint is just a simple box constraint. To pose the
problem to nlregb, define two functions (lin.res and lin.jac) of the
form f(x,params), to represent the residual function and the Jacobian of
the residual function, respectively:

> lin.res <- function(x, b, A) A%*% x - b
> lin.jac <- function(x, A) A 
> nlregb(n = length(stack.loss), start = rnorm(3), 
+ res = lin.res, jac = lin.jac, lower = 0, 
+ A = stack.x, b = stack.loss) 

$parameters: 
[1] 0.28580571 0.05715152 0.00000000 

$objective: 
[1] 1196.252 
. . .

Generally, nnls.fit should be preferred to nlregb for reasons of efficiency,
since nlregb is primarily designed for nonlinear problems. However,
nlregb can solve degenerate problems that can not be handled by
nnls.fit. You may also want to compare the results of nnls.fit with
those of lm. Remember that lm requires a formula, and also that it fits an
intercept term by default (which nnls.fit does not). Keeping this in mind,
you can construct the comparable call to lm as follows:

> lm(stack.loss ~ stack.x - 1) 
Call: 
lm(formula = stack.loss ~ stack.x - 1)
Coefficients: 
stack.xAir Flow stack.xWater Temp 
      0.7967652          1.111422 -0.6249933 

Degrees of freedom: 21 total; 18 residual 
Residual standard error: 4.063987
347



12. Nonlinear Models
For the stack loss data, the results of the constrained optimization methods
nnls.fit and nlregb agree completely. The linear model produced by lm
includes a negative coefficient. 

You can use nnls.fit to solve the weighted nonnegative least squares
problem by providing a vector of weights as the weights argument. The
weights used by lm are the square roots of the weights used by nnls.fit;
you must keep this in mind if you are trying to solve a problem using both
functions. 

Solving 
Nonlinear 
Least Squares 
Problems

Two functions, nls and nlregb, are available for solving the special
minimization problem of nonlinear least squares. The function nls is used in
the context of the modeling paradigm, so it expects a formula rather than a
function as its main argument. The function nlregb expects a function
rather than a formula (the argument name is residuals), and, unlike nls,
it can perform the minimization subject to constraints on the parameters. 

1. Example: Using nls.
 In this example, we create 100 observations where the underlying signal is a
sine function with an amplitude of 4 and a horizontal (phase) shift of π.
Noise is added in the form of normal (Gaussian) random numbers. We then
use the nls function to estimate the true values of amplitude and horizontal
shift.

> set.seed(20) 
> noise <- rnorm(100, sd = 0.5) 
> x <- seq(0, 2*pi, length = 100) 
> my.nl.obs <- 4 * sin(x - pi) + noise 
> plot(x, my.nl.obs) 
> nls(y ~ amp * sin(x - horshft), 
+ data = data.frame(y = my.nl.obs, x = x), 
+ start = list(amp = 1, horshft = 0)) 
Residual sum of squares : 20.25668 
parameters:
       amp    horshft 
 -4.112227 0.01059317
formula: y ~ amp * sin(x - horshft) 
100 observations

The above example illustrates the importance of finding appropriate starting
values. The nls function returns an estimate of amp close to -4 and an
estimate of horshft close to 0 because of the cyclical nature of the sine
function: sin(x - pi) = -sin(x). If we start with initial estimates of
amp and horshft closer to their true values, nls gives us the estimates we
want.
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2. Example: Using nls with better starting values.

> nls(y ~ amp * sin(x - horshft), 
+ data = data.frame(y = my.nl.obs, x = x), 
+ start = list(amp = 3, horshft = pi/2)) 
Residual sum of squares : 20.25668 
parameters:
      amp horshft 
 4.112227  -3.131
formula: y ~ amp * sin(x - horshft) 
100 observations

We could use the nlregb function to redo the above example, and specify
that the value of amp must be greater than 0:

3. Example: Creating my.new.func and using nlregb.

> my.new.fcn
function(param, x, y) 
{
  amp <- param[1] 
  horshft <- param[2] 
  y - amp * sin(x - horshft)
} 
> nlregb(n = 100, start = c(3,pi/2), 
+ residuals = my.new.fcn, 
+ lower = c(0, -Inf), x = x, y = my.nl.obs) 
$parameters: 
[1] 4.112227 3.152186 

$objective: 
[1] 20.25668 

$message: 
[1] "BOTH X AND RELATIVE FUNCTION CONVERGENCE" 

$grad.norm: 
[1] 5.960581e-09
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12.2 EXAMPLES OF NONLINEAR MODELS

Maximum 
Likelihood 
Estimation

Parameters are estimated by maximizing the likelihood function. Suppose n
independent observations are distributed with probability densities pi(θ)=
p(yi;θ) where θ is a vector of parameters. The likelihood function is defined
as:

The problem is to find the estimate  of  that maximizes the likelihood
function for the observed data. Maximizing the likelihood is equivalent to
minimizing the negative of the log-likelihood:

Example One: 
Ping-Pong

Each member of the U.S. Table Tennis Association is assigned a rating based
on the member’s performance in tournaments. Winning a match boosts the
winner’s rating and lowers the loser’s rating some number of points
depending on the current ratings of the two players. Using this data, two
questions we might like to ask are:

1. Do players with a higher rating tend to win over players with a lower
rating?

2. Does a larger difference in rating imply that the higher-rated player
is more likely to win?

Assuming a logistic distribution in which log(p/(1-p)) is proportional to
the difference in rating between the winner and loser and the average rating
of the two players: 

where Di = Wi - Li is the difference in rating between the winner and
loser and Ri = 1/2(Wi + Li) is the average rating for the two players. 

To fit the model, we need to find α and β which minimize the negative log-

(12.1)

(12.2)
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∏=                 

θ̃

l θ( ) L y θ;( )( )log– pi θ( )( )log–( )
i 1=

n
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likelihood:

Example Two: 
Wave-Soldering 
Skips

In a 1988 AT&T wave-soldering experiment several factors were varied:

The results of the experiment gave the number of visible soldering skips
(faults) on a board. Physical theory and intuition suggest a model in which
the process is in one of two states:

1. a “perfect” state where no defects occur.

2. an “imperfect” state where there may or may not be defects.

Both the probability of being in the imperfect state and the distribution of
skips in that state depend on the factors in the experiment. Assume that some
“stress”, S, induces the process to be in the imperfect state and also increases
the tendency to generate skips when in the imperfect state. 

Assume S depends linearly on the levels of the factors, xj, j=1,...,p:  

where β is the vector of parameters to be estimated. 

Assume the probability Pi of being in the imperfect state is monotonically

(12.4)pi( )log–( )∑ D– iα Riβ 1 e
Di α Ri β+

+( )log+–
 
 
 ∑=

     

Factor Description

opening amount of clearance around the mounting pad

solder amount of solder

mask type and thickness of the material used for the solder mask

padtype the geometry and size of the mounting pad

panel each board was divided into three panels, with three runs on a board

(12.5)Si xij β j

j 1=

p

∑=
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12. Nonlinear Models
related to the stress by a logistic distribution: 

As the stress increases, the above function approaches 1.

Given that the process is in an imperfect state, assume the probability of ki

skips is modeled by the Poisson distribution with mean λi: 

The probability of zero skips is the probability of being in the perfect state
plus the probability of being in the imperfect state and having zero skips. The
probability of one or more skips is the probability of being in the imperfect
state and having one or more skips. Mathematically the probabilities may be
written as: 

The mean skips in the imperfect state is always positive and modeled in terms

of the stress by: . The parameters, τ and β, can be estimated by

minimizing the negative log-likelihood. The ith element of the negative log-
likelihood can be written to within constants as:

The model depicted above does not reduce to any simple linear model.

(12.6)

(12.7)

(12.8)
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Nonlinear 
Regression

Parameters are estimated by minimizing the sum of squared residuals.
Suppose n independent observations y can be modeled as a nonlinear
parametric function f of a vector x of predictor variables and a vector of
parameters, β. 

where the errors, ε, are assumed normally distributed. The nonlinear least-

squares problem finds parameter estimates  which minimize:

Example Three: 
Puromycin

A biochemical experiment measured reaction velocity in cells with and
without treatment by Puromycin. There are three variables in the
Puromycin data frame.

Assume a Michaelis-Menten relationship between velocity and
concentration:

where V is the velocity, c is the enzyme concentration, Vmax is a parameter
representing the asymptotic velocity as c –> ∞, K is the Michaelis parameter,
and ε is experimental error. Assuming the treatment with the drug would
change Vmax but not K, the optimization function is:

where I {treated} is the function indicating if the cell was treated with
Puromycin.

(12.10)

y f x β;( ) ε+=

β̃

yi f x β;( )–( )2

i 1=

n

∑

Variable Description

conc the substrate concentration

vel the reaction velocity

state indicator of treated or untreated

(12.11)

(12.12)
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12.3 INFERENCE FOR NONLINEAR MODELS

Likelihood 
Models

With likelihood models distributional results are asymptotic. Maximum
likelihood estimates tend toward a normal distribution with a mean equal to
the true parameter, and a variance matrix given by the inverse of the
information matrix, the negative of the second derivatives of the log-
likelihood.

Least-Squares 
Models

In least-squares models approximations to quantities such as standard errors
or correlations of parameter estimates are used. The approximation proceeds
as follows:

1. Replace the nonlinear model with its linear Taylor series
approximation at the parameter estimates.

2. Use the methods for linear statistical inference on the
approximation.

Consequently, the nonlinear inference results are called linear approximation
results. 

The Fitting 
Algorithms

Minimum-Sum 
Algorithm

This section deals with the general optimization of an objective function
modeled as a sum. The algorithm is a version of Newton’s method based on a
quadratic approximation of the objective function. If both first and second
derivatives are supplied, the approximation is a local one using the
derivatives. If no derivatives or only the first derivative are supplied, the
algorithm approximates the second derivative information. It does this in a
way specifically designed for minimization.
The algorithm actually used is taken from the PORT subroutine library
which evolved from the published algorithm by Gay (1983). Two key
features of this algorithm are:

1. A quasi-Newton approximation for second derivatives.

2. A “trust region” approach controlling the size of the region in which
the quadratic approximation is believed to be accurate.

The algorithm is capable of working with user models specifying 0, 1, or 2
orders of derivatives.
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Nonlinear Least-
Squares 
Algorithm

The Gauss-Newton algorithm is used with a step factor to ensure that the
sum of squares decreases at each iteration. A line-search method is used, as
opposed to the trust region employed in the minimum-sum algorithm. The
step direction is determined by a quadratic model. The algorithm proceeds as
follows:

1. The residuals are calculated, and the gradient is calculated or
approximated (depending on the data), at the current parameter
values.

2. A linear least-squares fit of the residual on the gradient gives the
parameter increment.

3. If applying the full parameter increment increases the sum-of-
squares rather than decreasing it, the length of the increment is
successively halved until the sum-of-squares is decreased.

4. The step factor is retained between iterations and started at 
min{2*(previous step factor), 1}

If the gradient is not specified analytically, it is calculated using finite
differences with forward differencing. For partially linear models, the
increment is calculated using the Golub-Pereyra method (Golub and Pereyra,
1973) as implemented by Bates and Lindstrom (1986). 

Specifying 
Models

Nonlinear models typically require specifying more details than models of
other types. The information typically required to fit a nonlinear model,
using the S-PLUS functions ms or nls is:

1. a formula

2. data

3. starting values

Formulas For nonlinear models a formula is an S-PLUS expression involving data,
parameters in the model, and any other relevant quantities. The parameters
must be specified in the formula because there is no assumption about where
they are to be placed (as in linear models, for example). Formulas are typically
specified differently depending on whether you have a minimum-sum
problem or nonlinear least-squares problem. 

In the puromycin example you would specify a formula for the simple model
(described in equation 12.11) by:  vel ~ Vm*conc / (K + conc)

The parameters Vm and K are specified along with the data vel and conc.
Since there is no explicit response for minimum-sum models (e.g. likelihood
models), it is left off in the formula. 
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In the ping-pong example (ignoring the average rating effect), the formula for
(equation 12.4) is:

~- DV * alpha + log( 1 + exp( DV * alpha ) )

where DV is a variable in the data and alpha is the parameter to fit. Note that
the model here is based only on the difference in ratings, ignoring for the
moment the average rating.

Simplifying 
Formulas

Some models can be organized as a simple expression involving one or more
S-PLUS functions that do all the work. Note that DV*alpha occurs twice in
the formula for the ping-pong model. You can write a general function for
the log-likelihood in terms of DV*alpha.

> lprob <- function(lp) log(1 + exp(lp)) - lp

Recall that lp is the linear predictor for the GLM. A simpler expression for
the model is now:

~ lprob( DV * alpha )

Having lprob now makes it easy to add additional terms or parameters.

Implications of 
the Formulas

For nonlinear least-squares formulas the response on the left of ~ and the
predictor on the right must evaluate to numeric vectors of the same length.
The fitting algorithm tries to estimate parameters to minimize the sum of
squared differences between response and prediction. If the response is left
out the formula is interpreted as a residual vector.
For Minimum-Sum formula, the right of ~ must evaluate to a numeric
vector. The fitting algorithm tries to estimate parameters to minimize the
sum of this “predictor” vector. The concept here is linked to maximum-
likelihood models. The computational form does not depend on an MLE
concept. The elements of the vector may be anything and there need not be
more than one.

The evaluated formulas can include derivatives with respect to the
parameters. The derivatives are supplied as attributes to the vector that results
when the predictor side of the formula is evaluated. When explicit derivatives
are not supplied, the algorithms use numeric approximations.

Parametrized 
Data Frames

Relevant data for nonlinear modeling includes:

• variables 

• initial estimates of parameters

• fixed values occurring in a model formula

Parametrized data frames allow you to “attach” relevant data to a data frame
when the data doesn’t occupy an entire column. Information is attached as a
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"parameter" attribute of the data frame. The parameter function returns
or modifies the entire list of parameters and is analogous to the attributes
function. Similarly the param function returns or modifies one parameter at
a time and is analogous to the attr function. You could supply values for Vm
and K to the Puromycin data frame with:

> parameters(Puromycin) <- list(Vm = 200, K = 0.1)

The parameter values can be retrieved with

> parameters(Puromycin) 
$Vm: 
[1] 200 

$K: 
[1] 0.1

The class of Puromycin is now:

> class(Puromycin) 

[1] "pframe" "data.frame"

Now, when Puromycin is attached, the parameters Vm and K are available
when referred to in formulas.

Starting Values; 
Identifying 
Parameters

Before the formulas can be evaluated, the fitting functions must know which
names in the formula are parameters to be estimated and must have starting
values for these parameters. The fitting functions determine this in the
following way:

1. If the start argument is supplied, its names are the names of the
parameters to be estimated, and its values are the corresponding
starting values.

2. If start is missing, the parameters attribute of the data argument
defines the parameter names and values 

Derivatives Supplying derivatives of the predictor side of the formula with respect to the
parameters along with the formula can reduce the number of iterations (so
speed up the computations), increase numerical accuracy and improve the
chance of convergence. In general derivatives should be used whenever
possible.

Hint: explicitly use the start argument to name and initialize parameters.

You can easily see what the starting values are in the call component of the fit and you can
arrange to keep particular parameters constant when that makes sense.
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The fitting algorithms can use both first (the gradient) and second derivatives
(the Hessian). The derivatives are supplied to the fitting functions as
attributes to the formula. Recall that evaluating the formula gives a vector of
n values. Evaluating the first derivative expression should give n values for
each of the p parameters, that is an n × p matrix. Evaluating the second
derivative expression should give n values for each of the p × p partial
derivatives, that is an n × p × p array.

First Derivatives The negative log-likelihood for the simple ping-pong model is:

Differentiating with respect to α and simplifying gives the gradient: 

The gradient is supplied to the fitting function as the "gradient" attribute
of the formula:

> form.pp <-  ~log(1 + exp( DV*alpha ) ) - DV*alpha 
> attr(form.pp, "gradient") <- 
+  ~ -DV / ( 1 + exp( DV*alpha ) ) 
> form.pp  
 ~ log(1 + exp(DV * alpha)) - DV * alpha 
> attr(form.pp,"gradient")  
 ~ - DV/(1 + exp(DV * alpha))

When a function is used to simplify a formula, build the gradient into the
function. The lprob function is used to simplify the formula expression to
~lprob(DV*alpha).

> lprob 
function(lp) 
log(1 + exp(lp)) - lp

An improved version of  lprob adds the gradient.
> lprob2 
function(lp, X) 
{
  elp <- exp(lp) 
  z <- 1 + elp 
  value <- log(z) - lp 

(12.13)

(12.14)
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  attr(value, "gradient") <- -X/z 
  value
}

Note lp is again the linear predictor and X is the data in the linear predictor.
With the gradient built into the function you don’t need to add it as an
attribute to the formula; it is already an attribute to the object hence used in
the formula.

Second 
Derivatives

The second derivatives may be added as the "hessian" attribute of the
formula.  In the ping-pong example the second derivative of the negative log-
likelihood with respect to α is:  

The lprob2 function is now modified to add the Hessian as follows. The
Hessian is added in a general enough form to allow for multiple predictors.
> lprob3 
function(lp, X) 
{

elp <- exp(lp) 
z <- 1 + elp 
value <- log(z) - lp 
attr(value, "gradient") <- -X/z 
if(length(dx <- dim(X)) == 2) 
{

n <- dx[1]; p <- dx[2] 
} else 
{

n <- length(X); p <- 1 
}
xx <- array(X, c(n, p, p)) 
attr(value, "hessian") <- (xx * aperm(xx, c(1, 3, 2)) *

elp)/z^2
value

}

Interesting points of the added code are:

• The second derivative computations are performed at the time of the
assignment of the "hessian" attribute.

• The rest of the code (starting with if(length(...))) is to make

(12.15)
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12. Nonlinear Models
the Hessian general enough for multiple predictors.

• The aperm function does the equivalent of a transpose on the 2nd
and 3rd dimensions to produce the proper cross products when
multiple predictors are in the model.

Symbolic 
Differentiation

A symbolic differentiation function, D, is available to aid in taking
derivatives.

The function D is used primarily as a support routine to deriv. 

Again referring to the ping-pong example, form contains the expression of
the negative log-likelihood:

> form 
expression(log((1 + exp(DV * alpha))) - DV * alpha)

The first derivative is computed as:

> D(form, "alpha") 
(exp(DV * alpha) * DV)/(1 + exp(DV * alpha)) - DV

And the second derivative is computed as:

> D( D(form, "alpha"), "alpha") 
(exp(DV * alpha) * DV * DV)/(1 + exp(DV * alpha)) 

- (exp(DV * alpha) * DV * (exp(DV * alpha) * DV)) 
/(1 + exp(DV * alpha))^2

Improved 
Derivatives

The deriv function takes an expression, computes a derivative, simplifies
the result then returns an expression or function for computing the original

Table 12.2: Arguments to D

Argument Purpose

expr Expression to be differentiated.

name Which parameters to differentiate with respect to.
360



Inference for Nonlinear Models
expression along with its derivative(s).

Periods are used in front of created object names to avoid conflict with user
chosen names. The deriv function returns an expression in the form
expected for nonlinear models.

> deriv(form,"alpha") 
expression(
{

.expr1 <- DV * alpha 

.expr2 <- exp(.expr1) 

.expr3 <- 1 + .expr2 

.value <- (log(.expr3)) - .expr1 

.grad <- array(0, c(length(.value), 1), list(NULL, 
"alpha")) 

.grad[, "alpha"] <- ((.expr2 * DV)/.expr3) - DV 
attr(.value, "gradient") <- .grad 
.value 

})

If the function.arg argument is supplied, a function is returned.

> deriv(form,"alpha",c("DV","alpha")) 
function(DV, alpha) 
{ .expr1 <- DV * alpha 

.expr2 <- exp(.expr1) 

.expr3 <- 1 + .expr2 

.value <- (log(.expr3)) - .expr1 

.grad <- array(0, c(length(.value), 1), list(NULL, 
"alpha")) 

Table 12.3: Arguments to deriv

Argument Purpose

expr Expression to be differentiated, typically a formula, in
which case the expression returned computes the right
side of the ~ and its derivatives.

namevec Character vector of names of parameters.

function.arg Optional argument vector or prototype for a function.

tag Base of the names to be given to intermediate results.
Default is ".expr".
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.grad[, "alpha"] <- ((.expr2 * DV)/.expr3) - DV 
attr(.value, "gradient") <- .grad 
.value

}

The namevec argument can be a vector.

> deriv(vel ~ Vm * (conc/(K + conc)), c("Vm","K")) 
expression( 
{ .expr1 <- K + conc 

.expr2 <- conc/.expr1 

.value <- Vm * .expr2 

.grad <- array(0, c(length(.value), 2), list(NULL, 
c("Vm","K")))

.grad[, "Vm"] <- .expr2 

.grad[, "K"] <- - (Vm * (conc/(.expr1^2))) 
attr(.value, "gradient") <- .grad 
.value 

})

The symbolic differentiation interprets each parameter as a scalar.
Generalization from scalar to vector parameters (for example, lprob2) must
be done by hand. Use parentheses to help deriv find relevant
subexpressions. Without the redundant parentheses around conc/(K +
conc) the expression deriv returns is not as simple as possible. 

Fitting Models There are two different fitting functions for nonlinear models:

• ms minimizes the sum of the vector supplied as the right side of the
formula.

• nls minimizes the sum of squared differences between the left and
right sides of the formula.
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Table 12.4: Arguments to ms

Argument Purpose

formula The nonlinear model formula (without a left side).

data A data frame in which to do the computations.

start Numeric vector of initial parameter values for the iter-
ation.

scale Parameter scaling.

control List of control values to be used in the iteration.

trace Indicates whether or not intermediate estimates
should be printed.

Table 12.5: Arguments to nls

Argument Purpose

formula The nonlinear regression model as a formula.

data A data frame in which to do the computations.

start Numeric vector of initial parameter values for the iter-
ation.

control List of control values to be used in the iteration.

algorithm Which algorithm to use. The default algorithm is a
Gauss-Newton algorithm. If algorithm = "plin-
ear", the Golub-Pereyra algorithm for partially linear
least-squares models is used.

trace Indicates whether or not intermediate estimates
should be printed.
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Fitting a Model 
to the Puromycin 
Data

Before fitting a model, take a look at the data displayed in figure 12.1.

> attach(Puromycin) 
> plot(conc,vel,type="n") 
> text(conc,vel,ifelse(state == "treated", "T","U"))

1. Estimating Starting Values

Obtain an estimate of Vmax for each group as the maximum value each group
attains.

• The treated group has a maximum of about 200.

• The untreated group has a maximum of about 160.

The value of K is the concentration at which V reaches Vmax/2, roughly 0.1
for each group.

2. A Simple Model

Start by fitting a simple model for the treated group only.

> Treated <- Puromycin[Puromycin$state == "treated",] 
> Purfit.1 <- nls(vel ~ Vm*conc/(K + conc), data = Treated, 
+ start = list(Vm = 200, K = 0.1)) 
> Purfit.1 
residual sum of squares: 1195.449 

Figure 12.1:  vel versus conc for treated (T) and untreated (U) groups. 
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parameters: 
      Vm          K 
212.6836 0.06412111 

12 observations 

gradient.norm: 
[1] 0.2781043 

RELATIVE FUNCTION CONVERGENCE 

formula: vel~(Vm * conc)/(K + conc)

Fit a model for the untreated group similarly but with Vm = 160.

> Purfit.2 
residual sum of squares: 859.6043 
parameters: 
    Vm          K 
160.28 0.04770808 

11 observations 

gradient.norm: 
[1] 0.1389438 

RELATIVE FUNCTION CONVERGENCE 

formula: vel ~ (Vm * conc)/(K + conc)

3. A More Complicated Model

Obtain summaries of the fits with the summary function:

> summary(Purfit.1) 
parameters:
          Value   Std.Error   t value
Vm 212.68362994 6.947148850 30.614520
 K   0.06412111 0.008280931  7.743225
. . . 
sigma: 10.93366 
df: 
[1] 2 10 
. . . 
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correlation: 
          Vm         K 
Vm 1.0000000 0.7650835 
 K 0.7650835 1.0000000 

formula: 
vel ~ (Vm * conc)/(K + conc) 
> summary(Purfit.2) 
parameters: 
          Value   Std.Error   t value 
Vm 160.27997949 6.480240801 24.733646 
 K   0.04770808 0.007781862  6.130677 
. . . 
sigma: 9.773003 
df: 
[1] 2 9 
. . .
correlation: 
          Vm         K 
Vm 1.0000000 0.7768269 
 K 0.7768269 1.0000000 

formula: 
vel ~ (Vm * conc)/(K + conc)

An approximate t-test for the difference in K between the two models
suggests there is no difference:

> (.06412 - .04771)/sqrt(.00828^2 + .007782^2) 

[1] 1.44416

The correct test of whether the Ks should be different, and is as follows:

> Purboth <- nls(vel ~ (Vm + delV*(state=="treated"))*conc/ 
+ (K + conc), data=Puromycin, 
+ start=list(Vm=160, delV=40, K=0.05))
> summary(Purboth) 
parameters: 
            Value   Std.Error   t value 
  Vm 166.60396617 5.807422147 28.688110 
delV  42.02590886 6.272136003  6.700414 
   K   0.05797157 0.005910154  9.808809 
. . . 
sigma: 10.58511 
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df: 
[1] 3 20 
. . . 
             Vm        delV          K 
  Vm  1.0000000 -0.54055820 0.61128147 
delV -0.5405582  1.00000000 0.06440645 
   K  0.6112815  0.06440645 1.00000000 

formula: 
vel  ~ ((Vm + delV * (state == "treated")) * conc)/(K + conc)
> combinedSS <- sum(Purfit.1$res^2) + sum(Purfit.2$res^2) 
> Fval <- (sum(Purboth$res^2) - combinedSS)/(combinedSS/19) 
> Fval 
[1] 1.718169 
> 1 - pf(Fval, 1, 19) 
[1] 0.2055523

Using a single K appears to be reasonable. 

Fitting a Model 
to the Ping-Pong 
Data

The example here develops a model based only on the difference in ratings,
ignoring, for the moment, the average rating. The model to fit is:

 ~ DV * alpha + log( 1 + exp(DV * alpha) )

There are four stages to the development of the model.

1. Estimating Starting Values

A very crude initial estimate for alpha can be found as follows:

• Replace all the differences in ratings by , where   is the mean
difference.

• For each match, the probability from the model that the winner had

a higher rating satisfies:   * a = log(p/(1-p))

• Solve for α by substituting for p the observed frequency with which
the player with the higher rating wins.

The computations in S-PLUS proceed as follows:

> param(pingpong, "p") <- 0 # make pingpong a "pframe" 
> attach(pingpong,1) 
> DV <- winner - loser 
> p <- sum(winner > loser) /length(winner) 
> p 
[1] 0.8223401 

d± d

d
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> alpha <- log(p/(1-p))/mean(DV) 
> alpha 
[1] 0.007660995 
> detach(1, save = "pingpong")

2. A Simple Model

Recall the lprob function which calculates the log-likelihood for the ping-
pong problem.

> lprob 
function(lp) 
log(1 + exp(lp)) - lp

The model is fitted as follows:

> attach(pingpong) 
> fit.alpha <- ms( ~ lprob( DV * alpha ), 
+ start = list(alpha=0.0077)) 
> fit.alpha 
objective: 1127.635 

parameters:  
     alpha 
0.01114251 

gradient: 
[1] -0.0004497159
 
RELATIVE FUNCTION CONVERGENCE. 
formula:  ~ lprob(DV * alpha)

3. Adding The Gradient

To fit the model with the gradient added to the formula use lprob2.

> fit.alpha.2 <- ms( ~ lprob2( DV * alpha, DV),
+ start = list(alpha=0.0077))
> fit.alpha.2
objective: 1127.635 

parameters:
     alpha
0.01114251

gradient:
       alpha
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2.938858e-07

RELATIVE FUNCTION CONVERGENCE. 
formula:  ~ lprob2(DV * alpha, DV)

Even for this simple problem, providing the derivative has decreased the
computation time by 20%.

4. Adding The Hessian

To fit the model with the gradient and the Hessian added to the formula use
lprob3.

> fit.alpha.3 <- ms( ~ lprob3(DV*alpha, DV), 
+ pingpong, start = list(alpha = .0077)) 
> fit.alpha.3 
objective: 1127.635 

parameters: 
     alpha 
0.01114251 

gradient: 
       alpha 
-0.000218718 

BOTH X- AND RELATIVE FUNCTION CONVERGENCE 
formula:  ~ lprob3(DV * alpha, DV) 

Profiling the 
Objective 
Function

Profiling provides a more accurate picture of the uncertainty in the parameter
estimates than simple standard errors. When there are only two parameters,
contours of the objective function can be plotted by generating a grid of
values. When there are more than two parameters, examination of the
objective function is usually done in one of two ways:
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Two-dimensional projections are often too time consuming to compute.
One-dimensional projections are called profiles. Profiles are plots of a t-
statistic equivalent called the profile t function for a parameter of interest
against a range of values for the parameter.
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The Profile t 
Function

For nls, the profile t function for a given parameter, θp, is denoted by τ(θp)
and is computed as follows:

where:   is the model estimate of  θp ,   is the sum of squares based

on optimizing all parameters except θp, which is fixed, and  is the sum of

squares based on optimizing all parameters.

The profile t function is directly related to confidence intervals for the
corresponding parameter.  τ(θp) can be shown to be equivalent to the

studentized parameter 

for which a 1–α confidence interval can be constructed as follows:

The profile  
Function in 
S-PLUS

The profile function produces profiles for "nls" and "ms" objects. Profiles
show confidence intervals for parameters as well as the nonlinearity of the
objective function. If the model were linear the profile would be a straight
line through the origin with a slope of one. You can produce the profile plots
for the Puromycin fit Purboth as follows:

> Purboth.prof <- profile(Purboth) 
> plot(Purboth.prof)

The "profile" object returned by profile has a component for each
parameter containing the evaluations of the profile t function plus some
additional attributes. The component for the Vm parameter is:

> Purboth.prof$Vm
          tau par.vals.Vm par.vals.delV par.vals.K
 1 -3.9021051    144.6497      54.60190 0.04501306
 2 -3.1186052    148.8994      52.07216 0.04725929
 3 -2.3346358    153.2273      49.54358 0.04967189
 4 -1.5501820    157.6376      47.01846 0.05226722

(12.16)

(12.17)

. (12.18)
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Inference for Nonlinear Models
 5 -0.7654516    162.1334      44.50315 0.05506789
 6  0.0000000    166.6040      42.02591 0.05797157
 7  0.7548910    171.0998      39.57446 0.06103225
 8  1.5094670    175.6845      37.12565 0.06431820
 9  2.2635410    180.3616      34.67194 0.06783693
10  3.0171065    185.1362      32.20981 0.07160305
11  3.7701349    190.0136      29.73812 0.07563630
12  4.5225948    194.9997      27.25599 0.07995897

Figure 12.2 shows profile plots for the three-parameter Puromycin fit. Each
plot shows the profile t function, (τ), when the parameter on the x-axis
ranges over the values shown, and the other parameters are optimized. The
surface is quite linear with respect to these three parameters.

Computing 
Confidence 
Intervals

An example of a simple function to compute the confidence intervals from
the output of profile follows:

> conf.int <- function(profile.obj, variable.name,
+ confidence.level = 0.95)
+ {if(is.na(match(variable.name, names(profile.obj))))
+ stop(paste("Variable", variable.name, "not in the model"))
+ resid.df <- attr(profile.obj, "summary")[["df"]][2] 
+ tstat <- qt(1 - (1 - confidence.level)/2, resid.df) 
+ prof <- profile.obj[[variable.name]] 
+ approx(prof[, "tau"], prof[, "par.vals"][, variable.name],
+ c(-tstat, tstat))[[2]]
+ }

The tricky line in conf.int is the last one which calls approx.
Purboth.prof$Vm is a data frame with two components (columns). The
first component is the vector of τ values which we pick off using prof[,
"tau"]. The second component named par.vals contains a matrix with as
many columns as there are parameters in the model. This results in the
strange looking subscripting given by prof[, "par.vals"][,
variable.name]. The first subscript removes the matrix from the
par.vals component, and the second subscript removes the appropriate
column. Three examples using conf.int and the profile object
Purboth.prof follow:

> conf.int(Purboth.prof, "delV", conf = .99) 
[1] 24.20945 60.03857

> conf.int(Purboth.prof, "Vm", conf = .99) 
[1] 150.4079 184.0479 
371



12. Nonlinear Models
> conf.int(Purboth.prof, "K", conf = .99)
[1] 0.04217613 0.07826822  

The conf.int function can be improved by, for example, doing a cubic
spline interpolation rather than the linear interpolation that approx does. A
marginal confidence interval computed from the profile t function is exact,
disregarding any approximations due to interpolation, whereas the marginal
confidence intervals produced by using the coefficient and its standard error
from the summary of the fit is only a linear approximation.

Figure 12.2:  The profile plots for the Puromycin fit. 
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Use S-PLUS to analyse data from experiments with one, 
two, or more factors.
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DESIGNED EXPERIMENTS AND ANALYSIS 
OF VARIANCE 13

This chapter discusses how to analyze designed experiments. Typically, the
data have a numeric response and one or more categorical variables (factors)
that are under the control of the experimenter. For example, an engineer may
measure the yield of some process using each combination of four catalysts
and three specific temperatures. This experiment has two factors, catalyst and
temperature, and the response is the yield.
Traditionally, the analysis of experiments has centered on the performance of
an Analysis of Variance (ANOVA). In more recent years graphics have played
an increasingly important role. There is a large literature on the design and
analysis of experiments—Box, Hunter, and Hunter (1978) is an example.

This chapter consists of sections which show you how to use S-PLUS to
analyze experimental data for each of the following situations:

• Experiments with one factor (section 13.1 )

• Experiments with two factors and a single replicate (section 13.2 )

• Experiments with two factors and two or more replicates
(section 13.3)

• Experiments with many factors at two levels: 2k designs
(section 13.4)

Each of these sections stands alone. You can read whichever section is
appropriate to your problem, and get the analysis done without having to
read the other sections. The examples used in sections 13.1–13.4 are from
Box, Hunter, and Hunter (1978). Thus, this chapter is a useful supplement
in a course which covers the material of Chapters 6, 7, 9, 10, 11 of Box,
Hunter, and Hunter.

Setting Up the 
Data Frame

In analyzing experimental data using S-PLUS, the first thing you do is set up
an appropriate data frame for your experimental data. You may think of the
data frame as a matrix, with the columns containing values of the variables.
Each row of the data frame contains an observed value of the response (or
responses), and the corresponding values of the experimental factors.

A First Look at 
the Data

Use the functions plot.design, plot.factor and possibly
interaction.plot to graphically explore your data.
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13. Designed Experiments and Analysis of Variance
The Model and 
Analysis of 
Variance

It is important that you have a clear understanding of exactly what model is
being considered when you carry out the analysis of variance. Use aov to
carry out the analysis of variance, and use summary to display the results.
In using aov, you use formulas to specify your model. The examples in this
chapter introduce you to simple uses of formulas. You may supplement your
understanding of how to use formulas in S-PLUS by reading chapter 2,
Specifying Models in S-PLUS, or chapter 2, Statistical Models, and chapter
5, Analysis of Variance; Designed Experiments, in Chambers and Hastie
(1992).

Diagnostic Plots For each analysis, you should make the following minimal set of plots to
convince yourself that the model being entertained is adequate:

• Histogram of residuals (using hist)

• Normal qqplot of residuals (using qqnorm)

• Plot of residuals versus fit (using plot)

When you know the time order of the observations, you should also make
plots of the original data and the residuals in the time order in which the data
were collected.

The diagnostic plots may indicate inadequacies in the model from one or
more of the following sources: existence of interactions, existence of outliers,
and existence of inhomogeneous error variance.

13.1 EXPERIMENTS WITH ONE FACTOR
The simplest kind of experiments are those in which a single continuous
response variable is measured a number of times for each of several levels of
some experimental factor.
For example, consider the data in table 13.1 (from Box, Hunter, and Hunter
(1978)), which consists of numerical values of “blood coagulation times” for
each of four diets. Coagulation time is the continuous response variable, and
diet is a qualitative variable, or factor, having four levels: A, B, C, and D. The
diets corresponding to the levels A, B, C, and D were determined by the
experimenter.

Your main interest is to see whether or not the factor “diet” has any effect on
the mean value of blood coagulation time. The experimental factor, “diet” in
this case, is often called the treatment.

Formal statistical testing for whether or not the factor level affects the mean is
carried out using the method of analysis of variance (ANOVA). This needs to
be complemented by exploratory graphics to provide confirmation that the
model assumptions are sufficiently correct to validate the formal ANOVA
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Experiments with One Factor
conclusion. S-PLUS provides tools for you to do both the data exploration
and formal ANOVA.

Setting Up the 
Data Frame

In order to analyze the data, you need to get it into a form that S-PLUS can
use for the analysis of variance. You do this by setting up a data frame. First
create a numeric vector coag:

> coag <- scan()
1: 62 60 63 59
5: 63 67 71 64 65 66
11: 68 66 71 67 68 68
17: 56 62 60 61 63 64 63 59
25:

Next, create a factor called diet, that corresponds to coag: 

> diet <- factor(rep(LETTERS[1:4],c(4,6,6,8)))
> diet
[1] A A A A B B B B B B C C C C C C D D D D D D D D

Now create a data frame with columns diet and coag:

> coag.df <- data.frame(diet,coag)

The data frame object coag.df is a matrix-like object, so it looks like a
matrix when you display it on your screen:

Table 13.1: Blood coagulation times for four diets.

Diet

A B C D

62 63 68 56

60 67 66 62

63 71 71 60

59 64 67 61

65 68 63

66 68 64

63

59
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13. Designed Experiments and Analysis of Variance
> coag.df
   diet coag
 1    A   62
 2    A   60
 3    A   63
    .
    .
    .
23    D   63
24    D   59

A First Look at 
the Data

For each level of the treatment factor, you make an initial graphical
exploration of the response data yij by using the functions plot.design and

plot.factor.

You can make plots of the treatment means and treatment medians for each
level of the experimental factor diet by using the function plot.design
twice, as follows:

> par(mfrow=c(1,2)) 
> plot.design(coag.df) 
> plot.design(coag.df, fun= median) 
> par(mfrow=c(1,1)) 

The results are shown in the two plots of figure 13.1. In the left hand plot,
the tick marks on the vertical line are located at the treatment means for the
diets A, B, C, and D, respectively. The mean values of coagulation time for
diets A and D happen to have the same value, 61, and so the labels A and D
are overlaid. The horizontal line, located at 64, indicates the overall mean of
all the data.

In the right hand plot of figure 13.1, medians rather than means are
indicated. There is not much difference between the treatment means and
the treatment medians, so you should not be too concerned about adverse
effects due to outliers.

The function plot.factor produces a boxplot of the response data for each
level of the experimental factor:

> plot.factor(coag.df)

The resulting plot is shown in figure 13.2. This plot indicates that the
responses for diets A and D are quite similar, while the median responses for
diets B and C are considerably larger relative to the variability reflected by the
heights of the boxes. Thus, you suspect that diet has an effect on blood
coagulation time.
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Experiments with One Factor
Figure 13.1:  Treatment means and medians.

Figure 13.2:  Boxplots for each treatment.
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13. Designed Experiments and Analysis of Variance
If the exploratory graphical display of the response using plot.factor
indicates that the interquartile distance of the boxplots depends upon the
median, then a transformation to make the error variance constant is called
for. The transformation may be selected with a “spread versus level” plot. See,
for example, section 13.3, or Hoaglin, Mosteller, and Tukey (1983).

The One-Way 
Layout Model 
and Analysis of 
Variance

The classical model for experiments with a single factor is

where µi is the mean value of the response for the ith level of the

experimental factor. There are I levels of the experimental factor, and Ji
measurements  are taken on the response variable for level i

of the experimental factor.

Using the treatment terminology, there are I treatments, and µi is called the

ith treatment mean. The above model is often called the one-way layout
model. For the blood coagulation experiment there are I=4 diets, and the
means µ1, µ2, µ3, and µ4 correspond to diets A, B, C, and D, respectively.

The numbers of observations are JA = 4, JB = JC = 6, and JD = 8.

You carry out the analysis of variance with the function aov:

> aov.coag <- aov(coag ~ diet, coag.df) 

The first argument to aov above is the formula coag ~ diet. This formula
is a symbolic representation of the one-way layout model equation; the
formula excludes the error term εij. The second argument to aov is the data

frame you created, coag.df, which provides the data needed to carry out the
ANOVA. The names diet and coag, used in the formula coag ~ diet,
need to match the names of the variables in the data frame coag.df.

To display the ANOVA table, use summary: 

> summary(aov.coag)
          Df Sum of Sq Mean Sq F Value       Pr(F)
     diet  3       228    76.0 13.5714 4.65847e-05
Residuals 20       112     5.6

The p-value is equal to .000047, which is highly significant.

Diagnostic Plots You obtain the fitted values and residuals using the fitted.values and
residuals functions on the result of aov. Thus, for example, you get the
fitted values with the following: 

yij µi ε ij+= j 1 … Ji, ,=

i 1 … I, ,=

yi 1 yi2 … yiJi
, , ,
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Experiments with One Factor
> fitted.values(aov.coag)
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17
 61 61 61 61 66 66 66 66 66 66 68 68 68 68 68 68 61

 18 19 20 21 22 23 24
 61 61 61 61 61 61 61

The resid and fitted functions are shorter names for residuals and
fitted.values, respectively.

You can check the residuals for distributional shape and outliers by using
hist and qqnorm, with the residuals component of aov.coag as argument: 

> hist(resid(aov.coag)) 
> qqnorm(resid(aov.coag)) 

Figure 13.3 shows the resulting histogram and figure 13.4 shows the
resulting quantile-quantile plot.

The shape of the histogram, and the linearity of the normal QQ-plot, both
indicate that the error distribution is quite Gaussian. (The flat sections in the
QQ-plot are a consequence of tied values in the data.)

You can check for inhomogeneity of error variance and possible outliers by
plotting the residuals versus the fit: 

> plot(fitted(aov.coag), resid(aov.coag)) 

 This plot reveals no unusual features, and is not shown.

Figure 13.3:  Histogram of residuals.
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13. Designed Experiments and Analysis of Variance
Details An alternate form of the one-way layout model is the overall mean plus effects
form 

yij = µ + αi +εij

where µ is the overall mean, and αi is the effect for level (or treatment) i. The

mean µi for level (or treatment) i in the first form of the model is related to µ
and αi by

µi = µ + αi

and the effects ai satisfy the constraint

.

The function aov fits the one-way model in the “overall mean plus effects”

form . See section 14.1 for more on this.

To obtain the effects, use model.tables as follows: 

> model.tables(aov.coag)
Refitting model to allow projection
Tables of effects

Figure 13.4:  Normal QQ-plot of residuals.
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The Unreplicated Two-Way Layout
 diet
     A B C  D
    -3 2 4 -3
 rep 4 6 6 8 

You can get the treatment means as follows: 

> model.tables(aov.coag, type="means")
Refitting model to allow projection
Tables of means

Grand mean

 64

 diet
     A  B  C  D
    61 66 68 61
rep  4  6  6  8

13.2 THE UNREPLICATED TWO-WAY LAYOUT
The data in table 13.2 (used by Box, Hunter, and Hunter (1978)) were
collected to determine the effect of treatments A, B, C, and D on the yield of
penicillin in a penicillin manufacturing process.

The values of the response variable “yield” are the numbers in the table, and
the columns of the table correspond to the levels A, B, C, and D of the
treatment factor. There was a second factor, namely the blend factor, since a

Table 13.2: Effect of four treatments on penicillin yield.

Treatment

Block A B C D

Blend 1 89 88 97 94

Blend 2 84 77 92 79

Blend 3 81 87 87 85

Blend 4 87 92 89 84

Blend 5 79 81 80 88
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13. Designed Experiments and Analysis of Variance
separate blend of the corn-steep liquor had to be made for each application of
the treatments.

Your main interest is in determining whether the treatment factor affects
yield. The blend factor is of only secondary interest; it is a “blocking” variable
introduced to increase the sensitivity of the inference for treatments. The
order of the treatments within blocks was chosen at random. Hence, this is a
randomized blocks experiment.

The methods we use in this section applies equally well to two-factor
experiments in which both factors are experimentally controlled and of equal
interest.

Setting Up the 
Data Frame

Table 13.2 is balanced—each entry or cell of the table (i.e., each row and
column combination) has the same number of observations (one observation
per cell, in the present example)—so you can use fac.design to create the
data frame.
First, create a list fnames with two components named blend and
treatment, where blend contains the level names of the blend factor and
treatment contains the level names of the treatment factor: 

> fnames <- list(blend=paste("Blend ", 1:5),
+           treatment=LETTERS[1:4])

Then use fac.design to create the design data frame pen.design

> pen.design <- fac.design(c(5,4), fnames) 

The first argument, c(5,4), to fac.design specifies the design as having
two factors because its length is two. The 5 specifies five levels for the first
factor, blend, and the 4 specifies four levels for the second factor, treatment.
The second argument, fnames, specifies the factor names and the labels for
their levels.

The design data frame pen.design that you just created contains the factors
blend and treatment as its first and second columns, respectively.

Now create yield to match pen.design:

> yield <- scan()
1: 89 84 81 87 79
6: 88 77 87 92 81
11: 97 92 87 89 80
16: 94 79 85 84 88
21: 

You can now use data.frame to combine the design data frame
pen.design and the response yield into the data frame pen.df:
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The Unreplicated Two-Way Layout
> pen.df <- data.frame(pen.design,yield) 

Now look at pen.df: 

> pen.df
     blend treatment yield
 1 Blend 1         A    89
 2 Blend 2         A    84
 3 Blend 3         A    81
 4 Blend 4         A    87
 5 Blend 5         A    79
 6 Blend 1         B    88
             .
             .
             .
19 Blend 4         D    84
20 Blend 5         D    88

Alternatively, you could build the model data frame directly from
pen.design  as follows: 

> pen.design[,"yield"] <- yield 

When you plot the object pen.design, S-PLUS uses the method
plot.design, because the object pen.design is of class design. Thus,
you obtain the same results as if you called plot.design explicitly on the
object pen.df.

A First Look at 
the Data

You can look at the (comparative) values of the sample means of the data for
each level of each factor using plot.design:

> plot.design(pen.df)

This function produces the plot shown in figure 13.5.  For the blend factor,
each tick mark is located at the mean of the corresponding row of table 13.2.
For the treatment factor, each tick mark is located at the mean of the
corresponding column of table 13.2. The horizontal line is located at the
sample mean of all the data. Figure 13.5 suggests that the blend has a greater
effect on yield than does the treatment.

Since sample medians are insensitive to outliers, and sample means are not,
you may want to make a plot similar to figure 13.5 using sample medians
instead of sample means. You can do this with plot.design, using the
second argument fun=median: 

> plot.design(pen.df, fun=median) 

In this case, the plot does not indicate great differences between sample
means and sample medians.
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13. Designed Experiments and Analysis of Variance
Use plot.factor to get a more complete exploratory look at the data. But
first use par to get a one row by two column layout for two plots: 

> par(mfrow=c(1,2)) 
> plot.factor(pen.df) 
> par(mfrow=c(1,1)) 

This command produces the plot shown in figure 13.6 .

Figure 13.5:  Sample means in penicillin yield experiment.
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The Unreplicated Two-Way Layout
The boxplots for factors, produced by plot.factor, give additional
information about the data besides the location given by plot.design. The
boxplots indicate variability, skewness, and outliers in the response, for each
fixed level of each factor. For this particular data, the boxplots for both blends
and treatments indicate rather constant variability, relatively little overall
skewness, and no evidence of outliers.

For two-factor experiments, you should use interaction.plot to check
for possible interactions (i.e., non-additivity). The interaction.plot
function does not accept a data frame as an argument. Instead, you must
supply appropriate factor names and the response name. To make these factor
and response data objects available to interaction.plot, you must first
“attach" the data frame pen.df: 

> attach(pen.df) 
> interaction.plot(treatment,blend,yield) 

These commands produce the plot shown in figure 13.7.

The first argument to interaction.plot specifies which factor appears
along the x-axis (in this case, treatment). The second argument specifies
which factor is associated with each line plot, or “trace” (in this case, blend).
The third argument is the response variable (in this case, yield).

Without replication it is often difficult to interpret an interaction plot since
random error tends to dominate. There is nothing striking in this plot.

Figure 13.7:  Interaction plot of penicillin experiment.
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13. Designed Experiments and Analysis of Variance
The Two-Way 
Model and 
ANOVA (One 
Observation 
per Cell)

The additive model for experiments with two factors, A and B, and one
observation per cell is:

where µ is the overall mean,  is the effect of the ith level of factor A and

 is the effect of the jth level of factor B.

For the penicillin data above, factor A is “blend” and factor B is “treatment.”
Blend has I = 5 levels and treatment has J = 4 levels.

To estimate the additive model, use aov:

> aov.pen <- aov(yield ~ blend + treatment, pen.df) 

The formula yield ~ blend + treatment specifies that a two factor
additive model is fit, with yield the response, and blend and treatment
the factors.

Display the analysis of variance table with summary: 

> summary(aov.pen)
          Df Sum of Sq Mean Sq F Value    Pr(F)
    blend  4       264 66.0000 3.50442 0.040746
treatment  3        70 23.3333 1.23894 0.338658
Residuals 12       226 18.8333 

The p-value for blend is moderately significant, while the p-value for
treatment is insignificant.

Diagnostic Plots Make a histogram of the residuals

> hist(resid(aov.pen))

The resulting histogram is shown in figure 13.8. Now make a normal QQ-
plot of residuals:

> qqnorm(resid(aov.pen)) 

The resulting plot is shown in figure 13.9. The central four cells of the
histogram in figure 13.8 are consistent with a fairly normal distribution in
the middle. The linearity of the normal QQ-plot in figure 13.9, except near
the ends, also suggests that the distribution is normal in the middle. The
relatively larger values of the outer two cells of the histogram, and the
flattening of the normal QQ-plot near the ends, both suggest that the error
distribution is slightly more short-tailed than a normal distribution. This is
not a matter of great concern for the ANOVA F tests.

yij µ α i
A α i

B ε i j+ + += i 1 … I, ,=

j 1 … J, ,=

α i
A

α j
B
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The Unreplicated Two-Way Layout
Figure 13.8:  Histogram of residuals for penicillin yield experiment.

Figure 13.9:  Quantile-Quantile plot of residuals for penicillin yield
experiment.
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13. Designed Experiments and Analysis of Variance
Make a plot of residuals versus the fit: 

> plot(fitted(aov.pen), resid(aov.pen)) 

The resulting plot is shown in figure 13.10.

The plot of residuals versus fit gives some slight indication that smaller error
variance is associated with larger values of the fit.

Guidance Since there is some indication of inhomogeneity of error variance, we now
consider transforming the response, yield.
You may want to test for the existence of a multiplicative interaction,
specified by the model 

.

When the unknown parameter θ is not zero, multiplicative interaction exists.
A test for the null hypothesis of no interaction may be carried out using the
test statistic T1df for Tukey’s one degree of freedom for non-additivity.

An S-PLUS function, tukey.1, is provided in the Details section. You can
use it to compute T1df and the p-value. For the penicillin data: 

> tukey.1(aov.pen, pen.df)
$T.1df:
[1] 0.09826791

Figure 13.10:  Residuals vs. fitted values for penicillin yield experiment.
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The Unreplicated Two-Way Layout
$p.value:
[1] 0.7597822

The statistic T1df = .098 has a p-value of p = .76, which is not significant.

Therefore there is no indication of a multiplicative interaction.

Assuming that the response values are positive, you can find out whether or
not the data suggest a specific transformation to remove multiplicative
interaction as follows: Plot the residuals rij for the additive fit versus the

comparison values 

.

If this plot reveals a linear relationship with estimated slope , then you
should analyze the data again, using as new response values the power

transformation  of the original response variables yij, with exponent

.

(If λ = 0, use log(yij).) See Hoaglin, Mosteller, and Tukey (1983) for details.

An S-PLUS function called comp.plot, for computing the comparison

values cij, plotting rij versus cij, and computing , is provided in the Details

section below. Applying comp.plot to the penicillin data gives the following
result: 

> comp.plot(aov.pen, pen.df)
$theta.hat:
[1] 4.002165

$std.error:
[1] 9.980428

$R.squared:
          R2
 0.008854346

In this case the estimated slope is , which gives λ = -3. However, this is
not a very sensible exponent for a power transformation. The standard

deviation of  is nearly 10 and the R2 is only .009, which indicates that θ
may be zero. Thus we do not recommend using a power transformation.

cij
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13. Designed Experiments and Analysis of Variance
Details The test statistic T1df for Tukey’s one degree of freedom is given by:

  

where

SSres.1 = SSres - SSθ

Figure 13.11:  Display from comp.plot.
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The Unreplicated Two-Way Layout
with the ,  the additive model estimates of the  and , and rij the

residuals from the additive model fit. The statistic T1df has an F1,IJ-I-J

distribution.

Here is a function tukey.1 to compute the Tukey one-degree of freedom for
non-additivity test. You can create your own version of this function by
typing tukey.1 <- and then the definition of the function.

> tukey.1
function(aov.obj, data)
{
        vnames <- names(aov.obj$contrasts)
        if(length(vnames) != 2)
                stop("the model must be two-way")
        vara <- data[, vnames[1]]
        varb <- data[, vnames[2]]
        na <- length(levels(vara))
        nb <- length(levels(varb))
        resp <- data[, as.character(attr(aov.obj$terms,
          "variables")[attr(aov.obj$terms, "response" )])]
        cfs <- coef(aov.obj)
        alpha.A <- aov.obj$contrasts[[vnames[1]]] %*% cfs[
                aov.obj$assign[[vnames[1]]]]
        alpha.B <- aov.obj$contrasts[[vnames[2]]] %*% cfs[
                aov.obj$assign[[vnames[2]]]]
        r.mat <- matrix(0, nb, na)
        r.mat[cbind(as.vector(unclass(varb)), as.vector(
                unclass(vara)))] <- resp
        SS.theta.num <- sum((alpha.B %*% t(alpha.A)) *
                r.mat)^2
        SS.theta.den <- sum(alpha.A^2) * sum(alpha.B^2)
        SS.theta <- SS.theta.num/SS.theta.den
        SS.res <- sum(resid(aov.obj)^2)
        SS.res.1 <- SS.res - SS.theta
        T.1df <- ((na * nb - na - nb) * SS.theta)/SS.res.1
        p.value <- 1 - pf(T.1df, 1, na * nb - na - nb)
        list(T.1df = T.1df, p.value = p.value)
}

Here is a function comp.plot for computing a least-squares fit to the plot of
residuals versus comparison values:

α̂ i
A

α̂ j
B

αi
A αj

B
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13. Designed Experiments and Analysis of Variance
> comp.plot
function(aov.obj, data)
{
        vnames <- names(aov.obj$contrasts)
        if(length(vnames) != 2)
                stop("the model must be two-way")
        vara <- data[, vnames[1]]
        varb <- data[, vnames[2]]
        cfs <- coef(aov.obj)
        alpha.A <- aov.obj$contrasts[[vnames[1]]] %*% cfs[
                aov.obj$assign[[vnames[1]]]]
        alpha.B <- aov.obj$contrasts[[vnames[2]]] %*% cfs[
                aov.obj$assign[[vnames[2]]]]
        cij <- alpha.B %*% t(alpha.A)
        cij <- c(cij)/cfs[aov.obj$assign$"(Intercept)"]
        na <- length(levels(vara))
        nb <- length(levels(varb))
        r.mat <- matrix(NA, nb, na)
        r.mat[cbind(as.vector(unclass(varb)), as.vector(
                unclass(vara)))] <- resid(aov.obj)
        plot(cij, as.vector(r.mat))
        ls.fit <- lsfit(as.vector(cij), as.vector(r.mat))
        abline(ls.fit)
        output <- ls.print(ls.fit, print.it = F)
        list(theta.hat = output$coef.table[2, 1], std.error
                 = output$coef.table[2, 2], R.squared =
                 output$summary[2])
}

13.3 THE TWO-WAY LAYOUT WITH REPLICATES
The data in table 13.3 (used by Box, Hunter, and Hunter (1978)) displays
the survival times, in units of 10 hours, of animals in a  replicated
factorial experiment. In this experiment, each animal was given one of three
poisons, labeled I, II, and III, and one of four treatments, labeled A, B, C,
and D. Four animals were used for each combination of poison and
treatment, making four replicates. 

Setting Up the 
Data Frame

To set up the data frame, first make a list, fnames, with components
treatment and poison, containing the level names of these two factors: 

> fnames <- list(treatment=LETTERS[1:4],
+ poison=c("I","II","III")) 

3 4×
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The Two-Way Layout with Replicates
Use fac.design, with optional argument rep=4, to create the design data
frame poisons.design:

> poisons.design <- fac.design(c(4,3), fnames, rep=4) 

Note that since treatments is the first factor in the fnames list, and
treatments has 4 levels, 4 is the first  argument of c(4,3).

You now need to create the vector surv.time to match poisons.design.
Each replicate of the experiment consists of data in three rows of table 13.3.
Rows 1, 5, and 9 make up the first replicate, and so on. The command to get
what we want is: 

Table 13.3: A replicated factorial experiment.

treatment

poison A B C D

I 0.31 0.82 0.43 0.45

0.45 1.10 0.45 0.71

0.46 0.88 0.63 0.66

0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56

0.29 0.61 0.35 1.02

0.40 0.49 0.31 0.71

0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30

0.21 0.37 0.25 0.36

0.18 0.38 0.24 0.31

0.23 0.29 0.22 0.33
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13. Designed Experiments and Analysis of Variance
> surv.time <- scan()
1: .31 .82 .43 .45 
5: .36 .92 .44 .56 
9: .22 .30 .23 .30 
13: .45 1.10 .45 .71 
17: .29 .61 .35 1.02 
21: .21 .37 .25 .36 
25: .46 .88 .63 .66 
29: .40 .49 .31 .71 
33: .18 .38 .24 .31 
37: .43 .72 .76 .62 
41: .23 1.24 .40 .38 
45: .23 .29 .22 .33 
49: 

Finally, make the data frame poisons.df: 

> poisons.df <- data.frame(poisons.design, surv.time) 

A First Look at 
the Data

Use plot.design, plot.factor, and interaction.plot to get a first
look at the data through summary statistics.

Set par(mfrow=c(3,2)) and use the above three functions to get the three
row and two column layout of plots displayed in figure 13.12: 

> par(mfrow=c(3,2)) 

To obtain the design plot of sample means shown in the upper left plot of
figure 13.12, use plot.design as follows:

> plot.design(poisons.df) 

To obtain the design plot of sample medians shown in the upper right hand
plot of figure 13.12, use plot.design again:

> plot.design(poisons.df, fun=median) 

The two sets of boxplots shown in the middle row of figure 13.12 are
obtained with:

> plot.factor(poisons.df) 

To obtain the bottom row of figure 13.12, use interaction.plot:

> attach(poisons.df) 
> interaction.plot(treatment,poison,surv.time) 
> interaction.plot(treatment,poison,surv.time,fun=median) 

The main differences between the plots obtained with plot.design using
means and medians are:
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The Two-Way Layout with Replicates
• the difference between the horizontal lines which represents the
mean and median, respectively, for all the data,

• the difference between the tick marks for the poison factor at level II.

The boxplots resulting from the use of plot.factor indicate a clear
tendency for variability to increase with the (median) level of response.

The plots made with interaction.plot show stronger treatment effects
for the two poisons with large levels than for the lowest level poison—an
indication of an interaction.

Figure 13.12:  Initial plots of the data.
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13. Designed Experiments and Analysis of Variance
The Two-Way 
Model and 
ANOVA (With 
Replicates)

When you have replicates, you can consider a model which includes an

interaction term :

You can now carry out an ANOVA for the above model using aov as follows: 

> aov.poisons <- aov(surv.time ~ poison*treatment,
+                poisons.df) 

The expression poison*treatment on the right-hand side of the formula
specifies that aov fit the above model with interaction. This contrasts with
the formula surv.time ~ poison + treatment, which tells aov to fit an

additive model for which  is assumed to be zero for all levels i, j.

You now display the ANOVA table  with summary: 

> summary(aov.poisons)
                 Df Sum of Sq   Mean Sq  F Value     Pr(F)
poison            2  1.033013 0.5165063 23.22174 0.0000003
treatment         3  0.921206 0.3070688 13.80558 0.0000038
poison:treatment  6  0.250138 0.0416896  1.87433 0.1122506
Residuals        36  0.800725 0.0222424

The p-values for both poisons and treatment are highly significant, while the
p-value for interaction is insignificant.

The colon in poison:treatment denotes an interaction, in this case the
poison-treatment interaction.

Diagnostic Plots Make a histogram and a normal QQ-plot of residuals, arranging the plots
side by side in a single figure with par(mfrow=c(1,2)) before using hist
and qqnorm:

> par(mfrow=c(1,2)) 
> hist(resid(aov.poisons)) 
> qqnorm(resid(aov.poisons)) 
> par(mfrow=c(1,1)) 

The call par(mfrow=c(1,1)), resets the plot layout to a single plot per
figure.

The histogram in the left-hand plot of figure 13.13 reveals a marked
asymmetry, which is reflected in the normal QQ-plot in the right-hand side
of figure 13.13. The latter shows a curved departure from linearity toward

α ij
AB

yijk µ α i
A αj

B α i j
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The Two-Way Layout with Replicates
the lower left part of the plot, and a break in linearity in the upper right part
of the plot. Evidently, all is not well (see the discussion on transforming the
data in the Guidance section below).

Make a plot of residuals versus fit:

plot(fitted(aov.poisons), resid(aov.poisons)) 

The result, displayed in figure 13.14, clearly reveals a strong relationship
between the residuals and the fitted values. The variability of the residuals
increases with increasing fitted values. This is another indication that

Figure 13.13:  Histogram and normal QQ-plot of residuals.

Figure 13.14:  Plot of residuals versus fit.
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13. Designed Experiments and Analysis of Variance
transformation would be useful.

Guidance When the error variance for an experiment varies with the expected value of
the observations, a variance stabilizing transformation will often reduce or
eliminate such behavior.

We shall show two methods for determining an appropriate variance
stabilizing transformation, one which requires replicates and one which does
not.

Method for 
Two-Factor 
Experiments 
with 
Replicates

For two-factor experiments with replicates, you can gain insight into an
appropriate variance stabilizing transformation by carrying out the following

informal procedure. First, calculate the within-cell standard deviations 

and means :

> std.poison <- tapply(poisons.df$surv.time,
+               list(poisons.df$treatment,
+                    poisons.df$poison),var)^.5
> std.poison <- as.vector(std.poison)
> means.poison <- tapply(poisons.df$surv.time,
+                 list(poisons.df$treatment,
+                      poisons.df$poison),mean)
> means.poison <- as.vector(means.poison)

Then plot  versus , and use the slope of the regression line

to estimate the variance stabilizing transform:

> plot(log(means.poison),log(std.poison)) 
> var.fit <- lsfit(log(means.poison),
+ log(std.poison)) 
> abline(var.fit) 
> theta <- var.fit$coef[2] 
> theta
       X
 1.97704

Now let , and choose λ to be that value among the set of values

 which is closest to . If λ = 0, then make the

transformation . Otherwise, make the power transformation

. Now you should repeat the complete analysis described in the
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ỹi j log yij=
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The Two-Way Layout with Replicates
previous subsections, using the response  in place of yijk.

Since for the poisons experiment you get , you choose λ = -1. This

gives a  reciprocal  transformation , where yijk are the values you

used in the response with surv.time. You can think of the new response 

as representing the  rate  of dying.

The model can be refit using the transformed response:

> summary(aov(1/surv.time ~ poison*treatment, poisons.df))
                 Df Sum of Sq  Mean Sq  F Value     Pr(F)
poison            2  34.87712 17.43856 72.63475 0.0000000
treatment         3  20.41429  6.80476 28.34307 0.0000000
poison:treatment  6   1.57077  0.26180  1.09042 0.3867329
Residuals        36   8.64308  0.24009

With the transformation the p-values for the main effects have decreased
while the p-value for the interaction has increased—a more satisfactory fit.
The diagnostic plots with the new response are much improved also.

Method for 
Unreplicated 
Two-Factor 
Experiments

An alternative simple method for estimating the variance stabilizing
transformation is based on the relationship between the log of the absolute
residuals  and the log of the fitted values. This method has the advantage that
it can be used for unreplicated designs. This method is also often preferred to

that of plotting log  against  even for cases with replication, because

 and   are not always adequately good estimates of the mean and
standard deviation for small values of K (K<8).
This method consists of plotting log of absolute residuals versus log of fitted

values, and computing the slope  of the regression line. You then set

. Residuals with very small absolute values should usually be
omitted before applying this method. Here is some sample code.

> plot(log(abs(fitted(aov.poisons)[
+ abs(resid(aov.poisons))>exp(-10)])),
+ log(abs(resid(aov.poisons)[
+ abs(resid(aov.poisons))>exp(-10)])))
> logrij.fit <- lsfit(
+ log(abs(fitted(aov.poisons)[
+ abs(resid(aov.poisons))>exp(-10)])),
+ log(abs(resid(aov.poisons)[
+ abs(resid(aov.poisons))>exp(-10)])))
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13. Designed Experiments and Analysis of Variance
> abline(logrij.fit)
> theta <- logrij.fit$coef[2]
> theta
          X
   1.930791

You get .

Note that the two simple methods described above both lead to nearly
identical choices of power transformation to stabilize variance.

Details You will find that a non-constant standard deviation for observations yi (yijk

for the two-factor experiment with replicates) is well-explained by a power
law relationship in many datasets. In particular, for some constant B and
some exponent θ, we have

where σy is the standard deviation of the yi and η is the mean of the yi. If you

then use a power law transformation

for some fixed exponent λ, it can be shown that the standard deviation 

for the transformed data , is given by

.

You can therefore make  have a constant value, independent of the mean

η of the original data yi (and independent of the approximate mean ηλ of the

transformed data ), by choosing

.

Note that

Suppose you plot log  versus log  for a two factor experiment with

replicates and find that this plot results in a fairly good straight line fit with

slope , where  is an estimate of σy and  is an estimate of η. Then the

slope  provides an estimate of θ, and so you set . Since a

fractional exponent  is not very natural, one often chooses the closest value
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σỹ

ỹi
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Many Factors at Two Levels: 2k Designs
 in the “natural” set:

Alternative 
Formal 
Methods

There are two alternative formal approaches to stabilizing the variance. One
approach is to select the power transformation that minimizes the residual
squared error. This is equivalent to maximizing the log-likelihood function,
and is sometimes referred to as a Box-Cox analysis (see for example, Weisberg
(1985); Box (1988); Haaland (1989))

The second approach seeks to stabilize the variance without the use of a
transformation, by including the variance function directly in the model.
This approach is called generalized least squares/variance function estimation
(see for example, Carroll and Ruppert (1988); Davidian and Haaland
(1990)).

Transformations are easy to use and may provide a simpler, more
parsimonious model (Box (1988)). On the other hand, modeling the
variance function directly allows the analysis to proceed on the original scale
and allows more direct insight into the nature of the variance function. In
cases when the stability of the variance is critical, either of these methods
have better statistical properties than the simple informal graphical methods
described above.

13.4 MANY FACTORS AT TWO LEVELS:  2K DESIGNS
The data in table 13.4 come from an industrial product development
experiment in which a response variable called conversion is measured (in
percent) for each possible combination of two levels of four factors:
 K catalyst charge  (10 or 15 pounds),

 Te temperature  ( ),

 P pressure  (50 or 80 pounds per square inch),

 C concentration  (10% or 12%).

The levels are labeled “-” and “+” in the table. All the factors in the
experiment are quantitative, so the “-” indicates the “low” level and the “+”
indicates the “high” level for each factor. This data set was used by Box,

λ̂

1– Reciprocal

1
2
---– Reciprocal square root

0 Log

1
2
--- Square root

1 No transformation

220 or 240°C
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13. Designed Experiments and Analysis of Variance
Hunter, and Hunter (1978).

The design for this experiment is called a 24 design, because there are 24 = 16
possible combinations of two levels for four factors.

Setting Up the 
Data Frame

To set up the data frame first create a list of the four factor names with the
corresponding pairs of levels labels: 

Table 13.4: Data from product development experiment.

Factor

observation 
number

K Te P C
conversion

(%)
run 

order

  1 – – – – 71 (8)

  2 + – – – 61 (2)

  3 – + – – 90 (10)

  4 + + – – 82 (4)

  5 – – + – 68 (15)

  6 + – + – 61 (9)

  7 – + + – 87 (1)

  8 + + + – 80 (13)

  9 – – – + 61 (16)

10 + – – + 50 (5)

11 – + – + 89 (11)

12 + + – + 83 (14)

13 – – + + 59 (3)

14 + – + + 51 (12)

15 – + + + 85 (6)

16 + + + + 78 (7)
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> fnames <- list(K=c("10","15"), Te=c("220","240"),
+ P=c("50","80"), C=c("10","12"))

Now use fac.design to create the 2k design data frame devel.design: 

> devel.design <- fac.design(rep(2,4), fnames) 

The first argument to fac.design is a vector of length four, which specifies
that there are four factors. Each entry of the vector is a 2, which specifies that
there are two levels for each factor.

Since devel.design matches table 13.4, you can simply scan in the
coversion data: 

> conversion <- scan()
1: 71 61 90 82 68 61 87 80
9: 61 50 89 83 59 51 85 78
17: 

Finally, create the data frame devel.df: 

> devel.df <- data.frame(devel.design, conversion) 
> devel.df
    K  Te  P  C conversion
 1 10 220 50 10         71
 2 15 220 50 10         61
 3 10 240 50 10         90
            .
            .
            .
15 10 240 80 12         85
16 15 240 80 12         78

A First Look at 
the Data

Use plot.design and plot.factor to make an initial graphical
exploration of the data. To see the design plot with sample means, use the
following command, which yields the plot shown in figure 13.15: 

> plot.design(devel.df) 
405



13. Designed Experiments and Analysis of Variance
Figure 13.15:  Sample means for product development experiment.
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Many Factors at Two Levels: 2k Designs
To see the design plot with sample medians, use: 

> plot.design(devel.df, fun=median) 

To see boxplots of the factors, use the following commands, which yield the
plots shown in figure 13.16:

> par(mfrow=c(2,2)) 
> plot.factor(devel.df) 
> par(mfrow=c(1,1)) 

Estimating All 
Effects in the 

2k Model

You can use aov to estimate all effects (main effects and all interactions), and
carry out the analysis of variance. Let’s do so, and store the results in
aov.devel: 

> aov.devel <- aov(conversion ~ K*Te*P*C, devel.df) 

The product form K*Te*P*C on the right-hand side of the formula tells

S-PLUS to fit the above 24 design model with all main effects and all
interactions included. You can accomplish the same thing by using the power
function ^ to raise the expression K+Te+P+C to the 4th power:

> aov.devel <- aov(conversion ~ (K+Te+P+C)^4, devel.df) 

This second method is useful when you want to specify only main effects
plus certain low-order interactions. For example, replacing 4 by 2 above
results in a model with all main effects and all second-order interactions.

You can obtain the estimated coefficients using the coef function on the aov
output:

> coef(aov.devel)
 (Intercept)  K Te      P     C K:Te   K:P   Te:P           K:C
       72.25 -4 12 -1.125 -2.75  0.5 0.375 -0.625 -5.464379e-17
 Te:C    P:C K:Te:P K:Te:C  K:P:C Te:P:C K:Te:P:C
 2.25 -0.125 -0.375   0.25 -0.125 -0.375   -0.125

Notice that colons are used to connect factor names to represent interactions,
e.g., K:P:C is the three factor interaction between the factors K, P, and C.

For more on the relationship between coefficients, contrasts and effects, see
sections 13.1 and 13.2.

You can get the analysis of variance table with the summary command :

> summary(aov.devel)
         Df Sum of Sq Mean Sq
K         1    256.00  256.00
Te        1   2304.00 2304.00
P         1     20.25   20.25
C         1    121.00  121.00
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K:Te      1      4.00    4.00

Figure 13.16:  Factor plot for product development experiment.
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Many Factors at Two Levels: 2k Designs
K:P       1      2.25    2.25
Te:P      1      6.25    6.25
K:C       1      0.00    0.00
Te:C      1     81.00   81.00
P:C       1      0.25    0.25
K:Te:P    1      2.25    2.25
K:Te:C    1      1.00    1.00
K:P:C     1      0.25    0.25
Te:P:C    1      2.25    2.25
K:Te:P:C  1      0.25    0.25

The ANOVA table does not provide any F statistics. This is because you have
estimated 16 parameters with 16 observations. There are no degrees of
freedom left for estimating the error variance, and hence there is no error
mean square to use as the denominator of the F statistics. However, the
ANOVA table can give you some idea of which effects are the main
contributors to the response variation.

Estimating All 
Effects in the 2k 
Model with 
Replicates

On some occasions, you may have replicates of a 2k design. In this case you
can estimate the error variance σ2, as well as all effects. For example, the data
in table 13.5 is from a replicated 23 pilot plant example used by Box, Hunter,
and Hunter (1978). The three factors are temperature (Te), concentration (C)
and catalyst (K ), and the response is yield.

Table 13.5: Replicated pilot plant experiment.

Te C K rep 1 rep 2

– – – 59 61

+ – – 74 70

– + – 50 58

+ + – 69 67

– – + 50 54

+ – + 81 85

– + + 46 44

+ + + 79 81
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13. Designed Experiments and Analysis of Variance
To set up the data frame, first make the factor names list: 

> fnames <- list(Te=c("Tl","Th"), C=c("Cl","Ch"),
+ K=c("Kl","Kh")) 

Because T is a constant in S-PLUS which stands for the logical value “true,”
you can not use T as a factor name for temperature. Instead, use Te, or some
such alternative abbreviation. Then make the design data frame,
pilot.design, with M = 2 replicates, by using fac.design with the
optional argument rep=2: 

> pilot.design <- fac.design(c(2,2,2), fnames, rep=2)

Now, create the response vector pilot.yield as a vector of length 16, with
the second replicate values following the first replicate values:

> pilot.yield <- scan()
1: 59 74 50 69 50 81 46 79
9: 61 70 58 67 54 85 44 81
17:

Finally, use data.frame: 

> pilot.df <- data.frame(pilot.design, pilot.yield) 

You can now carry out the ANOVA, and because the observations are
replicated, the ANOVA table has an error variance estimate, i.e., mean square
for error, and F statistics: 

> aov.pilot <- aov(pilot.yield ~ (Te + C + K)^3, pilot.df)
> summary(aov.pilot)
          Df Sum of Sq Mean Sq F Value    Pr(F)
       Te  1      2116    2116 264.500 0.000000
        C  1       100     100  12.500 0.007670
        K  1         9       9   1.125 0.319813
     Te:C  1         9       9   1.125 0.319813
     Te:K  1       400     400  50.000 0.000105
      C:K  1         0       0   0.000 1.000000
   Te:C:K  1         1       1   0.125 0.732810
Residuals  8        64       8

Temperature is clearly highly significant, as is the temperature-catalyst
interaction, and concentration is quite significant.

Estimating All 
Small Order 
Interactions

In cases where you are confident that high-order interactions are unlikely,
you can fit a model which includes interactions only up to a fixed order,
through the use of the power function ^ with an appropriate exponent. For
example, in the product development experiment of table 13.4, you may
wish to estimate only the main effects and all second-order interactions. In
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this case, use : 

> aov.devel.2 <- aov(conversion ~ (K+Te+P+C)^2,devel.df) 

Now you are using 16 observations to estimate 11 parameters: the mean, the
four main effects, and the six two-factor interactions. Since you only use 11
degrees of freedom for the parameters, out of a total of 16, you still have 5
degrees of freedom to estimate the error variance. So the command: 

> summary(aov.devel.2) 

will produce an ANOVA table with an error variance estimate and F
statistics.

Using Half-
Normal Plots 
to Choose a 
Model

You are usually treading on thin ice if you assume that higher-order
interactions are zero, unless you have extensive first-hand knowledge of the
process you are studying with a 2k design. When you are not sure whether or
not higher-order interactions are zero, you should use a half-normal quantile-
quantile plot to judge which effects, including interactions of any order, are
significant. Use the function qqnorm as follows to produce a half-normal
plot on which you can identify points: 

> qqnorm(aov.devel, label=6) 

The resulting figure, with six points labeled, is shown in figure 13.17.

In general, there are 2k - 1 points in the half-normal plot, since there are 2k

effects and the estimate of the overall mean is not included in this plot. The
y-axis positions of the labeled points are the absolute values of the estimated
effects. The messages you get from this plot are: You judge the effects for

Figure 13.17:  Half-normal plot for product development experiment.
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13. Designed Experiments and Analysis of Variance
temperature, catalyst, concentration, and temperature by concentration to be
clearly non-zero. The effect for Pressure is also very likely non-zero. You can
examine the marginal effects better by creating a plot with a smaller y-range: 

> qqnorm(aov.devel, label=6, ylim=c(0,20)) 

A full QQ-plot of the effects can give you somewhat more information. To
get this type of plot, use: 

> qqnorm(aov.devel, full=T, label=6) 

Having determined from the half-normal plot which effects are non-zero,
now fit a model having terms for the main effects plus the interaction
between temperature and concentration: 

> aov.devel.small <- aov(conversion ~ K+P+Te*C, devel.df) 

You can now get an ANOVA summary, including an error variance estimate: 

> summary(aov.devel.small)
          Df Sum of Sq  Mean Sq  F Value       Pr(F)
K          1    256.00  256.000  136.533 0.000000375
P          1     20.25   20.250   10.800 0.008200654
Te         1   2304.00 2304.000 1228.800 0.000000000
C          1    121.00  121.000   64.533 0.000011354
Te:C       1     81.00   81.000   43.200 0.000062906
Residuals 10     18.75    1.875

Diagnostic Plots Once you have tentatively identified a model for a 2k experiment, you should
make the usual graphical checks based on the residuals and fitted values. In
the product development example, you should examine the following plots: 

> hist(resid(aov.devel.small)) 
> qqnorm(resid(aov.devel.small)) 
> plot(fitted(aov.devel.small),resid(aov.devel.small)) 

The latter two plots are shown in figures 13.18 and 13.19.

You should also make plots using the time order of the runs: 

> run.ord <- scan()
1: 8 2 10 4 15 9 1 13 16 5 11 14 3 12 6 7
17: 
> plot(run.ord, resid(aov.devel.small)) 
> plot(run.ord, fitted(aov.devel.small)) 

This gives a slight hint that the first runs were more variable than the latter
runs.
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Figure 13.18:  Quantile-quantile plot of residuals, product development
example.

Figure 13.19:  Fitted values vs. residuals, product development example.
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13. Designed Experiments and Analysis of Variance
Details The function aov returns, by default, coefficients corresponding to the
following “usual” ANOVA form for the ηi:

In this form of the 2k model, each im takes on just two values, 1 and 2. There

are 2k values of the k-tuple index i1i2...ik. The parameter µ is the overall

mean. The parameters , m = 1, …, k correspond to the main effects. The

parameters  correspond to the two-factor interactions, the parameters

 correspond to the three-factor interactions, and the remaining

coefficients are the higher-order interactions. The coefficients for the main

effects satisfy the constraint . All higher-order

interactions satisfy the constraint that the sum over any individual subscript

index is zero, e.g. , etc.

Because of the constraints on the parameters in this form of the model, it
suffices to specify one of the two values for each effect. The function aov

returns estimates for the “high” levels, e.g., .

An estimated effect (in the sense usually used in 2k models) is equal to the
difference between the estimate at the high level minus the estimate at the
low level for the ANOVA model form given above:

and since

,

we have

.

ηi η i1… i k
µ α i1

1 αi2

2 … αi k

k
+ + + += =

+ αi1i2

12 αi1i3

13 … α ik 1– i k

k 1 k,–
+ + +

+ …

+ α i1i2… ik

123…k

αim

m

α imin

mn

α i l imin

lmn

α1
i α2

i
+ 0 i 1 … k, ,=,=

α i11
12 α i12

12
+ 0 α1i2i4

124 α2i2i4

124
+ 0=,=

α̂2
i α̂2

12,

α̂1 α̂2
1 α̂1

1
–=

α̂1
1 α̂2

1
+ 0=

α̂1
2α̂2

1
=
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ANOVA models can be expanded, for example, into multi-
variate analysis, split-plot designs, and repeated measures.
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FURTHER TOPICS IN ANALYSIS OF 
VARIANCE 14

The previous chapter, Designed Experiments and Analysis of Variance,
describes the basic techniques for using S-PLUS for analysis of variance. This
chapter extends the concepts to several related topics:

• Multivariate analysis of variance (MANOVA), discussed in the
section Multivariate Analysis of Variance, page 432.

• Split-plot designs (the section Split-plot Designs, page 433).

• Repeated measures (the section Repeated-Measures Designs,
page 435).

• Nonparametric tests for one-way and blocked two-way designs (the
section Rank Tests for One-Way and Two-Way Layouts, page 438)

• Variance components models (the section Variance Components
Models, page 439)

These topics are preceded by a discussion of model coefficients and contrasts
(the section Model Coefficients and Contrasts, page 419); this information is
important in interpreting the available ANOVA summaries, described in the
section Summarizing ANOVA Results, page 423.

14.1 MODEL COEFFICIENTS AND CONTRASTS
This section explains what the coefficients mean in ANOVA models, and
how to get more meaningful coefficients for particular cases.
Suppose we have 5 measurements of a response variable scores for each of
three treatments, "A", "B", and "C", as shown below: 

> scores 
[1] 4 5 4 5 4 10 7 7 7 7 7 7 8 7 6 
> scores.treat 
[1] A A A A A B B B B B C C C C C 

In solving the basic ANOVA problem, we are trying to solve the following
simple system of equations:

µ̂A µ̂ α̂A+=

µ̂B µ̂ α̂B+=

µ̂C µ̂ α̂C+=
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14. Further Topics in Analysis of Variance
The sample means , , and  can be calculated directly from the data:

.

This leaves the following three equations in four unknowns:

.

Like all ANOVA models, this system is overparametrized, meaning there are
more coefficients than can be estimated. We can, however, replace the three

variables , , and  with a pair of variables  and  that are

functionally independent linear combinations of the original variables, and

also independent of . Such a replacement can be done in more than one
way. For unordered factors such as scores.treat, the default choice in
S-PLUS is the set of Helmert contrasts :

.

These contrasts, in effect, contrast the ith level with the average of the
preceding levels.

More generally, if you have variables ai, i=1, …, k, you can reparametrize
with the k - 1 variables bj as follows:

The transpose of the matrix of coefficients for equation 14.1 is the following

. (14.1)

µ̂A µ̂B µ̂C

µ̂A 4 5 4 5 4+ + + +( ) 5⁄ 4.4= =

µ̂B 10 7 7 7 7+ + + +( ) 5⁄ 7.6= =

µ̂C 7 7 8 7 6+ + + +( ) 5⁄ 7.0= =

4.4 µ̂ α̂A+=

7.6 µ̂ α̂B+=

7.0 µ̂ α̂C+=

α̂A α̂B α̂C β̂1 β̂2

µ̂

β̂1 α̂A– α̂B+=

β̂2 2α̂C α̂A α̂B+( )–=

β j jα j 1+ α ii 1=

j

∑+=
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Model Coefficients and Contrasts
k3 (k -1)  contrast matrix: 

You can recover the original treatment effects a from the reparametrized
variables b by matrix multiplication as follows:

.

Returning to our simple example, we can rewrite our original variables in

terms of  and  as follows:

.

S-PLUS now solves the following system of equations:

.

If we use aov as usual to create the aov object scores.aov, we can use the

coef function to look at the solved values , , and : 

> scores.aov <- aov(scores ~ scores.treat) 
> coef(scores.aov) 
(Intercept) scores.treat1 scores.treat2 
   6.333333           1.6     0.3333333 

In our example, the contrast matrix is as follows:

.

. (14.2)A

1– 1– 1– … 1–

1 1– 1– … 1–

0 2 1– … 1–

: : : : :

0 0 0 … k 1–

=

Ab a=

β̂1 β̂2

α̂A β̂1– β̂2–=

α̂B β̂1 β̂2–=

α̂C 2β̂2.=

4.4 µ̂ β̂1– β̂2–=

7.6 µ̂ β̂1 β̂2–+=

7.0 µ̂ 2β̂2.+=

µ̂ β̂1 β̂2

1– 1–

1 1–

0 2 
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You can obtain the contrast matrix for any factor object using the
contrasts function. For unordered factors such as scores.treat,
contrasts returns the Helmert contrast matrix of the appropriate size: 

> contrasts(scores.treat) 
  [,1] [,2] 
A   -1   -1 
B    1   -1 
C    0    2 

The contrast matrix, together with the treatment coefficients returned by
coef, provides an alternative to using model.tables to calculate effects: 

> contrasts(scores.treat) %*% coef(scores.aov)[-1] 
        [,1] 
A -1.9333333 
B  1.2666667 
C  0.6666667 

For ordered factors, the Helmert contrasts are replaced, by default, with
polynomial contrasts that model the response as a polynomial through equally
spaced points. For example, suppose we define an ordered factor
water.temp as follows: 

> water.temp <- ordered(c(65, 95, 120)) 
> water.temp 
[1] 65  95  120
 65 < 95 < 120 

The contrast matrix for water.temp uses polynomial contrasts: 

> contrasts(water.temp) 
            .L         .Q 
 65 -0.7071068  0.4082483 
 95  0.0000000 -0.8164966 
120  0.7071068  0.4082483 

For the polynomial contrasts,  represents the linear component of the

response,  represents the quadratic component, and so on. When
examining ANOVA summaries, you can split a factor’s effects into contrast
terms to examine each component’s contribution to the model. See the
section Splitting Treatment Sums of Squares into Contrast Terms, page 424,
for complete details.

β̂1

β̂2
422



Summarizing ANOVA Results
At times it is desirable to give particular contrasts to some of the coefficients.
In our example, you might be interested in a contrast that has A equal to a
weighted average of B and C. This might occur, for instance, if the
treatments were really doses. You can add a contrast attribute to the factor
using the assignment form of the contrasts function:

> contrasts(scores.treat) <- c(4,-1,-3) 
> contrasts(scores.treat) 
  [,1]       [,2] 
A    4  0.2264554 
B   -1 -0.7925939 
C   -3  0.5661385 

Note that a second contrast was automatically added.

Refitting the model, we now get different coefficients (but the fit remains the
same).

> scores.aov2 <- aov(scores ~ scores.treat) 
> coef(scores.aov2) 
 (Intercept) scores.treat1 scores.treat2 
    6.333333    -0.4230769      -1.06434 

More details on working with contrasts can be found in the section
Contrasts: The Coding of Factors, in chapter 2. 

14.2 SUMMARIZING ANOVA RESULTS
Results from an analysis of variance are typically displayed in an analysis of
variance table, which shows a decomposition of the variation in the response:
the total sum of squares of the response is split into sums of squares for each
treatment and interaction and a residual sum of squares. You can obtain the
ANOVA table, as we have throughout this chapter, by using summary on the
result of a call to aov, such as this overly simple model for the wafer data: 

> attach(wafer)
> wafer.aov <- aov( pre.mean ~ visc.tem + devtime
+                 + etchtime)
> summary(wafer.aov)
          Df Sum of Sq   Mean Sq  F Value     Pr(F)
visc.tem   2  1.343361 0.6716807 3.678485 0.0598073
devtime    2  0.280239 0.1401194 0.767369 0.4875574
etchtime   2  0.103323 0.0516617 0.282927 0.7588959
Residuals 11  2.008568 0.1825971
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Splitting 
Treatment 
Sums of 
Squares into 
Contrast 
Terms

Each treatment sum of squares in the ANOVA table can be further split into
terms corresponding to the treatment contrasts. By default, the Helmert
contrasts are used for unordered factors and polynomial contrasts for ordered
factors. For instance, with ordered factors you can assess whether the response
is fairly linear in the factor by listing the polynomial contrasts separately. In
the dataset wafer, you can examine the linear and quadratic contrasts of
devtime and etchtime by using the split argument to the summary
function: 

> summary(wafer.aov, split = list(etchtime =
+     list(L = 1, Q = 2),
+     devtime = list(L = 1, Q = 2)))
              Df Sum of Sq   Mean Sq  F Value     Pr(F)
visc.tem       2  1.343361 0.6716807 3.678485 0.0598073
devtime        2  0.280239 0.1401194 0.767369 0.4875574
  devtime: L   1  0.220865 0.2208653 1.209577 0.2949025
  devtime: Q   1  0.059373 0.0593734 0.325161 0.5799830
etchtime       2  0.103323 0.0516617 0.282927 0.7588959
  etchtime: L  1  0.094519 0.0945188 0.517636 0.4868567
  etchtime: Q  1  0.008805 0.0088047 0.048219 0.8302131
Residuals     11  2.008568 0.1825971

Each of the (indented) split terms sum to their overall sum of squares.

The split argument can evaluate only the effects of the contrasts used to
specify the ANOVA model: if you wish to test a specific contrast, you need to
set it explicitly before fitting the model. Thus, if you want to test a
polynomial contrast for an unordered factor, you must specify polynomial
contrasts for the factor before fitting the model. The same is true for other
non-default contrasts. For instance, the variable visc.tem in the wafer
dataset is a three-level factor constructed by combining two levels of viscosity
(204 and 206) with two levels of temperature (90 and 105). 

> levels(visc.tem) 
[1] "204,90"  "206,90"  "204,105" 

To assess viscosity, supposing temperature has no effect, we define a contrast
that takes the difference of the middle and the sum of the first and third
levels of visc.tem; the contrast matrix is automatically completed: 

> contrasts(visc.tem) <- c(-1,2,-1) 
> contrasts(visc.tem) 
        [,1]          [,2] 
204,90    -1 -7.071068e-01 
206,90     2 -1.110223e-16 
204,105   -1  7.071068e-01 
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> wafer.aov <- aov( pre.mean ~ visc.tem + devtime 
+                 + etchtime) 

In this fitted model, the first contrast for visc.aov reflects the effect of
viscosity:

> summary(wafer.aov, split = list(visc.tem = list(visc = 1)))
                 Df Sum of Sq  Mean Sq  F Value     Pr(F)
visc.tem          2  1.343361 0.671681 3.678485 0.0598073
  visc.tem: visc  1  1.326336 1.326336 7.263730 0.0208372
devtime           2  0.280239 0.140119 0.767369 0.4875574
etchtime          2  0.103323 0.051662 0.282927 0.7588959
Residuals        11  2.008568 0.182597

Treatment 
Means and 
Standard 
Errors

Commonly the ANOVA model is written in the form “grand mean plus
treatment effects,”

The treatment effects, ai, bj, (ab)ij  reflect changes in the response due to
that combination of treatments. In this parameterization, the effects are
constrained, usually to sum to zero.

Unfortunately, the use of the term “effect” in ANOVA is not standardized: in
factorial experiments an effect is the difference between treatment levels, in
balanced designs it is the difference from the grand mean, and in unbalanced
designs there are (at least) two different standardizations that make sense.

The coefficients of an aov object returned by coef(aov.object) are
coefficients for the contrast variables derived by the aov function, rather than
the grand-mean-plus-effects decomposition. The functions dummy.coef and
model.tables translate the internal coefficients into the more natural
treatment effects. 

Balanced 
Designs

In a balanced design, both computing and interpreting effects are
straightforward: 

> gun.aov <- aov(Rounds ~ Method + Physique/Team, gun)
> coef(gun.aov)
 (Intercept)    Method Physique.L  Physique.Q
    19.33333 -4.255556  -1.154941 -0.06123724
 PhysiqueSTeam1 PhysiqueATeam1 PhysiqueHTeam1
         1.9375           0.45          -0.45
 PhysiqueSTeam2 PhysiqueATeam2 PhysiqueHTeam2
        -0.4875    0.008333333     -0.1083333

yijk µ α i β j αβ( )i j ε ijk+ + + +=
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14. Further Topics in Analysis of Variance
The dummy.coef function translates the coefficients into the more natural
effects:
> dummy.coef(gun.aov)
$"(Intercept)":
 (Intercept)
    19.33333

$Method:
       M1        M2
 4.255556 -4.255556

$Physique:
[1]  0.7916667  0.0500000 -0.8416667

$"Team %in% Physique":
   1T1        2T1       3T1   1T2       2T2
 -1.45 -0.4583333 0.5583333 2.425 0.4416667
        3T2    1T3        2T3        3T3
 -0.3416667 -0.975 0.01666667 -0.2166667

For the default contrasts, these effects always sum to zero.

The same information is returned in a tabulated form by model.tables
Note that model.tables calls proj, hence it is helpful to use qr = T in
the call to aov. 

> model.tables(gun.aov, se = T)
Refitting model to allow projection
Tables of effects

 Method
    M1     M2
 4.256 -4.256

 Physique
      S    A       H
 0.7917 0.05 -0.8417

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
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      T1     T2     T3
S -1.450  2.425 -0.975
A -0.458  0.442  0.017
H  0.558 -0.342 -0.217

Standard errors of effects
     Method Physique Team %in% Physique
     0.3381   0.4141             0.7172
rep 18.0000  12.0000             4.0000

Using the first method, the gunners fired on average 4.26 more rounds than
the overall mean. The standard errors for the effects are simply the residual
standard error scaled by the replication factor, rep, the number of
observations at each level of the treatment. For instance, the standard error
for the Method effect is:

The model.tables function also computes cell means for each of the
treatments. This provides a useful summary of the analysis that is more easily
related to the original data. 

> model.tables(gun.aov, type = "means", se = T)
Tables of means

Grand mean
 19.33

 Method
    M1    M2
 23.59 15.08

 Physique
     S     A     H
 20.13 19.38 18.49

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
     T1    T2    T3
S 18.68 22.55 19.15
A 18.93 19.83 19.40
H 19.05 18.15 18.28

se Method( ) se Residual( )

replication Method( )
----------------------------------------------------- 1.434

18
------------- 0.3381= = =
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Standard errors for differences of means
     Method Physique Team %in% Physique
     0.4782   0.5856              1.014
rep 18.0000  12.0000              4.000

The first method had an average firing rate of 23.6 rounds. For the tables of
means, standard errors of differences between means are given, as these are
usually of most interest to the experimenter. For instance the standard error
of differences for Team %in% Physique is

To gauge the statistical significance of the difference between the first and
second small physique teams, we can compute the “least significant difference
(LSD)” for the Team %in% Physique interaction. The validity of the
statistical significance is based on the assumption that the model is correct
and the residuals are Gaussian. The plots of the residuals indicate these are
not unreasonable assumptions for this dataset—you can verify this by
creating a histogram and normal QQ-plot of the residuals as follows: 

> hist(resid(gun.aov)) 
> qqnorm(resid(gun.aov)) 

The LSD at the 95% level is

.

We use the t-distribution with 26 degrees of freedom because the residual
sum of squares has 26 degrees of freedom. In S-PLUS, we type the following: 

> qt(0.975, 26) * 1.014 
[1] 2.084307 

Since the means of the two teams differ by more than 2.08, the teams are
different at the 95% level of significance. From an interaction plot it is clear
that the results for teams of small physique are unusually high.

2k Factorial 
Designs

In factorial experiments, where each experimental treatment has only two
levels, a treatment effect is, by convention, the difference between the high
and low levels. Interaction effects are half the average difference between
paired levels of an interaction. These factorial effects are computed when
type = "feffects" is used in the model.tables function: 

> catalyst.aov <- aov( Yield ~ ., catalyst, qr = T) 
> model.tables(catalyst.aov, type = "feffects", se = T) 

SED 2
2.0576

4
----------------× 1.014= =

t 0.975 26,( ) SED Team %*% Physique( )×
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Table of factorial effects
     Effects    se 
Temp    23.0 5.062 
Conc    -5.0 5.062 
Cat      1.5 5.062 

Unbalanced 
Designs

When designs are unbalanced (there are unequal numbers of observations in
some cells of the experiment), the effects associated with different treatment
levels can be standardized in different ways. For instance, suppose we use
only the first 35 observations of the gun data set: 

> gunsmall.aov <- aov(Rounds ~ Method 
+               + Physique/Team, gun, 
+               + subset=1:35, qr = T) 

The dummy.coef function standardizes treatment effects to sum to zero: 

> dummy.coef(gunsmall.aov)
$"(Intercept)":
 (Intercept)
    19.29177

$Method:
       M1        M2
 4.297115 -4.297115

$Physique:
[1]  0.83322650  0.09155983 -0.92478632

$"Team %in% Physique":
   1T1        2T1       3T1   1T2       2T2
 -1.45 -0.4583333 0.6830128 2.425 0.4416667

        3T2    1T3        2T3        3T3
 -0.2169872 -0.975 0.01666667  -0.466025

The model.tables function computes effects that are standardized so the

weighted effects sum to zero: , where ni is the replication of

level i and ti the effect. The model.tables effects are identical to the values
of the projection vectors computed by proj(gunsmall.aov): 

> model.tables(gunsmall.aov)

niτ ii 1=

T

∑ 0=
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Tables of effects

 Method
        M1      M2
     4.135  -4.378
rep 18.000  17.000

 Physique
          S        A        H
     0.7923  0.05065  -0.9196
rep 12.0000 12.00000  11.0000

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
        T1     T2     T3
S   -1.450  2.425 -0.975
rep  4.000  4.000  4.000
A   -0.458  0.442  0.017
rep  4.000  4.000  4.000
H    0.639 -0.261 -0.505
rep  4.000  4.000  3.000

With this standardization, treatment effects are orthogonal: consequently cell
means can be computed by simply adding effects to the grand mean;
standard errors are also more readily computed. 

> model.tables(gunsmall.aov, type="means", se=T)
Standard error information not returned as design
   is unbalanced.
Standard errors can be obtained through se.contrast.
Tables of means
Grand mean

 19.45

 Method
       M1    M2
    23.59 15.08
rep 18.00 17.00
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 Physique
        S    A     H
    20.25 19.5 18.53
rep 12.00 12.0 11.00

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
       T1    T2    T3
S   18.80 22.67 19.27
rep  4.00  4.00  4.00
A   19.05 19.95 19.52
rep  4.00  4.00  4.00
H   19.17 18.27 18.04
rep  4.00  4.00  3.00

Note that the (Intercept) value returned by dummy.coef is not the grand
mean of the data, and the coefficients returned are not a decomposition of
the cell means. This is a difference that occurs only with unbalanced designs:
in balanced designs the functions dummy.coef and model.tables return
identical values for the effects.

In the unbalanced case, the standard errors for comparing two means depend
on the replication factors, hence it could be very complex to tabulate all
combinations. Instead, they can be computed directly with se.contrast.
For instance, to compare the first and third teams of heavy physique: 

> se.contrast(gunsmall.aov, contrast = list( 
+         Physique=="S"  Team == "T1", 
+         Physique=="S"  Team == "T3"), 
+         data = gun[1:35,]) 
[1] 1.018648 

By default, the standard error of the difference of the means specified by
contrast is computed. Other contrasts are specified by the argument coef.
For instance, to compute the standard error of the contrast tested in the
section Splitting Treatment Sums of Squares into Contrast Terms, page 424,
for the variable visc.tem: 

> attach(wafer) 
> se.contrast(wafer.aov, contrast = list( 
+         visc.tem ==levels(visc.tem)[1], 
+         visc.tem == levels(visc.tem)[2], 
+         visc.tem == levels(visc.tem)[3]), 
+         coef = c(-1,2,-1), data = wafer) 
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Refitting model to allow projection 
[1] 0.07793052 

The value of the contrast can be computed from
model.tables(wafer.aov). The effects for visc.tem are: 

visc.tem 
204,90  206,90 204,105 
0.1543 -0.3839  0.2296 

The contrast is -0.3839 - mean(c(0.1543, 0.2296)) = -0.5758.
The standard error for testing whether the contrast is zero is 0.0779; clearly
the contrast is nonzero.

14.3 MULTIVARIATE ANALYSIS OF VARIANCE
Multivariate analysis of variance, known as MANOVA, is the extension of
analysis of variance techniques to multiple responses. The responses for an
observation are considered as one multivariate observation, rather than as a
collection of univariate responses.
If the responses are independent, then it is sensible to just perform univariate
analyses. However, if the responses are correlated, then MANOVA can be
more informative than the univariate analyses as well as less repetitive.

In S-PLUS the manova function is used to estimate the model. The formula
needs to have a matrix as the response: 

> wafer.manova <- manova(cbind(pre.mean, post.mean) ~ ., 
+                        wafer[,c(1:9, 11)]) 

The manova function creates an object of class "manova". This class of
object has methods specific to it for a few generic functions. The most
important function is the "manova" method for summary, which produces a
MANOVA table:

> summary(wafer.manova)
          Df Pillai Trace approx. F num df   den df   P-value
  maskdim 1  0.9863       36.00761  2        1        0.11703
 visc.tem 2  1.00879      1.01773   4        4        0.49341
   spinsp 2  1.30002      1.85724   4        4        0.28173
 baketime 2  0.80133      0.66851   4        4        0.64704
 aperture 2  0.96765      0.93733   4        4        0.52425
  exptime 2  1.63457      4.47305   4        4        0.08795
  devtime 2  0.99023      0.98065   4        4        0.50733
 etchtime 2  1.26094      1.70614   4        4        0.30874
Residuals 2

There are four common types of test in MANOVA. The example above
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shows the Pillai-Bartlett trace test, which is the default test in S-PLUS. The
last four columns show an approximate F test (since the distributions of the
four test statistics are not implemented). The other available tests are Wilks’
Lambda, Hotelling-Lawley trace, and Roy’s maximum eigenvalue. (By the
way, a model with this few residual degrees of freedom is not likely to
produce informative tests.)

You can view the results of another test by using the test argument. The
following command shows you Wilks’ lambda test: 

> summary(wafer.manova, test="wilk") 

Below is an example of how to see the results of all four of the multivariate
tests: 

> wafer.manova2 <- manova(cbind(pre.mean, post.mean, 
+    log(pre.dev), log(post.dev)) ~ maskdim + visc.tem 
+    + spinsp, wafer) 
> wafer.ms2 <- summary(wafer.manova2) 
> for(i in c("p","w","h","r")) print(wafer.ms2, test=i) 

You can also look at the univariate ANOVA tables for each response with a
command like: 

> summary(wafer.manova, univariate=T) 

Hand and Taylor (1987) provide a nice introduction to MANOVA. Many
books on multivariate statistics contain a chapter on MANOVA. Examples
include Mardia, Kent and Bibby (1979), and Seber (1984).

14.4 SPLIT-PLOT DESIGNS
A split-plot design contains more than one source of error. This can arise
because factors are applied at different scales, as in the guayule example
below.
Split-plots are also encountered because of restrictions on the randomization.
For example, an experiment involving oven temperature and baking time will
probably not randomize the oven temperature totally, but rather only change
the temperature after all of the runs for that temperature have been made.
This type of design is often mistakenly analyzed as if there were no
restrictions on the randomization (an indication of this can be p-values that
are close to 1). See Hicks (1973) and Daniel (1976).

S-PLUS includes the guayule data frame which is also discussed in
Chambers and Hastie (1992). This experiment was on eight varieties of
guayule (a rubber producing shrub) and four treatments on the seeds. Since a
flat (a shallow box for starting seedlings) was not large enough to contain all
32 combinations of variety and treatment, the design was to use only a single
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variety in each flat and to apply each treatment within each flat. Thus the
flats each consist of four sub-plots. This is a split-plot design since flats are
the experimental unit for varieties, but the sub-plots are the experimental
unit for the treatments. The response is the number of plants that germinated
in each sub-plot.

To analyze a split-plot design like this, put the variable that corresponds to
the whole plot in an Error term in the formula of the aov call: 

> gua.aov1 <- aov(plants ~ variety*treatment 
+               + Error(flats), guayule) 

As usual, you can get an ANOVA table with summary:

> summary(gua.aov1)
Error: flats
          Df Sum of Sq  Mean Sq  F Value     Pr(F)
variety    7   763.156 109.0223 1.232036 0.3420697
Residuals 16  1415.833  88.4896

Error: Within
                  Df Sum of Sq  Mean Sq  F Value       Pr(F)
treatment          3  30774.28 10258.09 423.4386 0.00000e+00
variety:treatment 21   2620.14   124.77   5.1502 1.32674e-06
Residuals         48   1162.83    24.23

This shows varieties tested with the error from flats, while treatment and its
interaction with variety are tested with the within-flat error (which is
substantially smaller).

The guayule data actually represent an experiment in which the flats were
grouped into replicates—making three sources of error, or a split-split-plot
design. To model this we put more than one term inside the Error term:

> gau.aov2 <- aov(plants ~ variety*treatment
+                  + Error(reps/flats), guayule)
> summary(gau.aov2)
Error: reps
          Df Sum of Sq  Mean Sq F Value Pr(F)
Residuals  2  38.58333 19.29167

Error: flats %in% reps
          Df Sum of Sq  Mean Sq  F Value     Pr(F)
variety    7   763.156 109.0223 1.108232 0.4099625
Residuals 14  1377.250  98.3750
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Error: Within
                  Df Sum of Sq  Mean Sq  F Value       Pr(F)
treatment          3  30774.28 10258.09 423.4386 0.00000e+00
variety:treatment 21   2620.14   124.77   5.1502 1.32674e-06
Residuals         48   1162.83    24.23

The Error term could also have been specified as Error(reps + flats).
However, the specification Error(flats + reps) would not give the
desired result (the sequence within the Error term is significant); explicitly
stating the nesting is preferred. Note that only one Error term is allowed.

14.5 REPEATED-MEASURES DESIGNS
Repeated-measures designs are those that contain a sequence of observations
on each subject—for example, a medical experiment in which each patient is
given a drug, and observations are taken at zero, one, two and three weeks
after taking the drug. (The above description is a little too simplistic to
encompass all repeated-measures designs, but it captures the spirit.)
Repeated-measures designs are similar to split-plot designs in that there is
more than one source of error (between subjects and within subjects), but
there is correlation in the within-subjects observations. In the example we
expect that the observations in week three will be more similar to week two
observations than to week zero observations. Because of this, the split-plot
analysis (referred to as the univariate approach) is valid only under certain
restrictive conditions.

We will use the artificial dataset drug.mult, which has the following form:  

> drug.mult
  subject gender  Y.1  Y.2  Y.3  Y.4
1      S1      F 75.9 74.3 80.0 78.9
2      S2      F 78.3 75.5 79.6 79.2
3      S3      F 80.3 78.2 80.4 76.2
4      S4      M 80.7 77.2 82.0 83.8
5      S5      M 80.3 78.6 81.4 81.5
6      S6      M 80.1 81.1 81.9 86.4

The dataset consists of the two factors subject and gender, and the matrix
Y which contains 4 columns. The first thing to do is stretch this out into a
form suitable for the univariate analysis:

> drug.uni <- drug.mult[rep(1:6, rep(4,6)), 1:2]
> ymat <- data.matrix(drug.mult[,paste("Y.",1:4, sep="")])
> drug.uni <- cbind(drug.uni, time=ordered(rep(paste("Week",
+         0:3,sep=""),6)), y=as.vector(t(ymat)))
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The univariate analysis treats the data as a split-plot design:

> summary(aov(y ~ gender*time + Error(subject), drug.uni))
Error: subject
          Df Sum of Sq  Mean Sq  F Value   Pr(F)
gender     1  60.80167 60.80167 19.32256 0.01173
Residuals  4  12.58667  3.14667

Error: Within
            Df Sum of Sq  Mean Sq  F Value     Pr(F)
time         3  49.10833 16.36944 6.316184 0.0081378
gender:time  3  14.80167  4.93389 1.903751 0.1828514
Residuals   12  31.10000  2.59167

Tests in the “Within” stratum are valid only if the data satisfy the “circularity”
property, in addition to the usual conditions. Circularity means that the
variance of the difference of measures at different times is constant; for
example, the variance of the difference between the measures at week 0 and
week 3 should be the same as the variance of the difference between week 2
and week 3. We also need the assumption that actual contrasts are used; for
example, the contr.treatment function should not be used. When
circularity does not hold, then the p-values for the tests will be too small.

One approach is to perform tests which are as conservative as possible.
Conservative tests are formed by dividing the degrees of freedom in both the
numerator and denominator of the F test by the number of repeated
measures minus one. In our example there are four repeated measures on
each subject, so we divide by 3. The split-plot and the conservative tests are:

> 1 - pf(6.316184, 3, 12) # usual univariate test 
[1] 0.008137789 
> 1 - pf(6.316184, 1, 4) # conservative test 
[1] 0.06583211 

These two tests are telling fairly different tales, so the data analyst would
probably move on to one of two alternatives. A Huynh-Feldt adjustment of
the degrees of freedom provides a middle ground between the tests above—
see Winer, Brown and Michels (1991), for instance. The multivariate
approach, discussed below, substantially relaxes the assumptions.

The univariate test for “time” was really a test on three contrasts. In the
multivariate setting we want to do the same thing, so we need to use contrasts
in the response:

> drug.man <- manova(ymat %*% contr.poly(4) ~ gender,
+                    drug.mult)
> summary(drug.man, intercept=T)
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            Df Pillai Trace approx. F num df   den df    P-value
(Intercept) 1  0.832005     3.301706  3        2        
0.241092
     gender 1  0.694097     1.512671  3        2        
0.421731
  Residuals 4

The line marked “(Intercept)” corresponds to “time” in the univariate
approach, and similarly the “gender” line here corresponds to “gender:time”.
The p-value of .24 is larger than either of the univariate tests—the price of
the multivariate analysis being more generally valid is that quite a lot of
power is lost. Although the multivariate approach is preferred when the data
do not conform to the required conditions, the univariate approach is
preferred when they do (the trick, of course, is knowing which is which).

Let’s look at the univariate summaries that this MANOVA produces:

> summary(drug.man, intercept=T, univar=T)
Response: .L
            Df Sum of Sq Mean Sq  F Value     Pr(F)
(Intercept)  1    22.188 22.1880 4.327255 0.1059983
gender       1     6.912  6.9120 1.348025 0.3101900
Residuals    4    20.510  5.1275

Response: .Q
            Df Sum of Sq  Mean Sq F Value     Pr(F)
(Intercept)  1  5.415000 5.415000 5.30449 0.0826524
gender       1  4.001667 4.001667 3.92000 0.1188153
Residuals    4  4.083333 1.020833

Response: .C
            Df Sum of Sq  Mean Sq  F Value     Pr(F)
(Intercept)  1  21.50533 21.50533 13.22049 0.0220425
gender       1   3.88800  3.88800  2.39016 0.1969986
Residuals    4   6.50667  1.62667

If you add up the respective degrees of freedom and sums of squares, you will
find that the result is the same as the univariate “Within” stratum. For this
reason, the univariate test is sometimes referred to as the “average F test”.

The above discussion has focused on classical inference, which should not be
done before graphical exploration of the data.

Many books discuss repeated measures. Some examples are Hand and Taylor
(1987), Milliken and Johnson (1984), Crowder and Hand (1990), Winer,
Brown and Michels (1991).
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14.6 RANK TESTS FOR ONE-WAY AND TWO-WAY LAYOUTS
This section briefly describes how to use two non-parametric rank tests for
ANOVA: the Kruskal-Wallis rank sum test for a one-way layout and the
Friedman test for unreplicated two-way layout with (randomized) blocks.
Since these tests are based on ranks, they are robust with regard to the
presence of outliers in the data; that is, they are not affected very much by
outliers. This is not the case for the classical F tests.

You can find detailed discussions of the Kruskal-Wallis and Friedman rank-
based tests in a number of books on nonparametric tests; for example,
Lehmann (1975) and Hettmansperger (1984).

The Kruskal-
Wallis Rank 
Sum Test

When you have a one-way layout, as in the section Experiments with One
Factor in the previous chapter, you can use the Kruskal-Wallis rank sum test
kruskal.test to test the null hypothesis that all group means are equal.
We illustrate how to use kruskal.test for the blood coagulation data of
13.1. First you set up your data as for a one-factor experiment (or one-way
layout). You create a vector object coag, arranged by factor level (or
treatment), and you create a factor object diet whose levels correspond to
the factor levels of vector object coag. Then use kruskal.test: 

> kruskal.test(coag,diet)

         Kruskal-Wallis rank sum test

data:  coag and diet
Kruskal-Wallis chi-square = 17.0154, df = 3,
 p-value = 7e-04
alternative hypothesis: two.sided

The p-value of p = .0007 is highly significant. This p-value is computed
using an asymptotic chi-squared approximation. See the help file for more
details.

You may find it helpful to note that kruskal.test and friedman.test
return the results of its computations, and associated information, in the
same style as the functions in chapter 3, Statistical Inference for One and
Two Sample Problems.

The Friedman 
Rank Sum Test

 When you have a two-way layout with one blocking variable and one
treatment variable, you can use the Friedman rank sum test friedman.test
to test the null hypothesis that there is no treatment effect.
We illustrate how you use friedman.test for the penicillin yield data
described in 13.2 of the previous chapter. The general form of the usage is 
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friedman.test(y,groups,blocks) 

where y is a numeric vector, groups contains the levels of the treatment
factor and block contains the levels of the blocking factor. Thus you can do: 

> attach(pen.df) # make treatment and blend available
> friedman.test(yield, treatment, blend)

         Friedman rank sum test

data:  yield and pen.design[, 2] and pen.design[, 1]
Friedman chi-square = 3.4898, df = 3, p-value = 0.3221
alternative hypothesis: two.sided

The p-value is p=.32, which is not significant. This p-value is computed
using an asymptotic chi-squared approximation. For further details on
friedman.test, see the help file.

14.7 VARIANCE COMPONENTS MODELS
Variance components models are used when there is interest in the variability
of one or more variables other than the residual error. For example,
manufacturers often run experiments to see which parts of the manufacturing
process contribute most to the variability of the final product. In this
situation variability is undesirable, and attention is focused on improving
those parts of the process that are most variable. Animal breeding is another
area in which variance components models are routinely used. Some data,
from surveys for example, that have traditionally been analyzed using
regression can more profitably be analyzed using variance component
models.

Estimating the 
Model

To estimate a variance component model, you first need to use is.random
to state which factors in your data are random. A variable that is marked as
being random will have a variance component in any models that contain it.
Only variables that inherit from class "factor" can be declared random.
Although is.random works on individual factors, it is often more practical
to use it on the columns of a data frame. You can see if variables are declared
random by using is.random on the data frame: 

> is.random(pigment) 
Batch Sample Test 
    F      F    F 

Declare variables to be random by using the assignment form of is.random: 

> is.random(pigment) <- c(T, T, T) 
> is.random(pigment) 
Batch Sample Test 
    T      T    T 
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Because we want all of the factors to be random, we could have simply done
the following: 
> is.random(pigment) <- T 

The value on the right is replicated to be the length of the number of factors
in the data frame.

Once you have declared your random variables, you are ready to estimate the
model using the varcomp function. This function takes a formula and other
arguments very much like lm or aov. Because the pigment data are from a
nested design, the call has the following form: 

> pigment.vc <- varcomp(Moisture ~ Batch/Sample, pigment)
> pigment.vc
Variances:
    Batch Sample %in% Batch Residuals
 7.127976          28.53333 0.9166667
Call:
varcomp(formula = Moisture ~ Batch/Sample, data = pigment)

The result of varcomp is an object of class "varcomp". You can use
summary on "varcomp" objects to get more details about the fit, and you
can use plot to get QQ-plots for the normal distribution on the estimated
effects for each random term in the model.

Estimation 
Methods

The method argument to varcomp allows you to choose the type of variance
component estimator. Maximum likelihood and REML (restricted
maximum likelihood) are two of the choices. REML is very similar to
maximum likelihood but takes the number of fixed effects into account (the
usual unbiased estimate of variance in the one-sample model is a REML
estimate). See Harville (1977) for more details on these estimators.
The default method is a MINQUE (minimum norm quadratic unbiased
estimate); this class of estimator is locally best at a particular spot in the
parameter space. The MINQUE option in S-PLUS is locally best if all of the
variance components (except that for the residuals) are zero. The MINQUE
estimate agrees with REML for balanced data. See Rao (1971) for details.
This method was made the default because it is less computationally intense
than the other methods, however, it can do significantly worse for severely
unbalanced data (Swallow and Monahan (1984)).

You can get robust estimates by using "method=winsor". This method
creates new data by moving outlying points or groups of points toward the
rest of the data. One of the standard estimators is then applied to this
possibly revised data. Burns (1992) gives details of the algorithm along with
simulation results. This method uses much larger amounts of memory than
440



Variance Components Models
the other methods if there are a large number of random levels, such as in a
deeply nested design.

Random Slope 
Example

We now produce a more complicated example in which there are random
slopes and intercepts. The data consist of several pairs of observations on each
of several individuals in the study. An example might be that the y values
represent the score on a test and the x values are the time at which the test
was taken.
Let’s start by creating simulated data of this form. We create data for 30
subjects and 10 observations per subject: 

> subject <- factor(rep(1:30, rep(10,30))) 
> set.seed(357) # makes these numbers reproducible 
> trueslope <- rnorm(30, mean=1) 
> trueint <- rnorm(30, sd=.5) 
> times <- rchisq(300, 3) 
> scores <- rep(trueint, rep(10,30)) + times * 
+     rep(trueslope, rep(10,30)) + rnorm(300) 
> test.df <- data.frame(subject, times, scores) 
> is.random(test.df) <- T 
> is.random(test.df) subject T 

Even though we want to estimate random slopes and random intercepts, the
only variable that is declared random is subject. Our model for the data has
two coefficients: the mean slope (averaged over subjects) and the mean
intercept. It also has three variances: the variance for the slope, the variance
for the intercept, and the residual variance.

The following command estimates this model using Maximum Likelihood
(the default MINQUE is not recommended for this type of model): 

> test.vc <- varcomp(scores ~ times * subject, 
+     data=test.df, method="ml") 

This seems very simple. We can see how it works by looking at how the
formula get expanded. The right side of the formula is expanded into four
terms: 

scores ~ 1 + times + subject + times:subject 

The intercept term in the formula, represented by 1, gives the mean
intercept. The variable times is fixed and produces the mean slope. The
subject variable is random and produces the variance component for the
random intercept. Since any interaction containing a random variable is
considered random, the last term, times:subject, is also random; this
term gives the variance component for the random slope. Finally, there is
always a residual variance.
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Now we can look at the estimates: 

> test.vc
Variances:
   subject times:subject Residuals
 0.3162704      1.161243 0.8801149
Message:
[1] "RELATIVE FUNCTION CONVERGENCE"
Call:
varcomp(formula = scores ~ times*subject, data=test.df,
  method = "ml")

This shows the three variance components. The variance of the intercept,
which has true value .25, is estimated as .32. Next, labeled times:subject
is the variance of the slope, and finally the residual variance. We can also view
the estimates for the coefficients of the model, which have true values of 0
and 1. 

> coef(test.vc) 
 (Intercept)   times 
   0.1447211 1.02713 
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MULTIPLE COMPARISONS 15
This chapter describes the use of the function multicomp in the analysis of
multiple comparisons. Section 15.1 describes simple calls to multicomp for
standard comparisons in one-way layouts. Section 15.2 tells how to use
multicomp for nonstandard designs and comparisons. In section 15.3, the
capabilities and limitations of this function are summarized.

15.1 OVERVIEW
When an experiment has been carried out in order to compare effects of
several treatments, a classical analytical approach is to begin with a test for
equality of those effects. Regardless of whether one embraces this classical
strategy, and regardless of the outcome of this test, one is usually not finished
with the analysis until determining where any differences exist, and how large
the differences are (or might be); that is, until one does multiple comparisons
of the treatment effects. 
As a simple start, consider the built-in S-PLUS data frame on fuel
consumption of vehicles, fuel.frame. Each row provides the fuel
consumption (Fuel) in 100*gallons/mile for a vehicle model, as well as the
Type group of the model: Compact, Large, Medium, Small, Sporty, or Van.
There is also information available on the Weight and Displacement of
the vehicle. Figure 15.1 shows a boxplot of fuel consumption, the result of
the following commands.

> attach(fuel.frame)
> boxplot(split(Fuel,Type))

Not surprisingly, the plot suggests that there are differences between vehicle
types in terms of mean fuel consumption. This is confirmed by a one-factor
analysis of variance test of equality obtained by a call to aov.

> aovout.fuel <- aov( Fuel ~ Type, data = fuel.frame)
> anova(aovout.fuel)
Analysis of Variance Table
Response: Fuel
Terms added sequentially (first to last)

          Df  Sum of Sq    Mean Sq    F Value          Pr(F)
Type       5   24.23960   4.847921   27.22058   1.220135e-13
Residuals 54    9.61727   0.178098

The boxplots show some surprising patterns, and inspire some questions. Do
Small cars really have lower mean fuel consumption than Compact cars? If
so, by what amount? What about Small versus Sporty cars? Vans versus Large
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15. Multiple Comparisons
cars? Answers to these questions are offered by an analysis of all pairwise
differences in mean fuel consumption, which can be obtained from a call to
multicomp:

> mca.fuel <- multicomp(aovout.fuel, focus = “Type”)
> plot(mca.fuel)
> mca.fuel
95 % simultaneous confidence intervals for specified 
linear combinations, by the Tukey method 
critical point: 2.9545 
response variable: Fuel 
intervals excluding 0 are flagged by '****'

                Estimate      Std.    Lower    Upper 
                             Error    Bound    Bound
Compact-Large     -0.800     0.267   -1.590  -0.0116  ****
Compact-Medium    -0.434     0.160   -0.906   0.0387 
Compact-Small      0.894     0.160    0.422   1.3700  ****
Compact-Sporty     0.210     0.178   -0.316   0.7360
Compact-Van       -1.150     0.193   -1.720  -0.5750  ****
Large-Medium       0.366     0.270   -0.432   1.1600 
Large-Small        1.690     0.270    0.896   2.4900  ****

Figure 15.1:  Fuel consumption boxplot.
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Overview
Large-Sporty       1.010     0.281    0.179   1.8400  ****
Large-Van         -0.345     0.291   -1.210   0.5150 
Medium-Small       1.330     0.166    0.839   1.8200  ****
Medium-Sporty      0.644     0.183    0.103   1.1800  ****
Medium-Van        -0.712     0.198   -1.300  -0.1270  ****
Small-Sporty      -0.684     0.183   -1.220  -0.1440  ****
Small-Van         -2.040     0.198   -2.620  -1.4600  ****
Sporty-Van        -1.360     0.213   -1.980  -0.7270  **** 

As the output and plot in figure 15.2 indicate, this default call to multicomp
has resulted in the calculation of simultaneous 95% confidence intervals for
all pairwise differences between vehicle Fuel means, based on the levels of
Type, sometimes referred to as MCA comparisons (Hsu, 1996). The labeling
states that Tukey’s method (Tukey, unpublished report, Princeton University,
1953) has been used; since group sample sizes are unequal, this is actually
equivalent to what is commonly known as the Tukey-Kramer (Kramer, 1956)
multiple comparison method.

Honestly 
Significant 
Differences

The output indicates via asterisks the confidence intervals which exclude
zero; in the plot, these can be identified by noting intervals that do not
intersect the vertical reference line at zero. These identified statistically
significant comparisons correspond to pairs of (long run) means which can
be declared different by Tukey’s “HSD” (honestly significant difference)
method. Not surprisingly, we can assert that most of the vehicle types have
different mean fuel consumption rates. If we require 95% confidence in all of

Figure 15.2:  Fuel consumption ANOVA.
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15. Multiple Comparisons
our statements, we cannot claim different mean fuel consumption rates
between the Compact and Medium types, the Compact and Sporty types,
the Large and Medium types, and the Large and Van types. Note we should
not assert that these pairs have equal mean consumption rates; for example,
the interval for Compact-Medium states that this particular difference in
mean fuel consumption is between -0.906 and 0.0387 units. Hence, the
Medium vehicle type may have larger mean fuel consumption than the
Compact, by as much as 0.9 units. Only an engineer can judge the
importance of a difference of this size; if it is considered trivial, then using
these intervals we can claim that for all practical purposes these two types
have equal mean consumption rates; if not, there may still be an important
difference between these types, and we would need more data to resolve the
question.
The point to the above discussion is that there is more information in these
simultaneous intervals than is provided by a collection of significance tests for
differences. This is true whether the tests are reported via conclusions
“Reject”/“Do not reject”, or via p-values or adjusted p-values. This superior
level of information using confidence intervals has been acknowledged by
virtually all modern texts on multiple comparisons (Hsu, 1996; Bechhofer et
al, 1996; Hochberg and Tamhane, 1987; Toothaker, 1993). All multiple
comparison analyses using multicomp are represented by using confidence
intervals or bounds.

Rat Growth 
Hormone 
Treatments

If all the intervals are to hold simultaneously with a given confidence level, it
is important to calculate intervals only for those comparisons which are truly
of interest. For example, consider the summary data in table 15.1 from Hsu
(Hsu, 1996) concerning a study by Juskevich and Guyer (1990) in which rat
growth was studied under several growth-hormone treatments.
In this setting, it may only be necessary to compare each hormone treatment’s
mean growth with that of the placebo (that is, the oral administration with
zero dose). These all-to-one comparisons are usually referred to as multiple
comparisons with a control (MCC) (Dunnett, 1955). Suppose that the raw
data for each rat were available in a data frame hormone.dfr with variables
growth (numeric) and treatment (a factor object) for each rat. Then the
following statements would calculate, print, and plot Dunnett’s intervals:

> aovout.growth <- aov(growth~treatment, data=hormone.dfr)
> multicomp(aovout.growth, focus = “treatment”,

+ comparisons = “mcc”, control = 1, plot = T)

The results are shown graphically in figure 15.3. The intervals clearly show
that only the injection method is distinguishable from the placebo in terms
of long run mean weight gain.
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More detail on 
multicomp

The first and only required argument to multicomp is an aov object (or
equivalent), the results of a fixed-effects linear model fit by aov or a similar
model-fitting function. The focus argument, when specified, names a factor
(a main effect) in the fitted aov model. Comparisons will then be calculated
on (adjusted) means for levels of the focus factor. The comparisons
argument is an optional argument which can specify a standard family of
comparisons for the levels of the focus factor. The default is comparisons
= “mca”, which creates all pairwise comparisons. Setting comparisons =
“mcc” creates all-to-one comparisons relative to the level specified by the
control argument. The only other comparisons option available is
“none”, which states that the adjusted means themselves are of interest (with
no differencing), in which case the default method for interval calculation is
known as the studentized maximum modulus method. Other kinds of
comparisons and different varieties of adjusted means can be specified
through the lmat and adjust options discussed below.

Upper and 
Lower Bounds

Confidence intervals provide both upper and lower bounds for each
difference or adjusted mean of interest. In some instances, only the lower
bounds, or only the upper bounds, may be of interest. For example, in the

Table 15.1: Mean weight gain in rats under hormone treatments.

method /dose mean growth (g) std.dev. sample size

oral, 0 324 39.2 30

inject,1.0 432 60.3 30

oral,0.1 327 39.1 30

oral,0.5 318 53.0 30

oral,5 325 46.3 30

oral,50 328 43.0 30

Figure 15.3:  MCC for rat hormone treatments.

(
(

(
(
(

)
)

)
)
)

inject.,1.0-oral,0
oral,0.1-oral,0
oral,0.5-oral,0
oral,5.0-oral,0
oral,50-oral,0

-40 -20 0 20 40 60 80 100 120 140
simultaneous  95 % confidence limits, Dunnett method

response variable: growth
451



15. Multiple Comparisons
fuel consumption example earlier, we may only be interested in determining
which types of vehicle clearly have greater fuel consumption than compacts,
and in calculating lower bounds for the difference. This can be accomplished
through lower mcc bounds:

> aovout.fuel<-aov(Fuel~Type, data=fuel.frame)
> multicomp(aovout.fuel, focus="Type",comparison="mcc",
+           bounds="lower", control=1, plot=T)
95 % simultaneous confidence bounds for specified 
linear combinations, by the Dunnett method 

critical point: 2.3332000000000002 
response variable: Fuel 

bounds excluding 0 are flagged by '****' 

               Estimate Std.Error Lower Bound     
 Large-Compact    0.800     0.267      0.1770 ****
Medium-Compact    0.434     0.160      0.0606 ****
 Small-Compact   -0.894     0.160     -1.2700     
Sporty-Compact   -0.210     0.178     -0.6250     
   Van-Compact    1.150     0.193      0.6950 **** 

The intervals or bounds computed by multicomp are always of the form

The reader has probably already noticed that the estimates and standard
errors are supplied in the output table. The critical point used depends on the
specified or implied multiple comparison method. 

Figure 15.4:  Lower mcc bounds for rat hormone treatments.
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Calculation of 
Critical Points

The multicomp function can calculate critical points for simultaneous
intervals or bounds by the following methods:

• Tukey (method = “tukey”), 

• Dunnett (method = “dunnett”), 

• Sidak (method = “sidak”), 

• Bonferroni (method = “bon”), 

• Scheffé (method = “scheffe”)

• Simulation-based (method = “sim”).

Non-simultaneous intervals use the ordinary Student’s-t critical point,
method = “lsd”. If the user specifies a method, the function will check its
validity in view of the model fit and the types of comparisons requested. For
example, method = “dunnett” will be invalid if comparisons = “mca”. If
the specified method does not satisfy the validity criterion, the function
terminates with a message to that effect. This safety feature can be disabled
by specifying the optional argument valid.check = F. If no method is
specified, the function uses the smallest critical point among the valid non-
simulation-based methods. If the user specifies method = “best”, the
function uses the smallest critical point among all valid methods including
simulation; this latter method may take a few moments of computer time.

The simulation-based method generates a near-exact critical point via Monte
Carlo simulation, as discussed by Edwards and Berry (1987). For
nonstandard families of comparisons or unbalanced designs, this method will
often be substantially more efficient than other valid methods. The
simulation size is set by default to provide a critical point whose actual error
rate is within 10% of the nominal a (with 99% confidence). This amounts
to simulation sizes in the tens of thousands for most choices of a. The user
may directly specify a simulation size via the simsize argument to
multicomp, but smaller simulation sizes than the default are not advisable. It
is important to note that if the simulation-based method is used, the critical
point (and hence the intervals) will vary slightly over repeated calls;
recalculating the intervals repeatedly searching for some desirable outcome
will usually be fruitless, and will result in intervals which do not provide the
desired confidence level.

Error Rates for 
Confidence 
Intervals

Other multicomp arguments of interest are the alpha argument which
specifies the error rate for the intervals or bounds, with default alpha = .05.
By default, alpha is a familywise error rate, that is, the user may be
(1 - alpha) x 100% confident that every calculated bound holds. If the user
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desires confidence intervals or bounds without simultaneous coverage,
specify error.type = “cwe”, meaning comparisonwise error rate
protection; in this case the user must also specify method = “lsd”. Finally,
for users familiar with the Scheffé (1953) method, the critical point is of the
form:

sqrt(Srank*qf(1-alpha, Srank, df.residual))

The numerator degrees of freedom Srank may be directly specified as an
option. If omitted, it is computed based on the specified comparisons and
aov object. 

15.2 ADVANCED APPLICATIONS
In the first example, the Fuel consumption differences found between
vehicle types are almost surely attributable to differences in Weight and/or
Displacement. Figure 15.5 shows a plot of Fuel versus Weight with
plotting symbols identifying the various model types:

> plot(Weight,Fuel,type = ‘n’)
> text(Weight,Fuel,abbreviate(as.character(Type)))

This plot shows a strong, roughly linear relationship between Fuel

Figure 15.5:  Fuel consumption verses Weight.
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consumption and Weight, suggesting the addition of Weight as a covariate
in the model. Though it may be inappropriate to compare adjusted means
for all six vehicle types (see below), for the sake of example the following calls
fit this model and calculates simultaneous confidence intervals for all
pairwise differences of adjusted means, requesting the best valid method:

> lmout.fuel.ancova <- lm(Fuel ~ Type+Weight,
+ data = fuel.frame)
> multicomp(lmout.fuel.ancova, focus = “Type”,
+ method = “best”, plot = T)

The "best" valid method for this particular setting is the simulation-based
method; Tukey’s method has not been shown to be valid in the presence of
covariates when there are more than three treatments. The intervals show
that, adjusting for weight, the mean fuel consumption of the various vehicle
types are in most cases within one unit of each other. The most notable
exception is the Van type, which is showing higher mean fuel consumption
than the Small and Sporty types, and most likely higher than the Compact,
Medium and Large types.

Adjustment 
Schemes

When there is more than one term in the lm model, multicomp calculates
standard adjusted means for levels of the focus factor and then takes
differences as specified by the comparisons argument. Covariates are
adjusted to their grand mean value. If there are other factors in the model,
the standard adjusted means for levels of the focus factor use the average
effect over the levels of any other (non-nested) factors. This adjustment

Figure 15.6:  Fuel consumption ANCOVA (adj. for Weight).
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scheme can be changed using the adjust argument, which specifies a list of
adjustment levels for non-focus terms in the model. Any terms excluded
from the adjust list are adjusted in the standard way. The adjust list may
include multiple adjustment values for each term; a full set of adjusted means
for the focus factor is calculated for each combination of values specified by
the adjust list. Differences (if any) specified by the comparisons
argument are then calculated for each combination of values specified by the
adjust list.

Toothaker’s 
Two Factor 
Design

Besides allowing the user to specify covariate values for adjustment, the
adjust argument can be used to calculate“simple effects” comparisons when
factors interact, or (analogously) when covariate slopes are different. This is
probably best illustrated by an example: Toothaker (1993) discusses a two-
factor design, using the data collected by Frank (1984). Subjects are
undergraduate females, with response the score on a 20-item multiple choice
test over a taped lecture. Factors are cognitive style (cogstyle, levels FI = Field
independent and FD = Field dependent) and study technique (studytech: NN =
no notes, SN = student notes, PO = partial outline supplied, CO = complete
outline). The following code fits the model and performs a standard two-
factor analysis of variance.

> score <- c(13, 13, 10, 16, 14, 11, 13, 13, 11, 16, 15, 16,    
+ 10, 15, 19, 19, 17, 19, 17, 20, 17, 18, 17, 18, 18, 19, 19, 
+ 18, 17, 19, 17, 19, 17, 19, 17, 15, 18, 17, 15, 15, 19, 16, 
+ 17, 19, 15, 20, 16, 19, 16, 19, 19, 18, 11, 14, 11, 10, 15, 
+ 10, 16, 16, 17, 11, 16, 11, 10, 12, 16, 16, 17, 16, 16, 16, 
+ 14, 14, 16, 15, 15, 15, 18, 15, 15, 14, 15, 18, 19, 18, 18, 
+ 16, 16, 18, 16, 18, 19, 15, 16, 19, 18, 19, 19, 18, 17, 16, 
+ 17, 15)
> cogstyle <- factor(c(rep("FI",52), rep("FD",52)))
> studytec <- factor(c(rep("NN",13), rep("SN", 13),
+   rep("PO",13), rep("CO",13), rep("NN",13), rep("SN", 13),
+   rep("PO",13), rep("CO",13)))
> interaction.plot(cogstyle,studytec,score)
> aovout.students <- aov( score ~ cogstyle*studytec)
> anova(lmout.students)
Analysis of Variance Table
Response: score
Terms added sequentially (first to last)
               Df    Sum of Sq   Mean Sq    F Value      Pr(F) 
cogstyle       1       25.0096   25.0096   7.78354 0.00635967
studytec       3      320.1827  106.7276  33.21596 0.00000000
cogstyle:studytec 3    27.2596    9.0865   2.82793 0.04259714
Residuals      96     308.4615    3.2131 
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It is apparent from the test for interaction and the profile plot that there is
non-negligible interaction between these factors. In such cases it will often be
of interest to follow the tests with an analysis of “simple effects,” in this case a
comparison of the four study techniques performed separately for each
cognitive style group. The following call calculates simultaneous 95%
intervals for these differences by the best valid method, which is again
simulation.
> mcout.students <- multicomp(aovout.students,
+   focus = “studytech”, adjust = list(cogstyle = 
+   c(“FI”,”FD”) ), method = “best”)
> plot(mcout.students)
> mcout.students
95 % simultaneous confidence intervals for specified 
linear combinations, by the simulation-based method 
critical point: 2.8774 
response variable: score 
simulation size= 12616 

Figure 15.7:  Two-factor design test scores.
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                Estimate      Std.    Lower    Upper 
                             Error    Bound    Bound
CO-NN.adj1      4.3800       0.703    2.360    6.410  ****
CO-PO.adj1      0.0769       0.703   -1.950    2.100
CO-SN.adj1     -0.3850       0.703   -2.410    1.640
NN-PO.adj1     -4.3100       0.703   -6.330   -2.280  ****
NN-SN.adj1     -4.7700       0.703   -6.790   -2.750  ****
PO-SN.adj1     -0.4620       0.703   -2.480    1.560  ****
CO-NN.adj2      4.4600       0.703    2.440    6.480  ****
CO-PO.adj2      0.7690       0.703   -1.250    2.790
CO-SN.adj2     -2.3100       0.703   -4.330   -0.285  ****
NN-PO.adj2     -3.6900       0.703   -5.720   -1.670  ****
NN-SN.adj2     -2.3100       0.703   -4.330   -0.285  ****
PO-SN.adj2      1.3800       0.703   -0.638   3.410 

Setting Linear 
Combinations 
of Effects

In many situations, the setting calls for inference on a collection of
comparisons or linear combinations other than those available through
specifications of the focus, adjust, and comparisons arguments. The
lmat argument to multicomp allows the user to directly specify any
collection of linear combinations of the model effects for inference. lmat is a
matrix (or an expression evaluating to a matrix) whose columns specify linear
combinations of the model effects for which confidence intervals or bounds
are desired. Specified linear combinations are checked for estimability; if
inestimable, the function terminates with a message to that effect. The user
may disable this safety feature by specifying the optional argument
est.check = F. Specification of lmat overrides any focus or adjust
arguments; at least one of lmat or focus must be specified. Differences
requested or implied by the comparisons argument are taken over the

Figure 15.8:  Simple effects for study techniques.
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columns of lmat. In many instances no such further differencing would be
desired, in which case the user should specify comparisons = “none”.

Textbook 
Parameteriza-
tion

Linear combinations in lmat use the “textbook parameterization” of the
model. For example, the fuel consumption analysis of covariance model
parameterization has eight parameters: an Intercept, six coefficients for the
factor Type (Compact, Large, Medium, Small, Sporty, Van) and a
coefficient for the covariate Weight. Note that the levels of the factor object
Type are listed in alphabetical order in the parameter vector.
In the Fuel consumption problem, many would argue that it is not
appropriate to compare, for example, adjusted means of Small vehicles and
Large vehicles, since these two groups’ weights do not overlap. Inspection of
figure 15.5 shows that, under this consideration, comparisons are probably
only appropriate within two weight groups: Small, Sporty, and Compact as a
small weight group; Medium, Large, and Van as a large weight group. We can
accomplish comparisons within the two Weight groups using the following
matrix, which is assumed to be pre-typed in a text file “lmat.fuel”. Note
the column labels, which will be used to identify the intervals in the created
figure and plot:

The code below creates the intervals. If we restrict attention to these
comparisons only, we cannot assert any differences in adjusted mean fuel
consumption.
> multicomp.lm(lmout.fuel.ancova, lmat = lmat.fuel,
+ comparisons = “none”, method = “best”, plot = T) 

Table 15.2:The Weight comparison matrix in the file lmat.fuel.

Com-Sma Com-Spo Sma-Spo Lar-Med Lar-Van Med-Van

Intercept 0 0 0 0 0 0

Compact 1 1 0 0 0 0

Large 0 0 0 1 1 0

Medium 0 0 0 -1 0 1

Small -1 0 1 0 0 0

Sporty 0 -1 -1 0 0 0

Van 0 0 0 0 -1 -1

Weight 0 0 0 0 0 0
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The textbook parameterizations for linear models are created according to the
following algorithm:

1. An Intercept parameter is included first, if the model contains one.

2. For each "main effect" term in the model (terms of order one),
groups of parameters are included in the order the terms are listed in
the model specification.  If the term is a factor, a parameter is
included for each level.  If the term is numeric, a parameter is
included for each column of its matrix representation.

3. Parameters for terms of order 2 (e.g. A:B) are created by
"multiplying" the parameters of each main effect in the term, in left-
to-right order.  For example, if A has levels A1, A2 and B has levels
B1, B2, B3, the parameters for A:B are A1B1 A1B2 A1B3 A2B1
A2B2 A2B3.

4. Parameters for higher level terms are created by multiplying the
parameterizations of lower level terms two at a time, left to right. For
example, the parameters for A:B:C are those of A:B multiplied by C.

Over-
parameterized
Models

The textbook parameterization will often be awkwardly overparameterized.
For example, the 2 x 4 factorial model specified in the student study
techniques example has the following parameters, in order; note the
alphabetical rearrangement of the factor levels:

• Intercept

• FD FI

• CO NN PO SN

• FDCO FDNN FDPO FDSN FICO FINN FIPO FISN

Clearly, care must be taken in creating an lmat for factorial designs,
especially with crossed and/or nested terms. The flexibility lmat provides for

Figure 15.9:  Using lmat for specialized contrasts.
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creating study-specific linear combinations can be extremely valuable,
though. If you are in doubt about the actual “textbook parameterization” of a
given linear model, it may help to run a standard analysis and inspect the
lmat created, which is part of the output list of multicomp. For example,
for the simple effects analysis of the student test scores of figure 15.8, the
implied lmat can be seen using the command:

> mcout.students$lmat

Multicomp 
Methods 
Compared

The function multicomp.lm, after checking estimability of specified linear
combinations and creating a vector of estimates, a covariance matrix, and
degrees of freedom, calls the “base” function multicomp.default. The
function multicomp.default will be directly valuable in many settings. It
uses a vector of estimates bvec and associated covariance matrix vmat as
required arguments, with optional degrees of freedom df.residual
(possibly Inf, the default) to calculate confidence intervals on linear
combinations of bvec. These linear combinations can be specified through
an optional lmat argument and/or comparisons argument; there is neither
a focus nor an adjust argument. Linear combinations of bvec defined by
columns of lmat (if any; the default lmat is an identity matrix) are
calculated, followed by any differences specified or implied by the
comparisons argument. The multicomp.lm options method, bounds,
alpha, error.type, crit.point, sim.size, Srank, valid.check,
and plot are also available in multicomp.default. 

The function multicomp.default can be very useful as a means of
calculating intervals based on summary data, or using the results of some
model-fitting program other than lm; bvec must be considered as a
realization of a multivariate normal vector. If the matrix vmat incorporates
any estimate of variance considered to be a realized chi-square variable, the
degrees of freedom df.residual must be specified.

The rat growth data discussed earlier (Table 15.1) provides a simple example
of the use of multicomp.default. Here, the first few statements create the
vector of estimates bvec and covariance matrix vmat assuming that a single
factor analysis of variance model is appropriate for the data, followed by the
statement that produced the lower mcc bounds of figure 15.4:

> growth <- c(324, 432, 327, 318, 325, 328)
> stddev <- c(39.2, 60.3, 39.1, 53.0, 46.3, 43.0)
> samp.size <- rep(30,6)
> names(growth) <- c( “oral,0”, ”inject,1.0”, ”oral,0.1”,
+   ”oral,0.5”, ”oral,5”, ”oral,50”)
> mse <- mean(stddev^2)
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> vmat <-mse*diag(1/samp.size)
> multicomp.default(growth, vmat, df.residual = 
+   sum(samp.size-1), comparisons = “mcc”, bounds = “lower”,
+   control = 1, plot = T)

15.3 CAPABILITIES AND LIMITS
In summary, the function multicomp uses the information in a linear
model; that is, a fitted fixed effects linear model. Through some combination
of the focus, adjust, comparisons and lmat arguments, any collection
of estimable linear combinations of the fixed effects may be estimated, and
simultaneous or non-simultaneous intervals or bounds computed by any of
the applicable methods mentioned above. Specified linear combinations are
checked for estimability unless the user specifies est.check = F. Specified
methods are checked for validity unless the user specifies valid.check = F.
The function multicomp.default uses a specified vector of parameter
estimates bvec and a covariance matrix vmat, which will usually have some
associated degrees of freedom df.residual specified. Possibly through
some combination of the comparisons or lmat arguments, any collection
of linear combinations of the parameters may be estimated, and simultaneous
or non-simultaneous intervals or bounds computed by any of the applicable
methods discussed above. Specified methods are checked for validity unless
the user specifies valid.check = F.

The output from either procedure is an object of class "multicomp", a list
containing elements $table (a matrix of calculated linear combination
estimates, standard errors, and lower and/or upper bounds), $alpha,
$error.type, $method, $crit.point, $lmat (the final matrix of linear
combinations specified or implied), and other ancillary information
pertaining to the intervals. If the argument plot = T is specified, the
intervals/bounds are plotted on the active device. If not, the created
multicomp object can be used as an argument to plot (see
plot.multicomp).
462



Capabilities and Limits
The critical points for the methods of Tukey and Dunnett are calculated by
numerically using the S-PLUS quantile functions qtukey, qdunnett, qmvt,
and qmvt.sim, which may be directly useful to advanced users for their own
applications.

What the function multicomp does not do:

1. Any stagewise or multiple range test. The simultaneous testing
procedures attributed to Fisher, Tukey, Scheffé, Sidak and
Bonferroni are implied by the use of the corresponding method and
noting which of the calculated intervals excludes zero. The multiple
range tests of Duncan(1955) and Newman(1959)-Keuls(1952) do
not provide familywise error protection, and are not very efficient for
comparisonwise error protection; modern texts on multiple
comparisons recommend uniformly against these two multiple range
tests (Hsu, 1996; Hochberg and Tamhane, 1987; Bechofer et al,
1996; Toothaker 1993).

2. Multiple comparisons with the "best" treatment (MCB; Hsu, 1996,
chapter 4), or any ranking and selection procedure (Bechofer et al,
1996) other than selection of treatments better than a control
implied by Dunnett’s one-sided methods. Users familiar with these
methods and reasonably proficient at S-PLUS programming will be
able to code many of these procedures through creative use of
multicomp with the comparisons = “mcc” option.
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For a large number of variables it is often easier to consider 
only a smaller number of combinations of the original data.
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PRINCIPAL COMPONENTS ANALYSIS 16
For investigations involving a large number of observed variables, it is often
useful to simplify the analysis by considering a smaller number of linear
combinations of the original variables. For example, scholastic achievement
tests typically consist of a number of examinations in different subject areas.
In attempting to rate students applying for admission, college administrators
frequently attempt to reduce the scores from all subject areas to a single,
overall score. If the reduction can be done with minimal information loss, all
the better.
One obvious choice for the overall score is the mean over all subject areas. For
three subject areas s1, s2, and s3, the mean corresponds to the linear

combination , or equivalently , where  is the vector of

coefficients . A linear combination with  is called a

standardized linear combination, or SLC. By restricting attention to SLCs,
you can make meaningful comparisons between various choices of linear
combinations. For example, with the test scores, you can seek the
combination with the greatest variance as a way of ranking the students and
separating them.

Principal components analysis finds a set of SLCs, called the principal
components, which are orthogonal and taken together explain all the
variance of the original data. The principal components are defined as follows
(from Mardia, Kent, and Bibby (1979)):

If x is a random vector with mean m and covariance matrix S, then
the principal component transformation is the transformation

,

where G is orthogonal,  is diagonal, and

. The ith principal component of x may be

defined as the ith element of the vector y, namely as

.

Here g(i) is the ith column of G, and may be called the ith vector of

principal component loadings.
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16. Principal Components Analysis
16.1 CALCULATING PRINCIPAL COMPONENTS
To calculate principal components, use the princomp function. In general,
the first argument to princomp is a numeric matrix or a data frame
consisting solely of numeric variables. For example, table 16.1 shows the
results of qualifying examinations for 25 graduate students in mathematics at
a fictional university. The students sat for examinations in each of five subject
areas—differential geometry, complex analysis, algebra, real analysis, and
statistics. The differential geometry and complex analysis examinations were
closed book, while the remaining three exams were open book.

You can use matrix together with scan to create an S-PLUS matrix from the
data in table 16.1: 

> testscores <- matrix(scan(), ncol=5, byrow=T)
1: 36 58 43 36 37
2:  . . .
76: 
> dimnames(testscores) <- list(1:25, c("diffgeom",  
+      "complex", "algebra", "reals", "statistics"))
> testscores
   diffgeom complex algebra reals statistics
 1       36      58      43    36         37
 2    . . .

You can then use princomp to perform a principal components analysis as
follows: 

> testscores.prc <- princomp(testscores)

Note: definition of loadings.

Some authors define the loadings somewhat differently, as the covariances of the principal
components with the original variables. S-PLUS follows Mardia, Kent, and Bibby (1979).
The first principal component has the largest variance among all SLCs of x. Similarly, the second
principal component has the largest variance among all SLCs of x uncorrelated with the first
principal component, and so on.

In general, there are as many principal components as variables. However, because of the way they
are calculated, it is usually possible to consider only a few of the principal components, which
together explain most of the original variation.
468



Calculating Principal Components
Table 16.1: Examination scores for graduate students in mathematics.

diffgeom complex algebra reals statistics

1 36 58 43 36 37

2 62 54 50 46 52

3 31 42 41 40 29

4 76 78 69 66 81

5 46 56 52 56 40

6 12 42 38 38 28

7 39 46 51 54 41

8 30 51 54 52 32

9 22 32 43 28 22

10 9 40 47 30 24

11 32 49 54 37 52

12 40 62 51 40 49

13 64 75 70 66 63

14 36 38 58 62 62

15 24 46 44 55 49

16 50 50 54 52 51

17 42 42 52 38 50

18 2 35 32 22 16

19 56 53 42 40 32

20 59 72 70 66 62

21 28 50 50 42 63

22 19 46 49 40 30

23 36 56 56 54 52

24 54 57 59 62 58

25 14 35 38 29 20
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> testscores.prc
Standard deviations:
  Comp. 1  Comp. 2  Comp. 3  Comp. 4  Comp. 5 
 28.48968 9.035471 6.600955 6.133582 3.723358

The number of variables is 5 
        and the number of observations is 25

Component names:
 "sdev" "loadings" "correlations" "scores" "center" 
 "scale" "n.obs" "call" "factor.sdev" "coef"

Call:
princomp(x = testscores)

The princomp function returns an object of mode "princomp", and the
printing method for objects of this class shows the standard deviations of the
resulting principal components, together with information on the size of the
original data set, the names of the components making up the object, and the
original call.

By default, princomp uses a weighted covariance estimation function,
cov.wt, to perform the principal components analysis. If you want to use a
minimum volume ellipsoid covariance estimate, use the cov.mve function,
which is described in section 16.4, Estimating the Model Using a Covariance
or Correlation Matrix.

Use summary to produce a summary showing the importance of the
calculated principal components: 

> summary(testscores.prc)
Importance of components:
                          Comp. 1    Comp. 2 
    Standard deviation 28.4896795 9.03547104
Proportion of Variance  0.8212222 0.08260135
 Cumulative Proportion  0.8212222 0.90382353
                          Comp. 3    Comp. 4 
    Standard deviation 6.60095491 6.13358179
Proportion of Variance 0.04408584 0.03806395
 Cumulative Proportion 0.94790936 0.98597332
                          Comp. 5 
    Standard deviation 3.72335754
Proportion of Variance 0.01402668
 Cumulative Proportion 1.00000000
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Principal Component Loadings
In our example, the first principal component explains 82% of the variance,
and the first two principal components together explain 90% of the variance.

16.2 PRINCIPAL COMPONENT LOADINGS
The principal component loadings are the coefficients of the principal
components transformation. They provide a convenient summary of the
influence of the original variables on the principal components, and thus a
useful basis for interpretation. A large coefficient (in absolute value)
corresponds to a high loading, while a coefficient near zero has a low loading.
You can view the loadings for a principal components object in either of two
ways. First, you can print them as part of the object summary by using the
loadings=T argument to summary: 

> summary(testscores.prc, loadings=T)
Importance of components:
                          Comp. 1    Comp. 2 
    Standard deviation 28.4896795 9.03547104
Proportion of Variance  0.8212222 0.08260135
 Cumulative Proportion  0.8212222 0.90382353
                          Comp. 3    Comp. 4 
    Standard deviation 6.60095491 6.13358179
Proportion of Variance 0.04408584 0.03806395
 Cumulative Proportion 0.94790936 0.98597332
                          Comp. 5 
    Standard deviation 3.72335754
Proportion of Variance 0.01402668
 Cumulative Proportion 1.00000000

Loadings:
           Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 
  diffgeom  0.598  -0.675  -0.185  -0.386         
   complex  0.361  -0.245   0.249   0.829  -0.247 
   algebra  0.302   0.214   0.211   0.135   0.894 
     reals  0.389   0.338   0.700  -0.375  -0.321 
statistics  0.519   0.570  -0.607          -0.179 

To see the loadings alone, use the loadings function: 

> loadings(testscores.prc)
           Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 
  diffgeom  0.598  -0.675  -0.185  -0.386         
   complex  0.361  -0.245   0.249   0.829  -0.247 
   algebra  0.302   0.214   0.211   0.135   0.894 
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     reals  0.389   0.338   0.700  -0.375  -0.321 
statistics  0.519   0.570  -0.607          -0.179 

The loadings function returns an object of class "loadings". This class
has methods for printing and plotting; a plot of the loadings lets you see at a
glance which variables are best explained by each component. For example,
consider the loadings plot created by the following call to plot (and shown
in figure 16.1: 
> plot(loadings(testscores.prc)) 

The loadings for the first principal component are all of the same sign, and of
moderate size. A reasonable interpretation is that this component represents
an “average” score for the five qualifying examinations. The second
component contrasts the two closed book exams with the three open book
exams, with the first and last exams weighted most heavily.

16.3 PRINCIPAL COMPONENTS ANALYSIS USING CORRELATION
The principal components decomposition is not scale-invariant, so that you
will obtain different decompositions depending on whether you calculate
them for the (unscaled) covariance matrix or the (scaled) correlation matrix.
In general, you use the covariance matrix when the original observations are
on a common scale (as, for example, our test scores example), but use the
correlation matrix when you have observations of different types (such as
those of the variables in state.x77). Use the cor=T argument to
princomp to calculate principal components for scaled data:

> state.prc <- princomp(state.x77, cor=T)
> state.prc
Standard deviations:
  Comp. 1  Comp. 2  Comp. 3   Comp. 4   Comp. 5   Comp. 6 
 1.897076 1.277466 1.054486 0.8411327 0.6201949 0.5544923
   Comp. 7   Comp. 8 
 0.3800642 0.3364338

The number of variables is 8 
        and the number of observations is 50 

Component names:
                                                    
 "sdev" "loadings" "correlations" "scores" "center"
 "scale" "n.obs" "call"

Call:
princomp(x = state.x77, cor = T)
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Figure 16.1:  Loadings plot for the test scores data.
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> summary(state.prc, loadings=T)
Importance of components:
                         Comp. 1   Comp. 2   Comp. 3 
    Standard deviation 1.8970755 1.2774659 1.0544862
Proportion of Variance 0.4498619 0.2039899 0.1389926
 Cumulative Proportion 0.4498619 0.6538519 0.7928445
                          Comp. 4    Comp. 5 
    Standard deviation 0.84113269 0.62019488
Proportion of Variance 0.08843803 0.04808021
 Cumulative Proportion 0.88128252 0.92936273
                          Comp. 6   Comp. 7 
    Standard deviation 0.55449226 0.3800642
Proportion of Variance 0.03843271 0.0180561
 Cumulative Proportion 0.96779544 0.9858515
                          Comp. 8 
    Standard deviation 0.33643379
Proportion of Variance 0.01414846
 Cumulative Proportion 1.00000000

Loadings:
           Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 
Population -0.126   0.411   0.656   0.409   0.406 
    Income  0.299   0.519   0.100          -0.638 
Illiteracy -0.468                  -0.353         
  Life Exp  0.412           0.360  -0.443   0.327 
    Murder -0.444   0.307  -0.108   0.166  -0.128 
   HS Grad  0.425   0.299          -0.232         
     Frost  0.357  -0.154  -0.387   0.619   0.217 
      Area          0.588  -0.510  -0.201   0.499 
           Comp. 6 Comp. 7 Comp. 8 
Population                  0.219 
    Income -0.462                 
Illiteracy -0.387  -0.620   0.339 
  Life Exp -0.219  -0.256  -0.527 
    Murder  0.325  -0.295  -0.678 
   HS Grad  0.645  -0.393   0.307 
     Frost -0.213  -0.472         
      Area -0.148   0.286         

From the loadings for this decomposition, we see that the first principal
component contrasts “good” variables such as income and life expectancy
with “bad” variables such as murder and illiteracy. It is tempting to interpret
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Estimating the Model Using a Covariance or Correlation Matrix
this component as a real measure of some nebulous quantity labeled, for
example, “Quality of Life.” From the importance-of-components summary,
however, we see that this component explains only about 45% of the total
variance. If we give this “obvious” interpretation to the first principal
component, what natural interpretation can we give to the second principal
component, which seems to contrast the proportion of frosty days with
virtually all of the other variables, and explains another 20% of the variance?
This example shows that, while calculating principal components is
straightforward, interpreting the resulting components in physical or social
terms is not always so.

16.4 ESTIMATING THE MODEL USING A COVARIANCE OR 
CORRELATION MATRIX

If you do not have raw data, but either a covariance or correlation matrix
derived from the original data, you can use the covlist argument of the
princomp function to perform a principal components analysis. The data
object that is passed to princomp must be a list object with two
components, cov and center.

For example, suppose you have a data object covmatrix containing the
following covariance matrix:

           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776 
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

Convert covmatrix into a list object containing the cov and center
components as follows:

> cov.obj <- list(cov = covmatrix, center = c(0,0,0,0,0))
> cov.obj
$cov:
           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776 
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

$center:
[1] 0 0 0 0 0
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To perform the principal components analysis, pass the cov.obj object to
the princomp function by using the covlist argument, as follows: 

> princov <- princomp(covlist = cov.obj)
> princov
Standard deviations:
  Comp. 1  Comp. 2  Comp. 3  Comp. 4  Comp. 5
 28.48968 9.035471 6.600955 6.133582 3.723358

The number of variables is 5 and the number of 
    observations is unknown.

Component names:

 "sdev" "loadings" "correlations" "center" "scale" "call"
 
Call:
princomp(covlist = cov.obj)

If you have a correlation matrix, you can use the covlist argument in the
same way. For example, suppose you have a data object cormatrix
containing the following correlation matrix:

             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

Convert cormatrix into a list object containing the cov and center
components as follows:

> cor.obj <- list(cov = cormatrix, center = c(0,0,0,0,0))
> cor.obj
$cov:
             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

$center:
[1] 0 0 0 0 0
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To perform the principal components analysis, pass the cor.obj object to
the princomp function by using the covlist argument, as follows:

> princor <- princomp(covlist = cor.obj)
> princor
Standard deviations:
  Comp. 1   Comp. 2   Comp. 3   Comp. 4   Comp. 5
 2.020188 0.6114408 0.4653519 0.4525298 0.3516317

The number of variables is 5 and the number of observations 
    is unknown.

Component names:
 "sdev" "loadings" "correlations" "center" "scale" "call"
 
Call:
princomp(covlist = cor.obj)

By default, princomp uses a weighted covariance estimation function,
cov.wt, to perform the principal components analysis. If you want to use a
minimum volume ellipsoid covariance estimate, use the cov.mve function
by performing the following steps:

1. Use the cov.mve function with the raw data, in this example, the
rawdataobj object, as follows: 

> mve.object <- cov.mve(rawdataobj) 

 The returned object is a list containing the cov and center
components.

 2. Pass the raw data and mve.object to princomp by using the covlist
argument as follows: 

> prin.obj <- princomp(rawdataobj, covlist=mve.object) 

16.5 EXCLUDING PRINCIPAL COMPONENTS
The purpose of principal components analysis is to reduce the complexity of
multivariate data by transforming the data into the principal components
space, and then choosing the first n principal components that explain
“most” of the variation in the original variables. Many criteria have been
suggested for deciding how many principal components to retain, including
the following:

• (Cattell) Plot the eigenvalues λj against j. The resulting plot, called a

screeplot because it resembles a mountainside with a jumble of
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16. Principal Components Analysis
boulders at its base, often provides a convenient visual method of
separating the important components from the less-important
components.

• Include just enough components to explain some arbitrary amount
(typically, 90%) of the variance.

• (Kaiser) Exclude those principal components with eigenvalues below
the average. For principal components calculated from a correlation
matrix, this criterion excludes components with eigenvalues less
than 1.

Mardia et al. point out that using Cattell’s criterion typically results in too
many included components, while Kaiser’s criterion typically includes too
few. The 90% criterion is often a useful compromise.

Creating a 
Screeplot

A screeplot plots the eigenvalues against their indices, and generally breaks
visually into a steady downward slope (the mountainside) and a gradual
tailing away (the scree). The break from the steady downward slope indicates
the break between the “important” principal components and the remaining
components which make up the scree. The screeplot is the default plot for
objects of class "princomp". Thus, to create a screeplot for a principal
components object, simply use the plot function: 

> plot(state.prc)
[1] 0.700000 1.900000 3.100000 4.300000 5.500000
[6] 6.700000 7.900000 9.099999

By default, the screeplot takes the form of a barplot, and the call to plot
returns the x-coordinates of the centers of the bars. The resulting plot is
shown in figure 16.2. Looking for an obvious break between mountainside
and scree, you would probably conclude that four or six components should
be retained. The 90% criterion retains five components.

You can also create a screeplot as a line graph, using the argument
style="lines": 

> plot(testscores.prc, style="lines")
[1] 1 2 3 4 5 

The screeplot for the test scores is shown in figure 16.3. Only the first and
second components appear important here, in agreement with the 90%
criterion.

The plot method objects of class "princomp" simply calls the screeplot
function. You can call screeplot directly to create the plots in figures 16.2
and 16.3. Using screeplot is particularly useful when writing functions or
S-PLUS scripts; it clearly indicates what type of plot is being created.
478



Excluding Principal Components
Figure 16.2:  Screeplot for the state.x77 data.

Figure 16.3:  Screeplot for the state.x77 data, using
style="lines".
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16. Principal Components Analysis
Evaluating 
Eigenvalues

To apply Kaiser’s criterion for excluding eigenvalues:

1. Square the sdev component of the principal components object to
obtain the vector of eigenvalues.

2. Take the mean of the vector of eigenvalues.

3. Exclude those components with eigenvalues less than the mean.

For example, for the testscores data: 

> testscores.eigen <- testscores.prc$sdev^2
> testscores.eigen
 Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 
 811.662 81.6397 43.5726 37.6208 13.8634
> mean(testscores.eigen)
[1] 197.672

Using Kaiser’s criterion, we exclude all components except the first. The 90%
criterion suggests keeping the first two.

For principal components objects created from correlation matrices, such as
our state.prc example, the mean of the eigenvalues is 1, so we can simply look
at the eigenvalues to determine which components to exclude:

> state.prc$sdev^2
 Comp. 1 Comp. 2 Comp. 3  Comp. 4  Comp. 5  Comp. 6 
  3.5989 1.63192 1.11194 0.707504 0.384642 0.307462
  Comp. 7  Comp. 8 
 0.144449 0.113188

Kaiser’s criterion suggests including only the first three principal
components. The 90% criterion suggests including the first five.

16.6 PREDICTION: PRINCIPAL COMPONENT SCORES
One important use of principal components is interpreting the original data
in terms of the principal components. For example, the first principal
component of the test scores data seems to reflect a weighted average of the
test scores. Evaluating this average for each student provides a simple
criterion for ranking the students. The images of the original data under the
principal components transformation are referred to as principal component
scores. By default, princomp calculates the scores and stores them in the
scores component of the returned object: 

> testscores.prc$scores           
      Comp. 1    Comp. 2    Comp. 3    Comp. 4 
 1  -7.540322 -10.216765  -2.537471   8.670900
 2  20.361037      . . .
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Prediction: Principal Component Scores
You can force princomp to omit the scores by giving the argument
scores=F.

Alternatively, if you view the principal components as estimates of
interpretable quantities (for example, interpreting the first principal
component of the test scores as an estimate of overall ability), it is perhaps
more natural to view the principal component scores as predictions from the
principal components model. In this case, it is most natural to obtain the
scores using the generic predict function:

> predict(testscores.prc)
      Comp. 1    Comp. 2    Comp. 3    Comp. 4 
 1  -7.540322 -10.216765  -2.537471   8.670900
 2  20.361037      . . .

You can use predict to obtain estimated scores for new data, as well. The
new data must be in the same form as the original data. For example, suppose
you obtained test scores for five additional students and stored them in the
matrix newscores:

> newscores
  diffgeom complex algebra reals statistics 
1       22      50      70    54         30
2       22      46      38    52         62
3       22      42      50    40         62
4       42      49      70    42         50
5       32      35      44    66         32

You can obtain the predicted scores for this new data using predict as
follows:

> predict(testscores.prc, newdata=newscores)
     Comp. 1   Comp. 2    Comp. 3     Comp. 4 
1  -7.273022  9.070945  20.624141   3.8263656
2  -2.559011 20.754755  -7.975341  -0.7556388
3  -5.044379 20.243279 -14.834342   2.0521791
4  10.041295  3.158848  -3.878835   1.2183456
5  -8.851869  5.635621  16.724818 -20.3311596
      Comp. 5 
1  16.4349148
2 -16.2811592
3  -0.7045226
4  18.1853226
5  -6.7149242
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16. Principal Components Analysis
16.7 ANALYZING PRINCIPAL COMPONENTS GRAPHICALLY

The Biplot We have already seen several graphical views of some portions of the principal
components analysis, namely the screeplot and the loadings plot. However,
neither of these plots gives a comprehensive view of both the principal
components and the original data. The biplot (Gabriel (1971)) allows you to
represent both the original variables and the transformed observations on the
principal components axes. By showing the transformed observations, you
can easily interpret the original data in terms of the principal components. By
showing the original variables, you can view graphically the relationships
between those variables and the principal components.
To create a biplot in S-PLUS, use the biplot function,  giving an object of
class "princomp" as its first argument. For example, to create a biplot for
the test scores data, use biplot as follows:

> biplot(testscores.prc)

The resulting plot is shown in figure 16.4.

Figure 16.4:  Biplot of test scores data.
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References
Interpreting the biplot is straightforward: the x-axis represents the scores for
the first principal component, the y-axis the scores for the second principal
component. The original variables are represented by arrows which
graphically indicate the proportion of the original variance explained by the
first two principal components. The direction of the arrows indicates the
relative loadings on the first and second principal components. For example,
the variable diffgeom has the largest loadings in absolute value for both the
first and second components, and the loading on the second component has
negative sign. Thus diffgeom is represented by a longish, downward sloping
arrow. The variable algebra has the smallest loadings on the first two
components, and both loadings have the same sign. Thus algebra is
represented by a short, slightly upward-pointing arrow.
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483



16. Principal Components Analysis
484



Factor analysis attempts to provide usable numeric values 
to quantities that are not directly measurable.

FACTOR ANALYSIS 17
17.1 Estimating the Model 488

17.2 Estimating the Model Using Maximum Likelihood 490

17.3 Estimating the Model Using a Covariance or Correlation Matrix 491

17.4 Rotating Factors 494

17.5 Visualizing the Factor Solution 496

17.6 Prediction: Factor Analysis Scores 496

17.7 References 499

485



17. Factor Analysis

486



FACTOR ANALYSIS 17
In many scientific fields, notably psychology and other social sciences, you
are often interested in quantities, such as intelligence or social status, that are
not directly measurable. However, it is often possible to measure other
quantities which reflect the underlying variable of interest. Factor analysis is
an attempt to explain the correlations between observable variables in terms
of underlying factors, which are themselves not directly observable. For
example, measurable quantities such as performance on a series of tests can be
explained in terms of an underlying factor such as intelligence.

At first glance, factor analysis closely resembles principal components
analysis. Both use linear combinations of variables to explain sets of
observations of many variables. In principal components analysis, the
observed variables are themselves the quantities of interest. The combination
of these variables in the principal components is primarily a tool for
simplifying the interpretation of the observed variables. In factor analysis, by
contrast, the observed variables are of relatively little intrinsic interest—the
underlying factors are the quantity of interest.

Formally, if x is a  random vector with mean m and covariance matrix
S, then the k-factor model holds for x if x can be written in the form

where  is a  matrix of constants called the matrix of factor

loadings and f and u are random vectors representing, respectively, the k
underlying common factors and p unique factors associated with the original
observed variables. Equivalently, the covariance matrix S can be decomposed
into a factor covariance matrix and an error covariance matrix:

where . The diagonal of the factor covariance matrix is called

Note: Different uses of the word "factor"

The use of the word “factor” in factor analysis has nothing to do with the usual S-PLUS sense of a
factor as a categorical data object. In this chapter, we reserve the phrase “S-PLUS factor” for this
usual sense; the word “factor” alone refers to the traditional meaning in factor analysis, that is, an
underlying variable that is not directly observable.

(17.1)

(17.2)

p 1×

x m Lf u+ +=

L λi j{ }= p k×

S LL' C+=

C VAR u( )=
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17. Factor Analysis
the vector of communalities , where

.

The communalities represent the common variation in the factors, while the
ψii, called the uniquenesses, represent the variation in the xi not shared with

the other variables.

The k-factor model makes sense only if the degrees of freedom , where s
is given by the equation

.

For example, if p = 5, s > 0 for k = 1 and k = 2, but s < 0 for k = 3, k = 4, and
k = 5. Thus, if a factor model is appropriate for a set of five variables, it will
have no more than two factors.

17.1 ESTIMATING THE MODEL
To perform factor analysis in S-PLUS, use the factanal function. There are
two main techniques for estimating the factors in factor analysis: the principal
factor estimate and the maximum likelihood estimate. For a description of these
techniques, see Harman (1976) or Mardia, Kent, and Bibby (1979). The
principal factor estimate (method="principal") is the default.
For example, consider again the test scores data of table 16.1. We suppose a
two-factor model, one factor representing the overall ability of each student
and the second factor representing the relative effects of open vs.closed book
exams. We perform the factor analysis as follows, giving factanal the raw
data testscores and specifying the number of factors with the factors
argument: 

> testscores.fa <- factanal(testscores, factors=2) 

The factanal function returns an object of class "factanal". As always,
you can look at the object by typing its name. The print method for objects
of class "factanal" shows the sum of squares of the factor loadings, the size
of the data, the names of the components in the returned object, and the call
that created the object: 

> testscores.fa
Sums of squares of loadings:
  Factor1  Factor2 
 2.219645 1.866672
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Estimating the Model
The number of variables is 5 
and the number of observations is 25 

Component names:
                                                    
 "loadings" "uniquenesses" "correlation" "criteria"
 "factors" "dof" "method" "center" "scale" "n.obs"
 "scores" "call"

Call:
factanal(x = testscores, factors = 2)

By default, factanal uses a weighted covariance estimation function,
cov.wt, to perform the factor analysis. If you want to use a minimum
volume ellipsoid covariance estimate, use the cov.mve function, which is
described in section 17.3, Estimating the Model Using a Covariance or
Correlation Matrix.

To see a numeric summary of the factor solution, use the summary function:

> summary(testscores.fa)     
Importance of factors:
                Factor1   Factor2 
   SS loadings 2.219645 1.8666722
Proportion Var 0.443929 0.3733344
Cumulative Var 0.443929 0.8172634

The degrees of freedom for the model is 1.

Uniquenesses:
  diffgeom   complex   algebra     reals statistics 
 0.1970121 0.1879035 0.1201226 0.1984058  0.2102388

Loadings:
           Factor1 Factor2 
  diffgeom 0.506   0.739  
   complex 0.457   0.777  
   algebra 0.787   0.510  
     reals 0.775   0.448  
statistics 0.730   0.507  
attr(, "names"):
 [1] Factor1 Factor1 Factor1 Factor1 Factor1 Factor2
 [7] Factor2 Factor2 Factor2 Factor2
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17. Factor Analysis
The table at the top of the summary, labeled “Importance of Factors,” shows
the sum of squares of the loadings on each factor, along with the proportion
of the total variance explained by each factor, and the cumulative proportion
explained after each factor is included. Thus, the two-factor model for the
test scores data explains about 80% of the variation in the original data, with
the first factor accounting for about 45%.

The summary also shows the number of degrees of freedom in the model, the
uniquenesses, and the factor loadings. The factor loadings can also be seen by
themselves, using the loadings function: 

> loadings(testscores.fa)
           Factor1 Factor2 
  diffgeom 0.506   0.739  
   complex 0.457   0.777  
   algebra 0.787   0.510  
     reals 0.775   0.448  
statistics 0.730   0.507  
attr(, "names"):
 [1] Factor1 Factor1 Factor1 Factor1 Factor1 Factor2
 [7] Factor2 Factor2 Factor2 Factor2

Since the uniquenesses and communalities sum to 1 for each variable, you

can calculate the communalities  from the uniquenesses as follows: 

> 1 - testscores.fa$uniquenesses
  diffgeom   complex   algebra     reals statistics 
 0.8029879 0.8120965 0.8798774 0.8015942  0.7897612

17.2 ESTIMATING THE MODEL USING MAXIMUM LIKELIHOOD
To use the maximum likelihood factor estimate, specify method="mle" in
the call to factanal:

> testscores.fa2 <- factanal(testscores, factors=2, 
+ method="mle")
> testscores.fa2
Sums of squares of loadings:
 Factor1  Factor2 
 2.48222 1.726735

The number of variables is 5 
  and the number of observations is 25 

hi
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Estimating the Model Using a Covariance or Correlation Matrix
Test of the hypothesis that 2 factors are sufficient
versus the alternative that more are required:
The chi square statistic is 0.78 on 1 degree of freedom.
The p-value is 0.378 

Component names:
                                                    
 "loadings" "uniquenesses" "correlation" "criteria"
 "factors" "dof" "method" "center" "scale" "n.obs"
 "scores" "call"

Call:
factanal(x = testscores, factors = 2, method = "mle")

With the maximum likelihood method, it is possible to perform a test of the
hypothesis that the specified number of factors is adequate to explain the
model, and the print method for objects of class "factanal" gives the
results of this test. In this case, there is no evidence that more factors should
be added.

17.3 ESTIMATING THE MODEL USING A COVARIANCE OR 
CORRELATION MATRIX

If you do not have raw data, but either a covariance or correlation matrix
derived from the original data, you can use the covlist argument of the
factanal function to estimate the factors. The data object that is passed to
factanal must be a list object with two components, cov and center.
For example, suppose you have a data object covmatrix containing the
following covariance matrix:
           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776 
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

Convert covmatrix into a list object containing the cov and center
components as follows:

> cov.obj <- list(cov = covmatrix, center = c(0,0,0,0,0))
> cov.obj
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17. Factor Analysis
$cov:
           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776 
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

$center:
[1] 0 0 0 0 0

To perform the factor analysis, pass the cov.obj object to the factanal
function by using the covlist argument, as follows:

> factcov <- factanal(covlist = cov.obj)
> factcov
Sums of squares of loadings:
  Factor1
 3.854577

The number of variables is 5 
and the number of observations is unknown.

Component names:

 "loadings" "uniquenesses" "correlation" 
"criteria" "factors" "dof"

 
 "method" "center" "scale" "call"

Call:
factanal(covlist = cov.obj)

If you have a correlation matrix, you can use the covlist argument in the
same way. For example, suppose you have a data object cormatrix
containing the following correlation matrix:

             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

Convert cormatrix into a list object containing the cov and center
components as follows:
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Estimating the Model Using a Covariance or Correlation Matrix
> cor.obj <- list(cov = cormatrix, center = c(0,0,0,0,0))
> cor.obj
$cov:
             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

$center:
[1] 0 0 0 0 0

To perform the factor analysis, pass the cor.obj object to the factanal
function by using the covlist argument, as follows:
> factcor <- factanal(covlist = cor.obj)
> factcor
Sums of squares of loadings:
  Factor1
 3.854577

The number of variables is 5 
and the number of observations is unknown.

Component names:

 "loadings" "uniquenesses" "correlation" 
"criteria" "factors" "dof"

 
 "method" "center" "scale" "call"

Call:
factanal(covlist = cor.obj)

By default, factanal uses a weighted covariance estimation function,
cov.wt, to estimate the factors. If you want to use a minimum volume
ellipsoid covariance estimate, use the cov.mve function by performing the
following steps:

1. Use the cov.mve function with the raw data, in this example, the
rawdataobj object, as follows: 
> mve.object <- cov.mve(rawdataobj) 

The returned object is a list containing the cov and center
components.
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 2. Pass the raw data and mve.object to factanal by using the
covlist argument as follows: 
> fact.obj <- factanal(rawdataobj, covlist=mve.object) 

17.4 ROTATING FACTORS
The solution to the equation (17.2) is not unique (unless the number of
factors k is 1); if G is a  orthogonal matrix, then

which has the form of equation (17.2) with D = LG being the matrix of
rotated factor loadings. Thus, the factor loadings are inherently indeterminate.
Any solution can be rotated arbitrarily to arrive at a new solution. In practice,
this indeterminancy is used to arrive at a factor solution that has what
Thurstone (1935) named simple structure. Loosely, the factor solution has
simple structure if each variable is loaded highly on one factor, and all factor
loadings are either large (in absolute value) or near zero.

Factor analysts have developed many different criteria for choosing the
appropriate rotation. By default, S-PLUS uses the “varimax” method. You can
specify a different rotation with the rotation argument to factanal. For
example, to compute the factor solution to the test scores data using the
"oblimin" rotation, call factanal as follows:

> testscores.fao <- factanal(testscores, factors=2,
+       rotation="oblimin")
> summary(testscores.fao)
Importance of factors:
                 Factor1   Factor2 
   SS loadings 404.22436 400.63064
Proportion Var  80.84487  80.12613
Cumulative Var  80.84487 160.97100

The degrees of freedom for the model is 1.

Uniquenesses:
  diffgeom   complex   algebra     reals statistics 
 0.1970121 0.1879035 0.1201226 0.1984058  0.2102388

(17.3)
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Rotating Factors
Loadings:
           Factor1 Factor2 
  diffgeom 8.875   9.040  
   complex 8.759   8.985  
   algebra 9.425   9.229  
     reals 8.911   8.680  
statistics 8.972   8.814  
attr(, "names"):
 [1] Factor1 Factor1 Factor1 Factor1 Factor1 Factor2
 [7] Factor2 Factor2 Factor2 Factor2

You can rotate any object of class "factanal" using the rotate function:

> rotate(testscores.fa, rotation="biquartimin")
Sums of squares of loadings:
  Factor1  Factor2 
 3.943076 2.836276

The number of variables is 5 
and the number of observations is 25 

Component names:
                                                    
 "loadings" "uniquenesses" "correlation" "criteria"
                                                   
 "factors" "dof" "method" "center" "scale" "n.obs"
                 
 "scores" "call"

Call:
rotate.factanal(x = factanal(x = testscores, factors
         = 2), rotation = "biquartimin")
> loadings(.Last.value)
           Factor1 Factor2 
  diffgeom -0.153   1.042 
   complex -0.372   1.252 
   algebra  1.137  -0.210 
     reals  1.235  -0.359 
statistics  0.981         
attr(, "names"):
 [1] Factor1 Factor1 Factor1 Factor1 Factor1 Factor2
 [7] Factor2 Factor2 Factor2 Factor2
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17. Factor Analysis
S-PLUS recognizes the following character strings as valid rotation
arguments:

"varimax"      "quartimax"  "equamax"   
"parsimax"     "orthomax"   "covarimin"  
"biquartimin"  "quartimin"  "oblimin"    
"procrustes"   "promax"     "none"             
"crawford.ferguson"

See Harman (1976) for descriptions of the various rotations. See the rotate
help file for additional information on using the various rotations in S-PLUS.

17.5 VISUALIZING THE FACTOR SOLUTION
The loadings matrix provides a precise, numeric answer to the question of
which variables are loaded most strongly on each factor. However, you can
get a much more intuitive feel for the answer if you look at the loadings
visually. You obtain a loadings plot by calling plot on the factor loadings:
> plot(loadings(testscores.fa))

The resulting plot is shown in figure 17.1.

To see the relation of the factors to both the original variables and the original
data, use biplot: 
> biplot(testscores.fa)

The resulting plot is shown in figure 17.2.

17.6 PREDICTION: FACTOR ANALYSIS SCORES
An important use of factor analysis is to translate the original data into the
planes of the factors. You view the factors as estimates of interpretable
quantities (for example, interpreting the first factor of the test scores as an
estimate of overall ability). The images of the original data under the factor
analysis transformation are referred to as factor analysis scores. By default,
factanal calculates the scores and stores them in the scores component of
the returned object:

> testscores.fa$scores           
       Factor1   Factor2 
 1  -1.1778029 0.7612478
 2  -0.2755734     . . .

You can force factanal to omit the scores by giving the argument
scores=F.

It is perhaps more natural to view the factor scores as predictions from the
factor analysis model. In this case, it is most natural to obtain the scores using
the generic predict function: 
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Prediction: Factor Analysis Scores
Figure 17.1:  Loadings for the test scores principal factor solution.
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17. Factor Analysis
> predict(testscores.fa)
       Factor1    Factor2 
 1  -1.1778029  0.7612478
 2  -0.2755734      . . .

You can use predict to obtain estimated scores for new data, as well. The
new data must be in the same form as the original data. For example, suppose
you obtained test scores for five additional students and stored them in the
matrix newscores: 

> newscores
  diffgeom complex algebra reals statistics 
1       22      50      70    54         30
2       22      46      38    52         62
3       22      42      50    40         62
4       42      49      70    42         50
5       32      35      44    66         32

Figure 17.2:  Biplot for the test scores principal factor solution.
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You can obtain the predicted scores for this new data using predict as
follows: 

> predict(testscores.fa, newdata=newscores)
          Factor1    Factor2 
[1,]  1.454873272 -0.9626068
[2,] -0.001166622 -0.5764937
[3,]  0.493414880 -0.8808624
[4,]  1.216808651 -0.3201456
[5,]  0.570954434 -1.1814138
attr(, "type"):
[1] "regression"
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The aim of cluster analysis is to classify data into groups 
that are cohesive but separate.
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CLUSTER ANALYSIS 18
This chapter describes the S-PLUS cluster analysis functions. The chapter is in
two parts. The first, sections 18.1–18.4, describes clustering functions built
into S-PLUS, and the second, sections 18.5–18.7, describes a library of
different functions that can be attached and used accordingly.
The aim of cluster analysis is to classify objects into groups that are cohesive
but separate. Examples include the taxonomy of plants and animals, the
grouping of pixels in digitized satellite images into types of terrain, the
grouping of documents for information retrieval, and the classification of
archeological artifacts. Good readable introductions to cluster analysis are
given by Gordon (1981) and Murtagh (1985). Data that are suitable for
cluster analysis are generally multivariate measurements on objects, and
matrices of distances or dissimilarities between objects.

18.1 CLUSTERING FUNCTIONS BUILT INTO S-PLUS
Many clustering algorithms are based on hierarchical agglomeration, which
starts with each object forming a separate group and in which objects or
groups close to one another are successively merged. Other algorithms use
iterative relocation, which starts with an initial classification and attempts to
improve it iteratively by moving objects from one group to another. It is often
advantageous to combine these two approaches, first using a hierarchical
agglomerative algorithm and then refining the result using iterative
relocation.

Many clustering algorithms have been based on heuristic or “reasonable
seeming” measures of closeness between groups. Recently, however, it has
been realized that basing cluster analysis on an explicit probability model
provides a theoretical justification for some of the older heuristic criteria and
suggests when they are likely to work best. It also leads to extensions of these
criteria that work better in particular circumstances; see Banfield and Raftery
(1992). Model-based clustering also leads to a way of choosing the number of
clusters that is based on standard statistical ideas, and allows one to take
account of “noise”, or outliers, thus yielding robust clustering methods.

S-PLUS features clustering via hierarchical agglomeration with both model-
based and heuristic criteria; for the model-based methods this includes the
criterion for choosing the number of clusters, and a robust clustering option.
Iterative relocation for a given initial classification is available relative to any
one of the model-based criteria. S-PLUS also provides ways of plotting and
manipulating the classification tree, or dendogram.
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In section 18.2, the main ideas of clustering are laid out, together with the
main kinds of algorithm used and the classification tree. In section 18.3,
model-based clustering is outlined, while in section 18.4 the implementation
of these methods in S-PLUS is described.

The S-PLUS cluster analysis functions are listed in table 18.1.

18.2 CLUSTER ANALYSIS
The aim of cluster analysis is to classify a data set into groups that are
internally cohesive and externally isolated. Clustering algorithms differ in the
measures of cohesion and isolation that they use, in the weighting of these
that defines the overall criterion to be optimized by the classification, and in
the algorithm used to find the best classification.
If the objects to be classified can be represented by points in Euclidean space,
the sum of squares is a popular criterion. For a given classification, this is
simply the sum of the within-group sums of squares. To find the global

Table 18.1: Cluster analysis functions in S-PLUS.

Function Use

clorder Re-Order Leaves of a Classification Tree

cutree Create Groups from Hierarchical Agglomerative Clustering

dist Distance Matrix Calculation

hclust Hierarchical Clustering (three heuristic criteria)

kmeans Iterative Relocation (sum of squares criterion only)

labclust Label the Leaves of a Classification Tree

mclass Classify Objects (uses output of  mclust)

mclust Model-Based and Heuristic Hierarchical Agglomerative 
Clustering; Determination of the Number of Clusters; 
Robust Clustering

mreloc Model-Based Iterative Relocation

plclust Plot a Classification Tree

subtree Extract Part of a Classification Tree
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minimum of this criterion for a specified number of groups could be very
expensive computationally; the hierarchical agglomeration and iterative
relocation algorithms are ways of finding good, but possibly sub-optimal,
classifications.

Hierarchical 
Agglomeration

The hierarchical agglomeration algorithm starts with each object in a group
of its own. At each iteration it merges two groups to form a new group; the
merger chosen is the one that leads to the smallest increase in the sum of
within-group sums of squares. The number of iterations is equal to the
number of objects minus one, and at the end all the objects are together in a
single group. This is known variously as Ward’s method, the sum of squares
method, or the trace method.
One important output from the hierarchical agglomeration algorithm is the
classification tree, or dendogram. This represents the entire process
graphically, and enables one to see which objects and groups are merged at
what stages of the algorithm.

The hierarchical agglomeration algorithm can be used with criteria other
than the sum of squares criterion. For example in the single link (or nearest
neighbor) method, the distance between two groups is defined to be the
smallest distance between any two members from different groups, and at
each iteration the two closest groups are merged. The complete link method
(also known as the compact or farthest neighbor method) is similar except
that the distance between any two groups is defined to be the largest distance
between any two members from different groups, while the centroid method
defines the distance between two groups to be the distance between their
centroids. The average weighted link method uses the average of the distances
between the objects in one group and the objects in the other group. These
are all heuristic criteria.

Iterative 
Relocation

In an iterative relocation algorithm, an initial classification is modified by
moving objects from one group to another if this will reduce the sum of
squares. One such algorithm is the k-means algorithm of Hartigan (1975).
Iterative relocation, like hierarchical agglomeration, can also be used with
criteria other than the sum of squares.
The iterative relocation method is limited in that it requires one to specify
the number of clusters in advance, and it also requires an initial classification.
A strategy that often yields good results is to use hierarchical agglomeration
to determine the number of clusters and to find an initial classification, and
then use iterative relocation to improve the classification.
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18.3 MODEL-BASED CLUSTERING

Clusters of 
Different 
Orientations, 
Shapes, and 
Sizes

Model-based clustering is based on the assumption that the data are
generated by a mixture of underlying probability distributions. Specifically, it
is assumed that the population of interest consists of G different
subpopulations, and that the density of an observation x from the kth
subpopulation is fk(x;θ) for some unknown vector of parameters θ. Given
data D = (x1, ... , xn), we let γ = (γ1, ... , γn) denote the identifying labels,

where γi = k if xi
 comes from the kth subpopulation. In the classification

maximum likelihood procedure, θ and γ are chosen so as to maximize the
likelihood.

We consider mainly the situation where fk(x;θ) is a multivariate normal

density with mean µk and variance matrix Σk. If Σk = σ2I for each k, where I

is the identity matrix, then maximizing the likelihood (18.1) is the same as
minimizing the sum of within-group sums of squares that underlies Ward’s
method, discussed in section 18.2. Thus Ward’s method corresponds to the
situation where clusters are hyperspherical with the same variance. If clusters
are not of this kind, for example if they are thin and elongated, Ward’s
method will tend to break them up into hyperspherical blobs.

Other forms of Σk yield clustering methods that are appropriate in different

situations; see Banfield and Raftery (1992). The key to specifying this is the
eigenvalue decomposition of Σk. The eigenvectors of Σk specify the

orientation of the kth cluster, the biggest eigenvalue specifies its variance or
size, and the ratios of the other eigenvalues to the largest one specify its shape.
We can constrain some but not all of these features (orientation, size and

shape) to be the same across clusters. For example, if we let , the

criterion corresponds to hyperspherical clusters of different sizes; this is the
“Spherical” criterion.

A criterion that appears to work well in a variety of situations results from
constraining only the shape to be the same across clusters; this is denoted by

S*. Here the user must specify the shape, represented by the eigenvalue ratios
aj = lj/l1  (j = 2,...,p), where {l1,..., lp} are the eigenvalues ordered from

(18.1)L D  θ γ,;( ) fγi
xi θ;( )

i 1=

n

∏=

Σk σk
2
I=
506



Model-based Clustering
largest to smallest. Specifying each aj = 0.2 leads to elliptical clusters that are
moderately concentrated about a line in p-space, while choosing each aj =
0.01 yields very concentrated and linear clusters. Setting each aj = 1 just gives
the Spherical criterion as a special case. The user’s choice will be determined
by the kind of data that he or she is working with, but we have found setting
each aj = 0.2 often to be a good first guess.

Table 18.2 shows the different model-based clustering criteria and the
assumptions that they embody.

Choosing the 
Number of 
Clusters

In model-based clustering, choosing the number of clusters is the same as
choosing a model for the data. A standard approach to this is to calculate the
Bayes factor, Bk, for the model defined by k clusters against the model
defined by a single cluster (that is, all the objects belong to the same group).
The Bayes factor is the odds for one model against another given the data
(provided that one has no initial preference for either model). Thus the larger
Bk, the more evidence there is for the existence of k clusters.

The approximate weight of evidence for k clusters (AWEk) is an

approximation to 2 logBk; see Banfield and Raftery (1992). This is calculated

by  mclust. The larger AWEk, the more evidence there is for the existence of k

clusters. by definition, AWE1 = 0, so if all the AWEk (k = 2,...,n) are negative,

Table 18.2: Model-based clustering criteria with corresponding assumptions.

Criterion Reference Distribution Orientation Size Shape

Sum of Squares Ward (1963) Spherical None Same Same

Spherical Banfield and 
Raftery (1992)

Spherical None Different Same

Determinant Friedman and 
Rubin (1967)

Ellipsoidal Same Same Same

S Murtagh and 
Raftery (1984)

Ellipsoidal Different Same Same

S* Banfield and 
Raftery (1992)

Ellipsoidal Different Different Same

Unconstrained Scott and 
Symons (1971)

Ellipsoidal Different Different Different
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18. Cluster Analysis
there is no evidence for any clustering.

The value of k which maximizes AWEk is the number of clusters for which

there is the most evidence. However, we do not recommend using the AWE
criterion to choose a single number of clusters unless the evidence is
overwhelming. Rather, we suggest that the plot of AWEk be inspected with a

view to picking several plausible possibilities to be further investigated. The
change in the approximate weight of evidence, AWEk - AWEk-1, is often large

and positive for the first few values of k, k = 2,...,K, say, and small or negative
thereafter. If that is the case, ideas of parsimony suggest considering the
classification into K groups, as well as the value of k which maximizes AWEk,

and any intervening values.

Robust 
Clustering

So far, it has been assumed that each object belongs to a cluster. However,
even when a data set is made up mainly of clusters of the prescribed type,
there may be other data points that do not follow this pattern. This
possibility can be allowed for by extending the model (18.1) to include such
isolated observations, or outliers, assumed to occur according to a Poisson
process with an intensity which is constant over the region from which the
data have been drawn. The likelihood (18.1) is modified accordingly. This
yields a class of clustering algorithms designed to be robust to outliers; see
Banfield and Raftery (1992).

18.4 PERFORMING CLUSTER ANALYSIS IN S-PLUS
The function mclust does most of the analyses described in this chapter. It
carries out hierarchical agglomerative clustering using the six model-based
criteria shown in table 18.2, and also the five heuristic criteria discussed in
section 18.2. For the model-based criteria, it returns the AWE statistic for
each number of clusters k; this is used to determine the number of clusters.
If noise=T is specified in mclust, it will do robust clustering (available for
the model-based criteria only). If the existence of outliers is suspected, it may
be a good idea to run mclust with noise=F and noise=T and to compare
the results. Important differences between the resulting classifications would
suggest that there are outliers that are contaminating the results, in which
case either these outliers could be removed from the data sets and studied
separately, or the robust clustering results (with noise=T) could be used.
Note that the number of clusters indicated by the AWE in the non-robust
case (noise=F) will tend to be larger than in the robust case (noise=T),
because in the non-robust case some of the outliers may be classified as
single-member groups.
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Iterative relocation for any of the eleven criteria listed can be done using the
function mreloc. The function mclass takes the output of mclust or
mreloc and produces a classification of the data objects.

The output of mclust and mreloc can be used to plot and manipulate
classification trees. The function plclust plots the tree, subtree extracts
part of the tree, clorder reorders the leaves of the tree, labclust labels the
leaves of the tree, and  cutree creates groups using the tree.

The function hclust also does hierarchical agglomerative clustering, but
only for three of the heuristic criteria included in mclust. mclust is much
more general and is to be preferred for many purposes. However, hclust has
two features which can be advantages in certain situations. It takes as
argument a distance matrix rather than a data matrix, and it is applicable
even when the data cannot be represented by points in Euclidean space; it
accepts a dissimilarity matrix which need not be a distance matrix in the strict
sense. A distance matrix can be calculated from a data matrix using the
function dist. Also, unlike mclust, hclust returns the height at which
each merger was made; this can yield more informative plots of the
classification tree. The function kmeans does iterative relocation, but only
for the sum of squares criterion.

Example of 
Simple Use

> elect.years <- c( "1960", "1964", "1968", "1972", "1976")
> votes.S <- mclust( votes.repub[,elect.years], method="S", 
+    noise=T)
> motif()
> # display dendrogram
> plclust( votes.S$tree, label = state.abb)  
> # plot the awe 
> plot( x = 1:length(votes.S$awe), y = votes.S$awe) 
> # 9-cluster classication 
> votes.9 <- mclass( votes.S, 9) 
> # 3-cluster classification 
> votes.3 <- mclass( votes.S, 3, votes.9) 
> votes.3 <- mreloc( votes.3, votes.repub[,elect.years], 
+    method="S", noise = T)

18.5 CLUSTERING FUNCTIONS FOUND IN THE CLUSTER LIBRARY
This section describes a collection of clustering methods based on original
work by L. Kaufman and P. J. Rousseeuw. These methods are available to
S-PLUS users in the form of a library.
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Review of 
Cluster 
Analysis

Cluster Analysis is the searching for groups (clusters) in the data, in such a
way that objects belonging to the same cluster resemble each other, whereas
objects in different clusters are dissimilar.
In two or three dimensions, clusters can be visualized. With more than three
dimensions, or in the case of dissimilarity data (see below), we need some
kind of analytical assistance.

Generally speaking, clustering algorithms fall into two categories:

1. Partitioning Algorithms. 
A partitioning algorithm describes a method that divides the data set
into k clusters, where the integer k needs to specified by the user.
Typically, the user runs the algorithm for a range of k-values. For
each k, the algorithm carries out the clustering and also yields a
’quality index’, which allows the user to select the ’best’ value of k
afterwards. Algorithms of this type described in this chapter are used
by the functions pam, clara and fanny.

2. Hierarchical Algorithms. 
A hierarchical algorithm describes a method yielding an entire
hierarchy of clusterings for the given data set. Agglomerative methods
start with the situation where each object in the data set forms its
own little cluster, and then successively merges clusters until only
one large cluster remains which is the whole data set. The function
agnes uses an agglomerative method. Divisive methods start by
considering the whole data set as one cluster, and then splits up
clusters until each object is separate. Algorithms of this type are used
in the functions diana and mona.

Attaching the 
cluster  Library

To access the clustering functions described in this chapter you must attach
the cluster library to your S-PLUS session type

>library(cluster)

The associated help files will also be attached at this point, and become
immediately available for use.

Input Structures 
for Clustering 
Algorithms

Data sets for clustering can have either of the following structures:

1. n × p data matrix: 

x11 … x1p

A A
xn1 … xnp
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where rows stand for objects and columns stand for variables.

2. n × n dissimilarity matrix: 

where d(i, j) = d(j, i) measures the "difference" or dissimilarity between the
objects i and j. This kind of data occurs frequently in the social sciences and
in marketing.

Most of the clustering algorithms considered here operate on a dissimilarity
matrix. If the data consist of an n × p data matrix, the algorithm first
constructs the corresponding dissimilarity matrix.

Dissimilarity 
Matrices: the 
Function 
daisy

The function daisy constructs a dissimilarity matrix. This is described in
full in Kaufman and Rousseeuw (1990, chapter 1). Compared to the S-PLUS

function dist whose input must be numeric variables, the main feature of
daisy is its ability to handle other variable types (for example, nominal,
ordinal, asymmetric binary) even when the different types occur in the same
data set.

Dissimilarities The dissimilarity between two objects measures "how different" they are.
Sometimes we can use an actual metric (distance function) between objects,
but a dissimilarity function is not necessarily a metric. Often only the
following three axioms of a metric are satisfied:

1. d(i, i) = 0

2. d(i, j) ≥ 0

3. d(i, j) = d(j, i)

Computation How we compute the dissimilarity between two objects depends on the type
of the original variables.

1. Interval-Scaled Variables
These are continuous measurements on a (roughly) linear scale. Typical
examples are temperature, height, weight, and energy.

0

d 2 1,( ) 0

d 3 1,( ) d 3 2,( ) 0

A A A
d n 1,( ) d n 2,( ) … … 0
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18. Cluster Analysis
If all variables are interval-scaled, we can use an actual metric such as:

or

Note that the choice of measurement units strongly affects the resulting
clustering. The variable with the largest dispersion will have the largest
impact on the clustering. If all variables are considered equally important, the
data need to be standardized first.

Put  and ; then the standardized

measurements are defined as follows:

Here we have used sf, the mean absolute deviation instead of the usual
standard deviation, because the former is more robust: since the deviations
are not squared, the effect of outliers is somewhat reduced. Of course, there
are more robust measures of dispersion, such as the median absolute
deviation (the function mad in S-PLUS). The advantage of using a robust
measure of dispersion is that the z-scores of outliers do not become too small,
hence the outliers remain detectable (and hence visible in the clustering).

2. Continuous Ordinal Variables
These are continuous measurements on an unknown scale, or where only the
ordering is known but not the actual magnitude. Then the dissimilarities are
computed as follows:

1. Replace the xif by their rank rif ∈ {1,...,Mf}.

(18.2)

(18.3)

(18.4)

d i j,( ) xif xjf–( )2

f 1=

p

∑=  !��	����� ��������"

d i j,( ) xif xjf–

f 1=

p

∑=  #�������� ��������"

mf
1
n
--- xif

i 1=

n

∑= sf
1
n
--- xif mf–

i 1=

n

∑=

zif

xif mf–

sf

-----------------=
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2. Transform the scale to [0,1] as follows: .

3. Compute the dissimilarities as for interval-scaled variables.

3. Ratio-Scaled Variables
These are positive continuous measurements on a nonlinear scale, such as an
exponential scale. One example would be the growth of a bacterial
population (say, with a growth function AeBt). With this model, equal time
intervals multiply the population by the same ratio.
There are different ways to compute dissimilarities for ratio-scaled variables:

1. Simply as interval-scaled variables, though this is not recommended
as it can distort the measurement scale.

2. As continuous ordinal data.

3. By first transforming the data (perhaps by taking logarithms), and
then treating the results as interval-scaled variables.

4. Discrete Ordinal Variables
A variable of this type has M possible values (scores) which are ordered. The
dissimilarities are computed in the same way as for continuous ordinal
variables.

5. Nominal Variables
Such a variable has M possible values, which are not ordered. The
dissimilarity between objects i and j is usually defined as: 

d(i, j) = # variables taking different values for i and j 
                   total number of variables 

This is called the simple matching coefficient.

6. Symmetric Binary Variables
These have two possible values, coded 0 and 1, which are equally important
(such as male and female, or vertebrate and invertebrate).
Symmetric binary variables are nominal variables, hence we again use the
simple matching coefficient given above for Nominal Variables. Let us also
consider the contingency table of the objects i and j:

i\j 1 0

1 a b

0 c d

zif

r if 1–

Mf 1–
---------------=
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We can then rewrite the simple matching coefficient as

7. Asymmetric Binary Variables
Here the variable has two possible values, one of which carries more
importance than the other. The most meaningful outcome is coded as 1, and
the less meaningful outcome as 0. Typically, 1 stands for the presence of a
certain attribute (for example, a particular disease), and 0 for its absence.
The dissimilarity between i and j is then defined as: 

d(i, j) = # variables taking different values for i and j
            total number of meaningful comparisons 

Using the contingency table again, this becomes , which

is called the Jaccard coefficient.

8. Variables of Mixed Types
The above formulas hold when all variables in the data set are of the same
type. However, many data sets contain variables of different types. Therefore,
we want a method to compute dissimilarities between objects when the data
set contains p variables that may be of different types. For this the function
daisy uses the formula

where =0 if xif or xjf is missing,  if xif = xjf = 0 and variable f is

asymmetric binary  = 1 otherwise. And  = the contribution of

variable f, which depends on its type:

1. f  binary or nominal: = 0 if xif = xjf, and  = 1 otherwise.

. (18.5)

(18.6)

d i j,( ) b c+

a b c d+ + +
------------------------------=

d i j,( ) b c+
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2. f  interval-scaled:  = 

3. ordinal and ratio-scaled variables: compute ranks rif and

 and treat these zif as interval-scaled.

Partitioning 
Around 
Medoids: the 
Function pam

The method pam is fully described in chapter 2 of Kaufman and Rousseeuw
(1990). Compared to the function kmeans (refer to the on-line help for
more information) the function pam has the following features: (a) it  accepts
a dissimilarity matrix; (b) it is more robust because it minimizes a sum of
dissimilarities instead of a sum of squared euclidean distances; (c) it provides
a novel graphical display, the silhouette plot (see below). It also allows the user
to select the number of clusters.

Algorithm The function pam operates on the dissimilarity matrix of the given data set.
When it is presented with an n × p data matrix, pam will first compute a
dissimilarity matrix.
The algorithm computes k representative objects, called medoids, which
together determine a clustering. The number k of clusters is an argument of
the function.

Each object is then assigned to the cluster corresponding to the nearest
medoid. That is, object i is put into cluster vi when medoid  is nearer

than any other medoid mw:

 d(i, ) ≤ d(i,mw) for all w=1,...,k.

The k representative objects should minimize the sum of the dissimilarities of
all objects to their nearest medoid: 

objective function = 

The algorithm proceeds in two steps:

1. Build-step 
This step sequentially selects k "centrally located" objects, to be used
as initial medoids.

2. Swap-step 
If the objective function can be reduced by interchanging

d
f( )
i j

xif xjf–

maxhxhf minhxhf–
---------------------------------------------

zif

r if 1–

Mf 1–
---------------=

mvi

mvi

d i mvi
,( )

i 1=

n

∑
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18. Cluster Analysis
(swapping) a selected object with an unselected object, then the swap
is carried out. This is continued until the objective function no
longer decreases.

Graphical 
Display: the 
Silhouette Plot

A partition of the data, such as the clustering found by pam, can be displayed
by means of the silhouette plot (Rousseeuw 1987).
For each object i the silhouette value s(i) is computed, and then represented
in the plot as a bar of length s(i). In order to define s(i), A denotes the cluster
to which object i belongs, and the calculation proceeds as

a(i) = average dissimilarity of i to all other objects of A

Now consider any cluster C different from A and define

d(i,C) = average dissimilarity of i to all objects of C

After computing d(i,C) for all clusters C not equal to A we take the smallest of
those: 

The cluster B which attains this minimum, namely d(i,B)=b(i), is called the
neighbor of object i. This is the second-best cluster for object i.

The value s(i) can now be defined: 

We see that s(i) always lies between -1 and 1. The value s(i) may be
interpreted as follows:

s(i) ≈ 1   ⇒ object i is well classified

s(i) ≈ 0   ⇒ object i lies between two clusters

s(i) ≈ -1 ⇒ object i is badly classified

The silhouette of a cluster is a plot of the s(i), ranked in decreasing order, of
all its objects i. The entire silhouette plot shows the silhouettes of all clusters
next to each other, so the "quality" of the clusters can be compared. The
overall average silhouette width of the silhouette plot is the average of the s(i)
over all objects i in the data set.

It is possible to run pam several times, each time for a different k, and to
compare the resulting silhouette plots. The user can then select that value of
k yielding the highest average silhouette width. If even that highest width is
below (say) 0.25, one may conclude that no substantial structure has been
found.

See figure 18.2 and figure 18.3 for examples of silhouette plots.

(18.7)

b i( ) minC A≠ d i C,( )=

s i( ) b i( ) a i( )–
max a i( ) b i( ),{ }
----------------------------------------=
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Clustering 
Large 
Applications: 
the Function 
clara

The method clara is fully described in chapter 3 of Kaufman and
Rousseeuw (1990). Compared to other partitioning methods such as pam,
clara can deal with much larger data sets. Internally, this is achieved by
considering data subsets of fixed size, so that the overall time and storage
requirements become linear in the total number of objects, rather than
quadratic.
The function pam needs to store the dissimilarity matrix of the entire data set

(which has O(n2) entries) in central memory, while its computation time goes
up accordingly. For larger data sets (say, with more than 250 objects) this
becomes less convenient.

To avoid this problem, the function clara does not compute the entire
dissimilarity matrix at once. Therefore, this function only accepts input of an
n × p data matrix.

Algorithm The algorithm takes a data subset, and then applies the pam algorithm to it.
This divides the data subset into k clusters. The remaining objects of the
original data set are then assigned to the nearest medoid. In this way, all n
objects are assigned. The objective function is then computed for the entire
data set, namely by summing all n terms d(i, ).

This procedure is repeated for several data subsets, and the clustering with
the lowest overall objective function is retained. In this way, we only need to
compute and store the dissimilarity matrix of one data subset at any one
time, which makes the overall order of complexity linear in n.

The first data subset is drawn randomly. Each of the following data subsets is
forced to contain the currently best medoids, supplanted with randomly
drawn objects.

Graphical Display The clustering obtained by clara can also be represented by means of a
silhouette plot, described in the previous section on pam. Due to the
potential sizes of the data sets, the silhouette plot is given only for the best
data subset.

Fuzzy Analysis: 
the Function 
fanny

The method fanny is fully described in chapter 4 of Kaufman and
Rousseeuw (1990). Compared to other fuzzy clustering methods, fanny has
the following features: (a) it accepts a dissimilarity matrix; (b) it is more
robust to the ‘spherical cluster’ assumption (see Kaufman and Rousseuw); (c)
graphical display is in the form of a silhouette plot.
The functions pam and clara are crisp clustering methods. This means that
each object of the data set is assigned to exactly one cluster. For instance, an
object lying between two clusters must be assigned to one of them.

mvi
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18. Cluster Analysis
Fuzzy methods like fanny will spread each object over the various clusters.
For each object i and each cluster v there will be a membership uiv which
indicates how strongly object i belongs to cluster v.

Memberships have to satisfy the following conditions:

1. uiv ≥ 0  for all i=1,...,n  and all v=1,...,k.

2. = 100%  for all i=1,...,n.

Algorithm The memberships are defined through minimization of:

In this expression, the dissimilarities d(i ,j) are known and the memberships
uiv are unknown. The minimization is carried out numerically by means of
an iterative algorithm, taking into account the above conditions that
memberships need to obey. To have an idea of “how fuzzy” the resulting
clustering is, Dunn’s partition coefficient is computed: 

 which always lies in the range .

This coefficient attains its extreme values in the following situations:

1. entirely fuzzy clustering; all 

2. crisp clustering; all uiv = 0 or 

uiv 1=
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The normalized version of this coefficient is

which always lies in the range [0,1].

Graphical Display For any fuzzy clustering, such as the one produced by fanny, the nearest crisp
clustering method should be considered for graphical output. It assigns each
object i to the cluster v in which it has the highest membership uiv. This
crisp clustering is then represented graphically by means of a silhouette plot. 

Agglomerative 
Nesting: the 
Function 
agnes

The method agnes is fully described in chapter 5 of Kaufman and
Rousseeuw (1990). Compared to other agglomerative clustering methods
such as hclust (see the help files for more information), agnes has the
following features: (a) it yields the agglomerative coefficient which measures
the amount of clustering structure found; (b) apart from the usual clustering
tree it also utilizes  the banner plot.
As the function agnes is an agglomerative hierarchical clustering method, it
yields a sequence of clusterings. In the first clustering each of the n objects
forms its own separate cluster. In subsequent steps clusters are merged, until
(after n–1 steps) only one large cluster remains, consisting of all the objects.

Algorithm The algorithm is based on dissimilarities only. If a data matrix is input, the
function starts by computing the dissimilarity matrix.
Initially (at step 0), each object is considered as a separate cluster. All the
other steps have the following form:

1. Merge the two clusters with smallest between-cluster dissimilarity;

2. Compute the dissimilarity between the new cluster and all
remaining clusters.

The between-cluster dissimilarity can be defined in various ways, notably:

1. Group average method

  

2. Nearest neighbor method = single linkage method

(18.10)Fk′
Fk
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k
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18. Cluster Analysis
3. Furthest neighbor method = complete linkage method

 

The group average method is taken as the default, based on arguments of
robustness and consistency.

The function agnes also provides the agglomerative coefficient (Rousseeuw
1986), which measures the clustering structure of the data set.

For each object i, d(i) denotes its dissimilarity to the first cluster it is merged
with, divided by the dissimilarity of the merger in the last step of the
algorithm. The agglomerative coefficient (AC) is defined as the average of all
1-d(i).

Because the AC grows with the number of objects, this measure should not
be used to compare data sets of very different sizes.

Graphical 
Display: the 
Clustering Tree 
and Banner

The hierarchy obtained from agnes can be graphically displayed in two
ways, by means of a clustering tree or by a banner.

1. Clustering tree. 
This is a tree in which the leaves represent objects. The vertical
coordinate of the place where two branches join equals the
dissimilarity between the corresponding clusters.

2. Banner. 
The banner shows the successive mergers from left to right. (Imagine
the ragged flag parts at the left, and the flagstaff at the right.) The
objects are listed from top to bottom. The mergers (which
commence at the between-cluster dissimilarity) are represented by
horizontal bars of the correct length. The banner thus contains the
same information as the clustering tree.

Note that the agglomerative coefficient (AC) defined above can also be
defined as the average width (or the percentage filled) of the banner plot.

Divisive 
Analysis: the 
Function 
diana

The method diana is fully described in chapter 6 of Kaufman and
Rousseeuw (1990). It is probably unique in computing a divisive hierarchy,
because most other software for hierarchical clustering is agglomerative.
Moreover, diana provides (a) the divisive coefficient which measures the
amount of clustering structure found; and (b) the banner plot.
The function diana is a divisive hierarchical method. The initial clustering
(at step 0) consists of one large cluster containing all n objects. In each
subsequent step, the largest available cluster is split into two smaller clusters,
until finally all clusters contain but a single object.

d R Q,( ) max
i R,∈ j Q∈

d i j,( )=
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In the first step of an agglomerative method, there are 

possible ways to merge two clusters. But in the first step of a divisive method,
we are faced with 2n-1-1 possibilities to split up the data set into two
clusters. The latter number is much larger than the first, and in practice it is
not feasible to try all possible splits.

Algorithm To avoid considering all possible splits, diana divides the data set in the
following way (based on dissimilarities only).

1. Find the most disparate object, which is the one with the highest
average dissimilarity to the other objects. This object initiates the
splinter group, analogous to a dissenting fraction of a political party.

2. For each object i outside the splinter group, compute
.

To find the object h for which this difference is largest; if Vh > 0,
then h is on average closer to the splinter group than to the
remainder, so add object h to the splinter group.

3. Repeat step 2 until all differences Vh are negative. The data set is
then split into two clusters.

4. Select the cluster with the largest diameter. (The diameter of a
cluster is the largest dissimilarity between any two of its objects.)
Then divide this cluster as in steps 1 to 3.

5. Repeat step 4 until all clusters contain only a single object.

The function diana also provides the divisive coefficient (Rousseeuw 1986),
which measures the clustering structure of the data set.

For each object i, d(i) denotes the diameter of the last cluster to which it
belongs (before being split off as a single object), divided by the diameter of
the whole data set.

The divisive coefficient (DC) is then defined as the average of all d(i).

Like the AC in the previous section on agnes, the DC also grows with the
number of objects. Therefore, the DC should not be used to compare data
sets of very different sizes.

Graphical Display The hierarchy obtained from diana can again be graphically displayed either
as a clustering tree or as a banner.
Note that the divisive coefficient (DC) defined above can also be defined as
the average width (or the percentage filled) of the banner plot.

n
2 

  n n 1–( )
2

--------------------=

Vi averagej splinter group∉ d i j,( ) averagej splinter group∈ d i j,( )–=
521



18. Cluster Analysis
Monothetic 
Analysis: the 
Function mona

The method mona is fully described in chapter 7 of Kaufman and Rousseeuw
(1990). It is a different type of divisive hierarchical method. Contrary to
diana, which can process a dissimilarity matrix as well as a data matrix with
interval-scaled variables, mona operates on a data matrix with binary
variables. For each split mona uses a single (well-chosen) variable, which is
why it is called a monothetic method. Most other hierarchical methods
(including agnes and diana) are polythetic (that is, they use all variables
simultaneously).

Algorithm First all missing values in the binary data matrix (all those values not = 0 or 1)
are replaced by estimated values, obtained as follows. Suppose that xif is
missing. Then we consider any other variable g, and construct the
contingency table

The association between f and g is then defined as Afg = | afg dfg – bfg cfg |

The variable t for which  is the most correlated with variable

f. The missing values of f are then estimated by means of variable t in the
following way:

put xif = xit when aft dft – bft cft > 0

put xif = 1 – xit when aft dft – bft cft < 0

When all missing values have been replaced, the actual splitting can begin. (If
the data matrix cannot be filled in completely, due to too many missing
values in the original data, the method stops with a warning message.)

The mona algorithm constructs a hierarchy of clusterings, starting with one
large cluster. In each step, each available cluster is divided according to one
variable. The cluster is divided into two: one cluster with all objects having
value 1 for that variable, and another cluster with all objects having value 0
for that variable.

The variable used for splitting a cluster is the variable with the largest total
association to the other variables. The association between variables f and g is
given by the expression Afg above, but now the contingency table only uses
the objects of the cluster to be split. The total association of a variable f is

f\g 1 0

1 afg bfg
0 cfg dfg

Aft maxAfgg
=
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then defined as: 

 The variable t which satisfies   is selected for splitting the

cluster. We continue to divide clusters in this way, until each cluster consists
of objects having identical values for all variables. Such clusters cannot be
split any more. A final cluster is thus a singleton or an indivisible cluster.

Graphical Display The clustering hierarchy constructed by mona can be represented by means of
a banner. This is again a divisive banner, however the length of a bar is now
given by the number of divisive steps needed to make that split. Inside the
bar, the variable is listed which was responsible for the split.

18.6 FUNCTION IMPLEMENTATION ISSUES

Object-Oriented 
Structure

The algorithms of Kaufman and Rousseeuw (1990), summarized above, have
been implemented in S-PLUS as a library of functions, which generate objects
of seven different classes. For each class of objects, methods for textual or
graphical output are available. Most of the objects are named after the
function that generates them. In this way, classes pam, clara, fanny, agnes,
diana, and mona exist. The seventh class, class dissimilarity, is
generated by the function daisy, but will also be part of the objects of classes
pam, clara and fanny.
Some of these classes are grouped together, and inherit from the same
superclass. The created hierarchy of classes is as follows:

1. Class dissimilarity

2. Class partition
(a)   Class pam
(b)   Class clara
(c)   Class fanny

3. Class agnes

4. Class diana

5. Class mona

(18.11)Af Afg

g f≠
∑=

At maxAf
f

=
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18. Cluster Analysis
These classes have methods for the following functions:

1. print 
For classes dissimilarity, pam, clara, fanny, agnes,
diana, and mona.

2. summary 
For classes pam, clara, fanny, agnes, diana, and mona.
These summary methods return new objects of class
summary.<old-class>. For each of those new summary classes, a
print method is available.

3. plot 
For classes partition, agnes, diana, and mona.

4. pltree
For classes agnes, and diana.

The partition class has a method for the generic plot function that is
common to all its subclasses.

Calling the 
Functions

The daisy function, for calculating dissimilarities, is similar to the dist
function in S-PLUS. One advantage of daisy it that it accepts data sets with
different types of variables. The function’s header is

daisy(x, metric = "euclidean", stand = F, type = list())

When all variables are interval scaled, this specifies the metric to be used for
calculating dissimilarities, and whether or not to standardize first. When
other variable types occur, a list of types can be given. The output of daisy
can be used as input for several of the new clustering functions.

The input arguments of the six clustering functions are similar. The calls to
the six functions are the following.

pam(x, k, diss = F, metric = "euclidean", stand = F)

clara(x, k, metric = "euclidean", stand = F, samples = 5,
sampsize = 40+2*k)

fanny(x, k, diss = F, metric = "euclidean", stand = F)

agnes(x, diss = F, metric = "euclidean", stand = F, 
method = "average")

diana(x, diss = F, metric = "euclidean", stand = F)

mona(x)

All functions, except for clara and mona, accept two possible input
structures: a dissimilarity matrix or a data matrix. The logical argument diss
tells the algorithm how x should be interpreted, the default being a data
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matrix of observations by variables. When a dissimilarity matrix is given as
input, it is preferably an object of class dissimilarity. However, the
functions will also accept dissimilarities produced with dist, or a vector that
can be interpreted as a dissimilarity matrix. 

The algorithms of clara and mona don’t accept dissimilarities as input, but
only accept the second input form: a matrix of observations by variables.

If a function has to compute dissimilarities from a given data matrix, the
function needs to know which metric to use and whether or not to
standardize first. These arguments are similar to the corresponding
arguments of daisy. Since mona doesn’t compute dissimilarities, it does not
have the arguments metric and stand.

The function clara has two additional arguments, specifying the number of
samples and the size of each sample. Also agnes has a special argument
defining the method to be used for calculating dissimilarities between
clusters.

Sometimes the output of the functions is rather extensive, especially when
the summary method is invoked for an object of one of the partition
classes. In those cases, the output scrolls off the screen. Therefore, all available
components of the output are listed on the last output lines. Those
components can be extracted from the result like a component from a list:
object$component.

Objects resulting from the clustering functions can be given as input to high
level graphics functions:

• a silhouette plot of an object of class partition is made on the
current graphics device with the plot method.

• a banner of an object of class agnes, diana or mona is also
constructed with the plot method.

• a clustering tree of an object of class agnes or diana is plotted on
the current graphics device with the pltree method.

One partitioning method, kmeans, already exists in S-PLUS. The new
function pam has additional possibilities: it accepts a dissimilarity matrix as
input, and silhouette plots are supported.

The function hclust, an agglomerative hierarchical method, also exists in
S-PLUS. In comparison with hclust, agnes has two new features: it
computes the agglomerative coefficient and allows for banner plots.

More information and details about the input arguments and the structure of
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the output can be found in the help files. 

18.7 CLUSTERING EXAMPLES

Partitioning 
Methods: ruspini  
Data

The Ruspini data were originally used by Ruspini (1970) in order to illustrate
fuzzy clustering techniques. The data set consists of 75 points; see figure
18.1.
We first use pam to partition the data into four clusters. After that, a partition
into five clusters is constructed. The four medoids resulting from the first call
are points in the centers of the four clusters (see the plot). The second call to
pam produces the same four medoids, and takes an intermediate object as the
fifth medoid. The minimal value reached for the objective function is a little
smaller when five clusters are formed. However, that does not necessarily

Table 18.3: Summary of Clustering functions

Function Description and example function call

daisy Computes a dissimilarity matrix from a data matrix.
daisy(x, metric = "euclidean", stand = F, type = list())

pam A crisp partitioning method for smaller data sets.
pam(x, k, diss = F, metric = "euclidean", stand = F)

clara A method for larger data sets (more than 250 objects) utilizing the function 
pam.
clara(x, k, metric = "euclidean", stand = F, samples = 5, 
sampsize = 40+2*k)

fanny A fuzzy partitioning method, employing the concept of memberships.

fanny(x, k, diss = F, metric = "euclidean", stand = F)

agnes An agglomerative hierarchical method, computes a measure of the clustering 
found.
agnes(x, diss = F, metric = "euclidean", stand = F, method 
= "average")

diana A divisive hierarchical method, computing a measure of the divisive clustering 
found.
diana(x, diss = F, metric = "euclidean", stand = F)

mona A divisive hierarchical method that works on binary data.
mona(x)
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imply that the second clustering is better. From the clustering vector, and the
numerical output per cluster, it can be seen that both clusterings are similar.
The second partition places the three most outlying points of the third
cluster in a separate cluster. This new cluster is an isolated one. 

On the other hand, the clusters resulting from the second call are not as well-
separated as those from the first call. Looking at the silhouette plots (see
figure 18.2), the conclusion is similar. With the first clustering, all s(i) are
above 0.4. The second clustering yields very large silhouette widths for the
new cluster with three objects. But some of the silhouette widths of the
second and third cluster have decreased. That is, those objects lie somewhere
between two clusters. According to the overall average silhouette width both
clustering structures are approximately of the same quality, k=4 slightly
preferable over k=5.

When we call fanny with the same data and k=4, nearly all objects have a
large membership to one of the clusters (see figure 18.1). The three objects
that were placed in a separate cluster when calling pam for k=5 now are
classified in a fuzzy way, since none of their memberships is much higher
than the other memberships. We conclude that the majority of the data can
be divided into four clusters, but some objects are situated between the
clusters. The nearest crisp clustering is the same as that from pam with k=4.
Hence, the silhouette plots are identical. But this is not always the case.
When we call fanny for k=5, the nearest crisp clustering is different from
that produced by pam. The second cluster has been split instead of the third
one. Because the average silhouette width is smaller than before, the
clustering structure is less clear.
> summary(pam(ruspini,4)) 

Medoids: 
    x   y 
10 19  65 
32 44 149 
52 99 119 
70 69  21 
Clustering vector: 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
24 25
 1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  
2  2
 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
46 47
  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  3  
3  3
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 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69
  3  3  3  3  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  
4  4
 70 71 72 73 74 75 
  4  4  4  4  4  4 
Objective function: 
    build     swap 
 17.22898 11.48637 
Numerical information per cluster: 

     size max_diss  av_diss diameter separation 
[1,]   20 24.04163 12.55362 40.24922   40.49691 
[2,]   23 26.92582 10.44238 36.61967   24.04163 
[3,]   17 33.97058 13.84800 47.63402   24.04163 
[4,]   15 17.02939  8.98767 27.07397   40.49691 

Figure 18.1:  The ruspini data.
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Isolated clusters: 
L-clusters: NULL 
L*-clusters: [1] 1 4 
Silhouette plot information: 
   cluster neighbor sil_width 
10       1        4 0.8056096 
 6       1        4 0.7954977 
 9       1        4 0.7923048 
11       1        4 0.7831672 
 8       1        2 0.7811793 
        ... 
75       4        1 0.7425538 
Average silhouette width per cluster: 
[1] 0.7262347 0.7548344 0.6691154 0.8042285 
Average silhouette width of total dataset: 
[1] 0.737657 

Dissimilarities : 
 [1] 10.049876  8.485281 24.515301  9.848858 18.357560 
35.902646
 [7] 24.596748 16.124515 19.209373 27.658633 29.832868 
33.241540
[13] 20.615528 23.086793 25.000000 26.019224 27.892651 
29.120440
... 
[2767] 10.770330 10.000000  7.280110 15.132746 12.529964  
5.830952
[2773]  5.656854 12.369317  8.062258 

Metric :  euclidean 
Number of objects :  75 

Available arguments: 
[1] "medoids"    "clustering" "objective"  "isolation"  
"clusinfo"
[6] "silinfo"    "diss"    
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18. Cluster Analysis
A Larger Data set 
of 500 Objects

This data set, consisting of 500 two-dimensional points, is generated in
S-PLUS using the following command: 

x <- rbind( cbind(rnorm(200,0,8),rnorm(200,0,8)),
            cbind(rnorm(300,50,8),rnorm(300,50,8))) 

A plot of the points is shown in figure 18.4.

The objects in the data set are clearly divided into two clusters. If pam had

Figure 18.2:  Silhouette plots generated by pam(ruspini,4) and
pam(ruspini,5).
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been used with this data set, 124750 (= 500*499/2) dissimilarities would
have been considered. The function clara uses only 946 (= 44*43/2)
dissimilarities, since the default sample size is 40 + 2.k = 40 + 2.2 =
44. clara still finds the correct clustering. The average silhouette width,
0.79, indicates a good clustering structure.
> clara(x,2) 

Figure 18.3:  Silhouette plots generated by fanny(ruspini,4) and
fanny(ruspini,5).

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette width

O
bj

ec
t

Silhouette plot of  fanny(ruspini, 4)

Average silhouette width :  0.74

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette width

O
bj

ec
t

Silhouette plot of  fanny(ruspini, 5)

Average silhouette width :  0.61
531



18. Cluster Analysis
Hierarchical 
Methods: 
"Republican 
Votes" Data

The votes.repub data set is standard in S-PLUS. This matrix contains the
percentage of people in the 50 states of the USA that voted republican in the
31 presidential elections between 1856 and 1956. If a state did not yet
belong to the USA in 1856, an NA value is given.

When agnes is applied to this data set, the clustering tree indicates a division

Figure 18.4:  A large data set of 50 points. 
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Figure 18.5:  Silhouette plot of clara(x,2), where x is the large data
set. 
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Clustering Examples
of the data into two well-separated clusters. A cluster containing eight of the
southern states is merged with the other states in the last step. The
dissimilarity between the two clusters is large in comparison with the
dissimilarities of the mergers at the other stages. When the complete linkage
method is used, the same clustering structure is found. The clustering tree
obtained by the single linkage method looks very different. Upon closer
scrutiny, one sees that the states which are merged in the final steps are
exactly those states that the other methods considered as a separate cluster.
The single linkage method has a tendency towards chains of clusters, which
causes the differences between the trees in this example. The diana function
finds the same main clustering structure: the eight southern states are already
split off at the first stage.

Since all these hierarchical methods seem to agree on the division of the data
set into two clusters, the conclusion might be that the voting behavior in the
southern states of the USA is rather different from that in the other states.
The further division of the clusters is not so clear-cut: different methods yield
more or less different structures.

> agnes(votes.repub) 

Merge: 
      [,1] [,2] 
 [1,]  -12  -50 
 [2,]   -7  -32 
 [3,]  -14  -35 
 [4,]  -13  -30 
 [5,]  -25  -31 
 [6,]  -37  -47 
 [7,]  -21  -39 
 [8,]   -3  -28 
 [9,]    4  -38 
[10,]  -16  -27 
[11,]  -15  -41 
[12,]    2  -29 
[13,]    8  -26 
[14,]   -2  -22 
[15,]    9    3 
[16,]  -33  -42 
[17,]   16  -46 
[18,]   -6    1 
[19,]    5  -48 
[20,]   12   15 
[21,]   -5    6 
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18. Cluster Analysis
[22,]  -11  -19 
[23,]  -17  -20 
[24,]  -34  -49 
[25,]   18  -44 
[26,]   11   10 
[27,]   14   20 
[28,]   -8   19 
[29,]  -23   24 
[30,]   28   23 
[31,]   13   25 
[32,]   31  -36 
[33,]   27   21 
[34,]   26   29 
[35,]   33   34 
[36,]   -1  -10 
[37,]   30   17 
[38,]   22    7 
[39,]   32   37 
[40,]   -4   -9 
[41,]   35   38 
[42,]   36  -43 
[43,]   42  -18 
[44,]  -24  -40 
[45,]   43   40 
[46,]   41   39 
[47,]   45   44 
[48,]   46  -45 
[49,]   47   48 
Order of objects: 
 [1] Alabama        Georgia        Texas          Louisiana
 [5] Arkansas       Florida        Mississippi    South 
Carolina
 [9] Alaska         Michigan       Connecticut    New York
[13] New Hampshire  Illinois       New Jersey     
Pennsylvania
[17] Indiana        Ohio           California     Oregon
[21] Washington     Iowa           South Dakota   Kansas
[25] Nebraska       Minnesota      North Dakota   Wisconsin
[29] Hawaii         Maine          Massachusetts  Rhode Island
[33] Arizona        Nevada         Montana        Colorado
[37] Idaho          Wyoming        Utah           Oklahoma
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[41] Delaware       Missouri       New Mexico     West 
Virginia
[45] Kentucky       Maryland       North Carolina Tennessee
[49] Virginia       Vermont
Height: 
 [1]  48.23970  57.99085  61.44242  63.72070  56.13635  
96.95981
 [7]  63.09507 144.13654  28.14370  36.41734  19.42184  
26.73269
[13]  31.03100  20.87924  25.06279  28.75456  20.22583  
43.81834
[19]  31.62366  22.18307  47.44331  26.15473  35.80800  
25.92214
[25]  45.21792  38.34994  33.69779  57.20589  32.76106  
52.10821
[31]  22.63338  65.24701  23.42057  26.89488  40.46388  
30.11337
[37]  17.19925  34.74599  43.05386  54.24960  38.14008  
21.14125
[43]  30.25411  40.24728  33.47438  50.07572  29.50990  
30.01351
[49] 103.01080 
Agglomerative coefficient: 
[1] 0.7688431 
Available arguments: 
[1] "order"     "height"    "ac"        "merge"     
"ordertree" 
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18. Cluster Analysis
"European 
Countries" Data

This data set is an extract from the brochure "Cijfers en feiten: Een statistisch
portret van de Europese Unie" (1994) published by Eurostat, the European
agency for statistics. For each country belonging to the European Union
during 1994, it gives the gross national product (bbp) in 1992, and the
percentage of the gross national product due to agriculture (landbouw).
Here, both partitioning and hierarchical methods yield the same division of
the European countries into two clusters; with one cluster consisting of four
countries that are more oriented towards agriculture and whose gross national
product is relatively low..

Figure 18.6:  Clustering tree of agnes(votes.repub).
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> euro 
    landbouw  bbp 
  B      2.7 16.8 
 DK      5.7 21.3 
  D      3.5 18.7 
 GR     22.2  5.9 
  E     10.9 11.4 
  F      6.0 17.8 
IRL     14.0 10.9 
  I      8.5 16.6 
  L      3.5 21.0 
 NL      4.3 16.4 
  P     17.4  7.8 
 UK      2.3 14.0 
> pam(euro,2) 
Medoids: 
  landbouw  bbp 
D      3.5 18.7 
P     17.4  7.8 
Clustering vector: 
 B DK D GR E F IRL I L NL P UK 
 1  1 1  2 2 1   2 1 1  1 2  1 
Objective function: 
    build    swap 
 3.429317 3.36061 
Available arguments: 
[1] "medoids"    "clustering" "objective"  "isolation"  
[5] "clusinfo"   "silinfo"    "diss" 

Table 18.4: Countries of the European Union

Code Country Code Country

B Belgium I Italy

D Germany IRL Ireland

DK Denmark L Luxembourg

E Spain NL Netherlands

F France P Portugal

GR Greece UK United Kingom
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18. Cluster Analysis
"Animals" Data: 
an Example of a 
Binary Data set

Six binary attributes are considered for twenty animals.

This example illustrates the use of mona. The banner shows that mona
classifies the animals according to the six attributes. In the first step, cold-
and warm-blooded animals are put in separate clusters. The first cluster is
then split into vertebrate and invertebrate animals, and the second cluster
into flying and non-flying animals. Finally, after the fifth step, animals
belonging to the same group have the same value for all six variables (on the
banner, no bar is drawn between these animals).

Figure 18.7:  Silhouette plot of pam(euro,2).
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Average silhouette width :  0.63

Table 18.5: Animal attributes

Abbreviation Attribute

war warm or cold blooded

fly flying or non-flying

var vertebrate or invertebrate

end endangered or not

gro lives in social groups, or not

hai hairy or not hairy
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If we wished to apply agnes or diana to this data set, we would have to
compute the dissimilarities with daisy, because the variables are not
numeric. The instruction is: agnes(daisy(animals),diss=T). When
we consider variable two (flying or not flying), and six (hairy or not hairy) as
asymmetric binary, the call becomes: 

agnes(daisy(animals,type=list( asymm = c(2,6))), diss=T). 

The resulting clusterings will differ from the previous clustering since agnes
and diana operate on the dissimilarities only, they do not use the individual
variables any more. The function mona is probably more suitable for this
example, where the animals have been classified nicely according to their
attributes.

> animals 

    war fly ver end gro hai 
ant   1   1   1   1   2   1 
bee   1   2   1   1   2   2 
cat   2   1   2   1   1   2 
cpl   1   1   1   1   1   2 
chi   2   1   2   2   2   2 
cow   2   1   2   1   2   2 
duc   2   2   2   1   2   1 
eag   2   2   2   2   1   1 
ele   2   1   2   2   2   1 
fly   1   2   1   1   1   1 
fro   1   1   2   2  NA   1 
her   1   1   2   1   2   1 
lio   2   1   2  NA   2   2 
liz   1   1   2   1   1   1 
lob   1   1   1   1  NA   1 

Table 18.6: The animals and the three letter abbreviations used in the data.

ant caterpillar frog man

bee duck hermit crab rabbit

cat eagle lion salamander

chimpanzee elephant lizard spider

cow fly lobster whale
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man   2   1   2   2   2   2 
rab   2   1   2   1   2   2 
sal   1   1   2   1  NA   1 
spi   1   1   1  NA   1   2 
wha   2   1   2   2   2   1 

> mona(animals) 

Figure 18.8:  Banner of mona(animals).
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Hexbinning is used to graphically display spatial data, the 
classic example being earthquake epicenters and strengths.

HEXAGONAL BINNING 19
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HEXAGONAL BINNING 19
This chapter describes the use of the hexbin function to graphically display
spatial data. The S+SPATIALSTATS module, available for both UNIX and
Windows, provides a more extensive set of tools for analyzing spatial data in
the form of geostatistical data, lattice data, and spatial point patterns. 

19.1 THE APPEAL OF HEXAGONAL BINNING
Hexagonal binning is a data grouping or reduction method typically
employed on large data sets to clarify spatial structure. It can be thought of as
partitioning a scatter plot into larger units to reduce dimensionality, while
maintaining a measure of data density. The groups or bins are used to make
hexagon mosaic maps colored or sized according to density. Rectangular or
square grids are often used in this context for image-processing applications,
for example, in grayscale, contour, and perspective maps. However, hexagons
are preferable for visual appeal and representational accuracy (Carr, Olsen,
and White, 1992). Hexagonal binning can also be used to group
geostatistical data into a lattice for use in spatial regression modeling. 
The data frame quakes.bay contains the locations of earthquakes in the
San Francisco Bay Area for 1962–1981. Hexagonal bins are maintained in an
object of class hexbin. Use the function hexbin to create the hexbin object
for the earthquake data as follows.

> quakes.bin <- hexbin(quakes.bay$longitude,
+ quakes.bay$latitude)
> summary(quakes.bin) 

Call: 
hexbin(x = quakes.bay$longitude, y = quakes.bay$latitude) 
Total Grid Extent: 36 by 31 
      cell            count            xcenter 
Min.   :  17.0   Min.   :  1.000   Min.   :-123.3 
1st Qu.: 239.0   1st Qu.:  1.000   1st Qu.:-122.0 
Median : 419.0   Median :  3.000   Median :-121.6 
Mean   : 467.9   Mean   :  7.505   Mean   :-121.5 
3rd Qu.: 696.0   3rd Qu.:  5.000   3rd Qu.:-121.0 
Max.   :1091.0   Max.   :144.000   Max.   :-119.8
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19. Hexagonal Binning
     ycenter 
Min.   :36.01 
1st Qu.:36.51 
Median :36.94 
Mean   :37.06 
3rd Qu.:37.59 
Max.   :38.50

The summary function shows the four components of the hexbin object
and their distributions. The hexagon identified by cell contains count
observations, and has center of mass at (xcenter, ycenter). The default
settings for hexbin partition the range of x values into approximately 30
equal-sided hexagonal bins. The most useful bin size depends on the number
of observations, and is best chosen iteratively. Plot the hexagonal bins as
follows.

> trellis.device(color=F) 
> at.quakes <- c(0,10,20,30,40,50,150) 
> plot(quakes.bin,border=T, col.regions=80:15, at=at.quakes)

Figure 19.1:  The San Andreas Fault has a clear ridge of frequent
earthquakes. 
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The Appeal of Hexagonal Binning
The Trellis graphics device produces the best color and grayscale images for
hexagonal binning. The default settings for plot.hexbin plot the
hexagonal bins as a full tessellation, containing equally sized hexagons with
color corresponding to grouped bin counts. By default, the groups are equal
in range. Since the distribution of quakes.bin$count (shown by the
summary output above) is skewed, we have chosen the groups formed by
at.quakes. The plot in figure 19.1 shows the ridge of frequent earthquakes
along the San Andreas Fault. 

Hexagonal Bin 
Plot Styles

Besides the default grayscale style used here, there are four other plot styles
available which plot the hexagons in varying sizes depending on cell density.
Plot the earthquake hexbin object with differing sizes of hexagons as
follows:

> plot(quakes.bin, style="centroids", cuts=6)

The "centroids" style shown in the figure scales the hexagon sizes by cell
count, and plots them at the center of mass determined by xcenter and
ycenter. The cuts = 6 argument yields six different hexagon sizes. There

Figure 19.2:  As an alternative to using different grayscales in a hex plot,
the hexagons can be drawn to a range of sizes. The range is determined
by the cuts= argument. 
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19. Hexagonal Binning
are two nested plot styles (nested.lattice and nested.centroids, not
shown) which provide depth when plotted on a color screen. 

Examining 
Individual Bins

There are several large bins in the plot which we may want to examine more
closely. The generic identify function can be used to interactively identify
points on a hexagonal bin plot. The two largest bins can be identified as
follows.

> quake.par <- plot(quakes.bin, style="centroids", cuts=6) 
> oldpar <- par(quake.par) 
> identify(quakes.bin, use.pars = quake.par, offset=1) 
[1] 114 79 
> par(oldpar) 

First it is necessary to save the graphical parameters used to plot the
hexagonal bin. After entering the identify command, use the cross-hairs to
locate the point of interest on the graphics screen, and click the left mouse
button. The count in the closest cell will appear on the graphics screen. We
have used the optional argument offset to make the count easier to read.
When you have identified both points, click the center or right mouse
button, while keeping your pointer within the graphics window. The index
of the points you have identified will appear on your command line, as
above. Then use the par function to reset the graphics parameters.

Directional 
Rays

The rayplot function can be used to display the magnitudes of a variable of
interest at spatial locations using directional rays. For smaller data sets, these
rays or other types of symbols can be plotted at each data location. However,
when the number of sites is large, the magnitudes and trends are easier to
visualize if the locations are first binned using hexbin. The following
example uses the ozone data set:

1. Create a hexbin object for the ozone data, using eight bins in the x
direction.

> ozone.bin <- hexbin(ozone.xy$x, ozone.xy$y, xbins=8)

2. Map each (x,y) pair in the original data to a hexagonal cell using the
function xy2cell.

> ozone.cells <- xy2cell(ozone.xy$x, ozone.xy$y, xbins=8)

3. Use the function tapply to calculate the median for each cell, and
use these values as angles for the rayplot.

> ozone.angle <- tapply(ozone.median, ozone.cells, median)
> library(maps) 
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The Appeal of Hexagonal Binning
Warning messages: 
   The functions and datasets in library section maps are 
   not supported by MathSoft. in: library(maps) 
> map(region=c("new york","new jersey","conn","mass"),lty=2)
> rayplot(ozone.bin$xcenter,ozone.bin$ycenter,ozone.angle)

The plot shows the median ozone emissions for the group of sites within each
hexagonal bin. The ray is plotted at the center of each bin, and the medians
are scaled so the rays follow an arc from -π/2 (lowest median) to π/2 (highest
median). It appears that the highest emissions for the time period covered are
in Connecticut. Additional attributes can be used with rayplot to add
confidence intervals and a second variable to the plot. Also, the lengths and
widths of the rays and the size of the base octagon can be changed. See the
on-line help file for more information on rayplot. 

Figure 19.3:  Rayplots add direction as well as density. This plot shows
median ozone emissions. 
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Time series arise where the exact time of the data is critical 
in the required analysis.

CREATING AND VIEWING TIME 
SERIES 20
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CREATING AND VIEWING TIME SERIES 20
Time series arise in situations where the timing of the data acquisition is an
important feature of the values and their analysis. For example, weekly or
monthly measurements of sunspot activity can be used to study cycles in
sunspot activity. Old records from the Hudson’s Bay Company on annual
trappings of the Canadian lynx can be used to study yearly fluctuations in
population numbers of the lynx. Yearly measures of the U.S. corn crop yield
can be used to study factors that might influence corn production.
This chapter describes how to create, manipulate, and view time series in
S-PLUS. Section 20.1, Creating and Modifying Time Series, describes how to
create time series in S-PLUS how to combine two series, and various ways of
subsetting time series. Section 20.2, Visualizing Correlation in Time Series
Data, explores some methods for plotting and visually analyzing time series.

20.1 CREATING AND MODIFYING TIME SERIES
A time series is a collection of observations made sequentially in time. If the
observations are multidimensional, then we have a multivariate time series.
Three classes of time series are recognized in S-PLUS:

• Regularly spaced time series, which are series sampled at equal
intervals, make up the class "rts"

• Calendar time series, in which the regularly spaced observations are
associated with a calendar date, make up the class "cts"

• Irregularly spaced time series, in which the observations may be
sampled at irregular intervals and which may have calendar or non-
calendar time domains, make up the class "its".

A time series can have the form of a vector, a factor, a matrix, or a data frame.
A univariate time series has the form of a vector or factor; a multivariate time
series has the form of a matrix or data frame. A univariate S-PLUS time series
object is just a special case of the general multivariate S-PLUS time series
object. The columns, or channels, of an S-PLUS multivariate time series
represent univariate time series with simultaneous observations across the
rows.

Creating 
Regular Time 
Series

A regular time series (rts) is a sequence of observations obtained at regular
intervals. A regular time series is characterized by four time parameters which
together give a summary of the sequence of observation times:

1. the time of the first observation,

2. the interval between observation times, ∆t, 
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3. the sampling rate, which is the reciprocal of the interval ∆t, and

4. the time of the last observation.

Use the function rts to create a regular time series data object from your
time series data. Use the arguments to rts (start deltat (∆t),
frequency, and end) to specify the time parameters. The data generally
supply the length of the time sequence. You can, however create an empty
time series, with NA for all the values, by supplying both a beginning and an
ending time, and either frequency or deltat. 

> empty.rts <- rts(start=0, end=8.8, deltat=0.2)
> empty.rts
    1  2  3  4  5
0: NA NA NA NA NA
1: NA NA NA NA NA
2: NA NA NA NA NA
3: NA NA NA NA NA
4: NA NA NA NA NA
5: NA NA NA NA NA
6: NA NA NA NA NA
7: NA NA NA NA NA
8: NA NA NA NA NA
 start deltat frequency
     0    0.2         5

Since frequency and deltat are reciprocals, you can define either one and
the other is determined automatically. For instance, suppose you want to
make a time series of the outcomes of presidential elections, which are held
every four years. In this case it is easier to define deltat. The matrix
votes.repub shows the percent of votes in each state given to the
Republican candidate in presidential elections starting in the year 1856. The
rows of this matrix are the states, so you transpose the matrix to make each
column a univariate time series.

> votes.rts <- rts(t(votes.repub), start = 1856, deltat = 4,
+ units = "years")

When the observation intervals occur in regular cycles it is often easier to
define the frequency. For example, frequency=12, units="months"
or frequency=1000, units="kHz". Note that "units" always refers to
the interval between observations (deltat), never to the larger period
deltat × frequency.

You can define the start argument, the end argument, or both. If you
define both, they must agree with the length of the data. The end must be
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later than the start. The start argument may be a single numeric value
giving the starting time (e.g., for votes.rts the starting year was
start=1856), or a pair of values giving the base time and an integer offset
(e.g., start=c(1962,2)). The offset gives the position in the cycle of the
first observation. Thus to indicate a starting time of the second quarter of
1962, use the start argument as follows: 

> freeny.rts <- rts(freeny.y, start=c(1962, 2), freq=4,
+ units="quarters")
> freeny.rts
           1Q      2Q      3Q      4Q
1962:         8.79236 8.79137 8.81486
1963: 8.81301 8.90751 8.93673 8.96161
1964: 8.96044 9.00868 9.03049 9.06906
1965: 9.05871 9.10698 9.12685 9.17096
1966: 9.18665 9.23823 9.26487 9.28436
1967: 9.31378 9.35025 9.35835 9.39767
1968: 9.42150 9.44223 9.48721 9.52374
1969: 9.53980 9.58123 9.60048 9.64496
1970: 9.64390 9.69405 9.69958 9.68683
1971: 9.71774 9.74924 9.77536 9.79424
   start deltat frequency
 1962.25   0.25         4
Time units :  quarters

The end argument is used similarly.

You can name the component series (columns) of a time series directly with
the names argument to rts, or allow the creating function to use the
dimnames of the matrix or data frame which contains the data. If neither of
these are given, the series are named "Series 1", "Series 2", etc. The
rows are named with the times that correspond to the observations.

Suppose you want to create a bivariate white noise series of length 100 and
sampling interval ∆t = 1/5, starting at 1. Since 1 is the default starting time
for time series, you don’t need to give the starting time explicitly in this case: 

> whitenoise2 <- rts(matrix(rnorm(200), ncol=2), deltat=1/5)
> whitenoise2
        Series 1   Series 2
 1.0 -0.40333165  0.3468278
 1.2  1.32106086 -0.7209995
 1.4 -1.21063699  1.6346167
 1.6 -0.06814786  3.2141895
 1.8 -0.65618203 -1.9486379
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 2.0 -0.20831037 -0.2666580
 2.2  0.03356625 -0.7492557
 2.4 -1.92188396 -1.1880001
 2.6  1.00097830  0.9222979
 2.8  0.96451061 -0.2713598
 . . .
 start deltat frequency
     1    0.2         5

To view information about a time series without printing the entire object,
use the summary function. This function gives the type of time series
(regular, calendar, or irregular), the number of component series (channels)
and the number of observations in each, a vector summary of each channel
(range, quartiles, and median), and the time parameters start, deltat,
frequency, and units: 

> rain.rts <- rts(cbind(rain.nyc1, rain.nyc2),
+ start=1869, names=c("nyc1", "nyc2") )
> summary(rain.rts)

Regular Time Series:
Observations: 89  on 2 channels

       nyc1            nyc2
 Min.   :32.70   Min.   :32.6
 1st Qu.:37.80   1st Qu.:38.8
 Median :40.80   Median :42.1
 Mean   :42.31   Mean   :42.9
 3rd Qu.:46.00   3rd Qu.:46.7
 Max.   :56.10   Max.   :58.7

Time Parameters :
 start deltat frequency
 1869     1      1

The functions start and end return the starting and ending times of the
series, respectively. 

> start(rain.rts)
[1] 1869
> end(rain.rts)
[1] 1957
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Manipulating 
Dates

Dates in S-PLUS can be represented and manipulated in very natural ways.
Use the dates function to create a dates object from a character string or a
vector of character strings. 

> holiday93 <- dates(c("01/01/93", "01/18/93", 
+  "02/15/93", "05/31/93", "07/04/93", "09/06/93", 
+  "10/11/93", "11/11/93", "11/25/93", "12/25/93"))   
> holiday93
[1] 01/01/93 01/18/93 02/15/93 05/31/93 07/04/93
[6] 09/06/93 10/11/93 11/11/93 11/25/93 12/25/93

You can specify dates in a variety of formats; use the format argument to
specify the format you are using for the input, and the out.format
argument for the format of the output. The strings that control the way a
date object is interpreted and printed consist of the letters "y", "m", and "d"
in any order, with or without a separator. 

> election <- dates("931102", format="ymd",
+ out.format="month day year")
> election
[1] November 02 1993
> attr(election,"format")
[1] "month day year"

The formats "d-m-y", "m/d/y", and "ymd" cause election to be printed
as 02-11-93, 11/02/93, and 931102, respectively. Spelling out "month"
and "year" causes them to print out fully, as in the example above, while
abbreviating month as "mon" causes the month to print as a three-letter
abbreviation. 

> dates(election, out.format="day mon y")
[1] 02 Nov 1993

The default input and output format for "dates" is "m/d/y".

Sequences and 
Dates

You can create a sequence of dates with the seq function much the same way
you create a sequence of integers by using a date as the first (from) argument.
The other necessary arguments are the interval between the elements, by, and
either an ending date, to, or an integer length, length. You can specify by
as one of "days", "weeks", "months", "quarters" or "years", or as an
integer number of days. 

> start.dates <- seq(dates("09/27/93"), length=5,
+ by ="weeks")
> start.dates
[1] 09/27/93 10/04/93 10/11/93 10/18/93 10/25/93
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> seq(dates("09/27/93"), length = 5, by = 7 )
[1] 09/27/93 10/04/93 10/11/93 10/18/93 10/25/93

You must supply a starting date and an increment (by). You may supply an
ending date (to) instead of a desired length. 

> seq(dates("09/27/93"), dates("10/30/93"), by="weeks")
[1] 09/27/93 10/04/93 10/11/93 10/18/93 10/25/93

Unlike the case when using the seq function with numbers, you cannot give
seq a starting and ending date and ask for a vector of a specific length.

Operations on 
Dates

You can perform certain types of arithmetic operations on dates. The
operations that work on dates are addition or subtraction of a scalar number
of days, subtraction of one date from another to get the number of days
between them, and logical comparison of dates: 

> end.dates <- start.dates + 10
> preview.dates <- start.dates - 30
> max(start.dates) - min(start.dates)
Time in days:
[1] 28
> max(start.dates) > min(end.dates)
[1] T

You cannot do arithmetic calculations with dates that make no sense—for
example, you cannot multiply or divide a date by a scalar, nor can you add
two dates.

All of the usual tools for examining and manipulating vectors are available for
use on date objects, so, for example to obtain a vector of differences between
elements in a dates vector, use diff: 

> diff(holiday93)
Time in days:
[1]  17  28 105  34  64  35  31  14  30

Julian Dates Dates in S-PLUS are represented internally as Julian dates, that is, the number
of days from an arbitrary day of origin. The default origin date in S-PLUS is
January 1, 1960. The dates function interprets integers as Julian dates, and
so does any function that is expecting a date as an argument. You can specify
a different origin when you create a date. For example, to create a vector of
five random days in August 1993 use the origin argument as follows: 

> random.days <- dates(sample(0:30, size=5), 
+ origin=c(8, 1, 1993))
> random.days
[1] 08/12/93 08/10/93 08/22/93 08/19/93 08/07/93
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View the origin of a date with the origin function: 

> origin(start.dates)
 month day year
     1   1 1960
> origin(random.days)
[1]    8    1 1993

You can convert a dates object to an ordinary integer with as.integer.

Calendar Time 
Series

A calendar time series is a sequence of observations taken at regular intervals,
in which each observation is associated with a calendar date. The time
parameters that define a calendar time series are the start date, the units of
the observation interval, and a multiplier which indicates how many units of
time in each interval.

To create a calendar time series (cts object) use the cts function. You can
present the start argument with a date created by the dates function, a
string of the appropriate format, or a Julian date (an integer).

The units argument of cts, which defaults to "years", must be one of
"days", "weeks", "months", "quarters", or "years". Each of these has
a default sampling frequency, as is shown in table 20.1. Suppose you have

monthly temperature records for three different weather stations for the years
1985–1987, stored as S-PLUS data sets “temp1”, “temp2”, and “temp3”. To
create a 3-dimensional time series with these records as the component series,
and name each series, use the commands: 

> temp1 <- scan(file="Aberdeen.temp")
> temp2 <- scan(file="Forks.temp")
> temp3 <- scan(file="Quinault.temp")

Table 20.1: Units and frequencies in calendar time series.

Units Frequency

"days" 365

"weeks" 52

"months" 12

"quarters" 4

"years" 1
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> temp.cts <- cts(cbind(temp1,temp2,temp3), 
+       start="01/01/85", units="months", 
+       names=c("Aberdeen","Forks","Quinault"))

Sometimes you have data that are sampled at regular intervals that are not
one of the five shown in table 20.1, for instance bi-weekly or every ten days.
The multiplier, set by the argument k.units, allows sampling intervals that
are whole numbers of units apart. Thus, to specify observations taken every
ten days, set the units to "days" and k.units to 10; to specify bi-weekly
data, set the units to "weeks" and k.units to 2; to specify semi-annual
data, set the units to "months" and k.units to 6, or set units to
"quarters" and k.units to 2. Other intervals can be defined similarly.

The sampling frequency is determined by the units of the time interval and
the multiplier k.units. It does not need to be set directly. However, to
create a sampling cycle within a time series, you can set the frequency to
the length of the desired cycle. In the example below the starting time is the
full moon on October 30, and the weekly observations are whether the moon
is approximately full, half, or new. 

>  moon <- cts(rep(c(1, 1/2, 0, 1/2), 4), start="10/30/93",
+ units="weeks", freq=4)
> moon
    week 1 week 2 week 3 week 4
  :                      1.0
93: 0.5    0.0    0.5    1.0
93: 0.5    0.0    0.5    1.0
93: 0.5    0.0    0.5    1.0
94: 0.5    0.0    0.5
    start units k.units frequency
 10/30/93 weeks 1       4
> end(moon)
 02/12/94

See the section Manipulating Time Series and the functions time and cycle
for more about the use of frequency and sampling cycles.

Irregular Time 
Series

An irregular time series is a set of observations taken over time at unequal
intervals. Each observation of an irregular time series (its object) is
associated with an observation time. To create an irregular time series, use the
its function and supply as the times argument a vector containing the
times of each successive observation. This vector may be either numeric or of
class "dates". The observation times must be unique and in ascending
order. You can supply the time units with the argument units, and the
names of the channels (columns) with names, in the case of a multivariate
time series. 
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> votes.its <- its(t(votes.repub), times = votes.year,
+ names = state.abb)
> votes.its[,1:8]      #print only the first 8 states
        AL    AK    AZ    AR    CA    CO    CT    DE
1856    NA    NA    NA    NA 18.77    NA 53.18  2.11
1860    NA    NA    NA    NA 32.96    NA 53.86 23.71
1864    NA    NA    NA    NA 58.63    NA 51.38 48.20
1868 51.44    NA    NA 53.73 50.24    NA 51.54 40.98
1872 53.19    NA    NA 52.17 56.38    NA 52.25 50.99
1876 40.02    NA    NA 39.88 50.88    NA 48.34 44.55
...
> faithful.its <- its(geyser$duration, 
+ cumsum(geyser$waiting), units="minutes")
> number.of.deaths
 [1] 156  89  40  71  84  47  84  57 118  88
> vehicular <- its(death, holiday93)
> ts.plot(vehicular)

You can retrieve the observation times of an irregular time series with the
time function; the result is a vector, not a time series. 

> time(faithful.its)[1:10]
 [1]  80 151 208 288 363 440 500 586 663 719

You can plot, subset, and summarize irregular time series in the same way as
regular or calendar time series. 
> summary(faithful.its)
Irregular Time Series:
Observations: 299

   Min. 1st Qu. Median  Mean 3rd Qu. Max.
 0.8333       2      4 3.461   4.383 5.45

Time Parameters :
 start   end
 80    21622

There are as yet no methods in S-PLUS for analyzing irregular data sets.

Updating Old 
Time Series 
Objects

Time series created in S-PLUS versions 3.1 and earlier were classless objects
with a "tsp" attribute. Since the "tsp" attribute supplies values for start
and frequency, old ts objects can be easily coerced to rts objects with
as.rts: 

> sunspots.rts <- as.rts(sunspots)
> tspar(sunspots.rts)
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 start     deltat frequency
  1749 0.08333333        12

All the time series functions that were available for S-PLUS versions 3.1 and
before still accept "ts" objects, but newer ones may not, and ts will
eventually be deprecated.

Binding Time 
Series Together

To bind two or more time series together into a single multivariate time
series, use ts.intersect and ts.union. For example, if you have a weekly
and a bi-weekly time series with different starting and ending times, you can
use ts.intersect to create a matrix of two bi-weekly series. The starting
time of the new series is the later of the starting times of the input series, and
the ending time of the new series is the earlier of the ending times of the
input series. The following example shows how to create a bivariate irregular
time series from two subscripted time series. 
> rain.low <- rts(corn.rain,
+ start=1890)[corn.rain < mean(corn.rain)]
> yield.low <- rts(corn.yield,
+ start=1890)[corn.yield < mean(corn.yield)]
> ts.intersect(rain.low, yield.low)

You can use ts.union to create a multivariate series retaining all the data of
the component series. The starting time of the new series is the earlier of the
starting times of the input series, and the ending time of the new series is the
later of the ending times of the input series. NA’s fill the places of the missing
data. 

> lynx.lag <- ts.union(lynx.rts, lag(lynx.rts, k=10))
> ts.plot(lynx.lag)

Figure 20.1:  Time series plot of lynx data and lagged lynx data.
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Manipulating 
Time Series

To get the time of each observation of a time series, use the function time. In
this example the number of lynx trappings is plotted versus the year, and then
specific years are identified interactively on the plot. 

> lynx.rts <- as.rts(lynx)
> lynxtime <- time(lynx.rts)
> ts.plot(lynx.rts)
> # interactively identify points on the plot
> identify(lynxtime, lynx.rts, lynxtime) 

Whenever the frequency of a time series is greater than one, there is an
implied sampling cycle of length frequency. The layout of a univariate
series such as freeny.rts shows this clearly—all the observations occurring
at the same point in the cycle are in columns labeled with their position in
the cycle while the sampling period increases by one at each row.

> freeny.rts
           1Q      2Q      3Q      4Q
1962:         8.79236 8.79137 8.81486
1963: 8.81301 8.90751 8.93673 8.96161
1964: 8.96044 9.00868 9.03049 9.06906
1965: 9.05871 9.10698 9.12685 9.17096
1966: 9.18665 9.23823 9.26487 9.28436
1967: 9.31378 9.35025 9.35835 9.39767
1968: 9.42150 9.44223 9.48721 9.52374
1969: 9.53980 9.58123 9.60048 9.64496

Figure 20.2:  Time series plot of lynx data with high and low points
identified.
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1970: 9.64390 9.69405 9.69958 9.68683
1971: 9.71774 9.74924 9.77536 9.79424

   start deltat frequency
 1962.25   0.25         4
 Time units :  quarters

To obtain a time series giving the position of each observation in the
sampling cycle, use the cycle function.

> cycle(freeny.rts)
      1Q 2Q 3Q 4Q
1962:     2  3  4
1963:  1  2  3  4
       .  .  .

You can use the result of cycle to get subsets of the time series. For example,
to get all the fourth quarter revenue from freeny.rts, use the results of
cycle to subset the time series: 

>  freeny.rts[cycle(freeny.rts)==4]
1961.75:         8.81486 8.96161 9.06906
1965.75: 9.17096 9.28436 9.39767 9.52374
1969.75: 9.64496 9.68683 9.79424
   start deltat frequency
 1962.75      1         1

As you can see from the example above, when you subscript a univariate
regular time series using the cycle function, you get another regular time
series. In fact, subscripting a univariate time series or the rows (time
dimension) of multivariate time series yields a time series of the same type as
long as the observations in the resulting time series are still at equal intervals.
For instance, in the following example the monthly housing starts of the data
set hstart are sampled quarterly: 

> hstart.cts <- cts(hstart, start="01/31/66",units="months")
> qtrs <- rep(c(F,F,T), length=length(hstart.cts))
> hstart.qtrs <- hstart.cts[qtrs]
> hstart.qtrs
            1     2     3     4
Mar 66: 122.4 123.5  91.9  62.3
Mar 67:  92.9 131.6 125.8  83.1
Mar 68: 128.6 142.5 139.5  99.3
Mar 69: 135.6 150.5 132.9  85.3
Mar 70: 117.8 141.9 133.8 124.1
Mar 71: 169.3 196.8 175.6 155.3
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Mar 72: 205.8 226.2 204.4 152.7
Mar 73: 201.1 203.4 148.9  90.6
Mar 74: 127.2 149.5  99.6  54.9
    start  units k.units frequency
 03/31/66 months 3       4

and in the next the monthly sunspot data of sunspots.rts is sampled at
two year intervals: 

> twoyear<- seq(from=13,  to=end(sunspots.rts), by=24)
> ts.plot(sunspots.rts[twoyear], sunspots.rts[twoyear -6],
+ sunspots.rts[twoyear + 12])

Whenever the observations of the resulting time series are not at equal
intervals, it is returned as an irregular time series (class "its"). This often
happens when you subscript on the values of the observations, as in the
following: 

> hi <- rain.rts[,1] > 46 & rain.rts[,2] > 46
> rain.hi <- rain.rts[hi,] #46 = 3rd Quartile for nyc1
> rain.hi
     nyc1 nyc2
1871 49.2 48.8
1884 49.7 55.3
1888 51.0 53.0
1889 54.4 58.7
1893 46.6 53.0
1901 47.0 47.1
1902 50.3 47.1
1903 55.5 48.6
1919 50.8 48.4
1920 53.2 48.8
1926 47.8 49.7
1927 56.1 49.9
1933 53.5 49.7
1936 49.8 46.3
1937 53.0 48.1
1938 48.5 46.5
1942 48.5 49.6
1948 46.9 54.2
 start      end
 1871  ... 1948

Of course, when you subscript the columns of a multivariate time series, the
result is a time series with the same class and time parameters as the original,
565



20. Creating and Viewing Time Series
as demonstrated below: 

> freeny2.rts <- rts(freeny.x, start=c(1962, 2), freq=4,
+ units="quarters")
> price.rts <- freeny2.rts[ ,2:3]
> price.rts
        price index income level
1962.25     4.70997      5.82110
1962.50     4.70217      5.82558
1962.75     4.68944      5.83112
1963.00     4.68558      5.84046
 . . .

1971.00     4.30552      6.18231
1971.25     4.29627      6.18768
1971.50     4.27839      6.19377
1971.75     4.27789      6.20030
   start deltat frequency
 1962.25   0.25         4
 Time units :  quarters

To obtain a segment of a time series with only portion of the time domain,
use the window function. Suppose you want to look more closely at two
shorter segments of sunspots.rts, one from a time with relatively few
sunspots, and one from a time with relatively many. 

> ts.plot(sunspots.rts) 
> suntime<- time(sunspots.rts) 
> identify(suntime, sunspots.rts, suntime) 

By selecting various points on the plot with the mouse, you determine that
the years 1790 to 1840 were a relatively quiet time for sunspots, while
between 1925 and 1975 there were high peaks of sunspot activity. You can
then use window to extract the intervals of interest: 

> quiet.rts <- window(sunspots.rts,start = 1790, end = 1840)
> noisy.rts <- window(sunspots.rts,start = 1925, end = 1975)

A lagged time series is a new time series with the same data as a given time
series shifted in time by a specified amount. You can create a lagged series in
S-PLUS with the function lag. A positive lag shifts the series earlier in time; a
negative lag shifts it later. 

> hstart.rts <- as.rts(hstart) 
> lag.yr <- lag(hstart.rts, 12) 
> adv.yr <- lag(hstart.rts, -12) 
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The three commands above create three time series with the same data but
different starting dates: 

> c(start(lag.yr), start(hstart.rts), start(adv.yr))

[1] 1965 1966 1967 

You can look at them all side by side. In the example below you can see that
the data in lag.yr at 1965.883 and 1965.917 (November and December of
1965) are the same as the data in hstart.rts as 1966.883 and 1966.917,
twelve months later. 

> hstart.lag <- ts.union(lag.yr, hstart.rts, adv.yr)
> window(hstart.lag, 1965.8, 1967)

         lag.yr hstart.rts adv.yr
1965.833   75.1         NA     NA
1965.917   62.3         NA     NA
1966.000   61.7       81.9     NA
1966.083   63.2       79.0     NA
1966.167   92.9      122.4     NA
1966.250  115.9      143.0     NA
1966.333  134.2      133.9     NA
1966.417  131.6      123.5     NA
1966.500  126.1      100.0     NA
1966.583  130.2      103.7     NA
1966.667  125.8       91.9     NA
1966.750  137.0       79.1     NA
1966.833  120.2       75.1     NA

Figure 20.3:  Ranges in sunspot data identified interactively.
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20. Creating and Viewing Time Series
1966.917   83.1       62.3     NA
1967.000   82.7       61.7   81.9
    start     deltat frequency
 1965.833 0.08333333        12
time units :  months
> ts.plot(hstart.lag, lty=c(2,1,3) )

To find the difference between numeric observations at fixed intervals, use
the diff function. The lag argument gives the numbers of intervals apart to
take the differences; the default is 1. The diff function creates a time series
whose channels are lag shorter than the original, with a starting time lag
intervals later than the starting time of the original. A differences
argument greater than one repeats the process, so that diff(x,1,4) is the
same as diff(diff(diff(diff(x)))) The following example shows how
to take the yearly difference in the values of freeny.rts by quarter: 

> diff(freeny.rts, lag=4)
            1       2       3       4
1963:         0.11515 0.14536 0.14675
1964: 0.14743 0.10117 0.09376 0.10745
1965: 0.09827 0.09830 0.09636 0.10190
1966: 0.12794 0.13125 0.13802 0.11340
1967: 0.12713 0.11202 0.09348 0.11331
1968: 0.10772 0.09198 0.12886 0.12607
1969: 0.11830 0.13900 0.11327 0.12122
1970: 0.10410 0.11282 0.09910 0.04187
1971: 0.07384 0.05519 0.07578 0.10741
   start deltat frequency
 1963.25   0.25         4
 Time units :  quarters

The diff function also works for vectors and matrices. See the section
Integrals, Differences, and Derivatives in chapter 28 for more uses of the
diff function.

20.2 VISUALIZING CORRELATION IN TIME SERIES DATA
If data are collected over time, there may be correlation between successive
observations. You can visually explore whether or not your data is serially
correlated by using S-PLUS functions to make three kinds of plots:

• simple time series plots, which you have already seen in section
entitled “Getting Started with Simple Plots” in the S-PLUS User’s
Guide.
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Visualizing Correlation in Time Series Data
• lagged scatter plots, which are scatter plots of pairs of values (yt,yt+m)

of a time series separated by a lag of one or more time units.

• autocorrelation function plots, which provide an estimate of the
correlation between observations separated by a lag of zero, one, or
more time units.

To illustrate the use of these functions, we use the function rnorm to create
uncorrelated normal random numbers, and from these numbers create a
correlated series x.cor: 

> r.norm <- rnorm(100) 
> x.cor <- r.norm[1:98] + r.norm[2:99] + r.norm[3:100] 

The series x.cor is serially correlated at lags 1 and 2; that is, x.cor[i] is
correlated with x.cor[i+1] and x.cor[i+2]. But x.cor is serially
uncorrelated at lags greater than 2; that is, x.cor[i] and x.cor[i+k] are
uncorrelated for k>2.

Basic Time 
Series Plots

The basic time series plot shows each observation plotted against its
observation time. For example, our time series x.cor can be plotted as
follows: 

> ts.plot(x.cor,type="b",pch=16) 

This expression yields the plot of figure 20.4.

Figure 20.4:  Time series plot for a correlated series.
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20. Creating and Viewing Time Series
The values of successive observations tend to be close together, so you suspect
some serial correlation. You can see this more clearly with lag.plot and
acf, as described in the following sections.

Lagged Scatter 
Plots

The lagged scatter plots in figure 20.5 consist of scatter plots of pairs of
values (yt, yt+m) of a time series separated by m time units for m = 1, 2, ..., M.
The figure is generated with the following expression: 

> lag.plot(x.cor,lags=4,layout=c(2,2)) 

The maximum lag M is specified by the lags= argument to lag.plot. For
the above example, the choice lags=4 results in M =4, and so there are four
plots. The argument layout= specifies the way the M lagged scatter plots are
arranged in a single figure, just as you use the function par to specify
multiple figure layout.

Figure 20.5:  Lagged scatter plots for a correlated series.
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Visualizing Correlation in Time Series Data
A circular shape for a lagged scatter plot at a specific lag m indicates that there
is little correlation at that lag. On the other hand, an elliptical shape for a lag
m scatter plot in the 45 degree direction indicates positive correlation at lag
m. An elliptical shape in the 135 degree direction indicates negative
correlation. In the above example using x.cor, the lag 1 plot shows clear
evidence of positive correlation, and the lag 2 plot shows some indication of
positive correlation.

Autocorrelation 
Plots

An autocorrelation function (acf) plot provides an estimate of the correlation
between observations separated by a lag of m time units, for m = 0, 1, 2, ...,
M. Use the following expressions to obtain the plots shown in figure 20.6: 

> ts.plot(x.cor) 
> acf(x.cor) 

You can specify the number of lags M for which you want autocorrelations by
using the optional argument lag.max=.

Figure 20.6:  Time series plot and ACF plot for a correlated series.
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20. Creating and Viewing Time Series
The value of the autocorrelation function at lag 0 is always 1. The horizontal
dotted lines provide an approximate 95% confidence interval for the
autocorrelation estimate at each lag. If no autocorrelation estimate (given by
the vertical lines for positive lags) falls outside the strip defined by the two
dotted lines (and the data contain no outliers!), you may safely assume that
there is no serial correlation. Otherwise, you should be concerned about the
presence of serial correlation. In our example, the acf plot indicates serial
correlation at lags 1 and 2.
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The two general approaches to time series analysis are to 
use the data directly, or to use a frequency domain method.
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ANALYZING TIME SERIES 21
There are two general approaches to analyzing time series. One is to use time
domain methods in which the values of the process are used directly, the
other is to use frequency domain methods. Frequency methods investigate
the periodic properties of the process. The books by Chatfield (1984) and
Shumway (1988) provide readable introductions to time series analysis which
cover both time domain and frequency domain methods.
Fields of study tend to focus on analyzing data in one domain or the other.
For example, economists use the time domain extensively while electrical
engineers often use the frequency domain. To a large extent, this division
arises from the types of questions that are being asked of the data. However,
combining the approaches can at times give a more thorough understanding
of the data.

Robust methods are necessary for both domains because the failure of model
assumptions (such as Gaussian errors) can cause misleading results when
classical techniques are applied.

Time domain methods are covered in sections 21.1, 21.2, and 21.3.
Section 21.5 treats univariate and multivariate frequency domain spectral
analysis methods, including complex demodulation and least squares low-
pass filtering. General recursive and non-recursive filtering algorithms are
provided in section 21.6. Section 21.7 explains robust methods.

21.1 COVARIANCE, CORRELATION, AND PARTIAL CORRELATION

UNIVARIATE SERIES The autocovariance function is an important tool for describing the serial (or
temporal) dependence structure of a univariate time series. Let xt be a

stationary time series with mean m and variance , and assume for ease of

notation that t takes on integer values t = 0, ±1, ±2, … . The autocovariance
function of xt at lag k is defined as 

Since xt is stationary, this does not depend on t. The autocorrelation function
at lag k is defined as

and is simply a standardized version of the autocovariance function. Both the

. (21.1)

(21.2)

σx
2

γ k( ) E xt µ–( ) xt k+ µ–( )=

ρ k( ) γ k( )
γ 0( )
---------- γ k( )

σx
2

----------= =
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21. Analyzing Time Series
autocovariance function and the autocorrelation function are even functions;
that is, g(k) = g(-k) and r(k) = r(-k). In addition, the autocorrelation
function satisfies

Example 1. White Noise. A stationary time series for which xt and xt+k are

uncorrelated, i.e., γ(k) = E(xt - m)(xt+k - m) = 0 for all integers , is called
white noise. Such a process is sometimes loosely termed a “purely random

process." Since γ(0) = , a white noise process has autocovariance function

and autocorrelation function

Example 2. Moving Average Process. A moving average process of order q,
denoted MA(q), is defined by the equation 

where et is a white noise process. It is easy to show that the autocovariance

function for this process is given by

(21.3)

(21.4)

. (21.5)

(21.6)

(21.7)

ρ k( ) 1     for all k≤ 0 1 2 …,±,±,=

k 0≠

σx
2

γ k( )
σx

2 k=0

0 kÞ0






=

ρ k( ) 1 k=0

0 kÞ0



=

xt µ β0εt β1εt 1–
… βqεt q–+ + + +=

γ k( ) βtβt k+
t 0=

q k–

∑     k q≤

0     k q>





=
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Covariance, Correlation, and Partial Correlation
and the autocorrelation function is given by

The autocovariance function estimate at lag k is:

where

is the mean of the series and n is the length of the observed series. Notice that

the divisor n is used, even though there are only n-k terms. As a result, 

is a biased estimate, even if  is replaced by the true mean m. However, 
has some other properties which make up for a small amount of bias. In
particular, use of the divisor n ensures positive semi-definiteness of the

function , and the mean squared error of this estimate is often smaller

than that obtained when n-1 is replaced by (n-k)-1. See Priestley (1981) for
details.

The autocorrelation function estimate at lag k is.

Multivariate Series The autocovariance and autocorrelation functions for multivariate series are
defined analogously to those of univariate series. In addition, one is interested
in crosscovariance and crosscorrelation functions. Suppose that xt is an m-
variate stationary time series, and xit = (xt)i is the ith time series i = 1, …, m
with mean values mi = Exit, i=1, …, m.

(21.8)

(21.9)

(21.10)

ρ τ( ) βtβt τ+
t 0=

q τ–

∑     τ q≤

0     τ q>





=

γ̂ k( ) 1
n
--- xt x–( ) xt k+ x–( )

t 1=

n k–

∑=

x
1
n
--- xt

t 1=

n

∑=

γ̂ k( )

x γ̂ k( )

γ̂ k( )

ρ̂ k( ) γ̂ k( )
γ̂ 0( )
----------=
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21. Analyzing Time Series
The covariance function matrix for  xt = (x1t , …, xmt) at lag k is defined as 

where  aT is the transpose of a and mT = (m1 , ..., mm).  G(k) is an m 3 m

matrix with the property that GT(k)=G(-k). The ith main diagonal element of
G(k) is the autocovariance function

for the ith time series xit, i = 1, …, m. The ij th off-diagonal element of  G(k)
is the crosscovariance

for the ith and jth series xit and xjt; i, j = 1, …, m, i Þ j. Note carefully that a

crosscovariance function gij (k), i Þ j, is not generally symmetric in k; i.e., in

general gij(k) Þ gij(-k). The estimate of either an autocovariance or

crosscovariance at lag k is given by

where

Note that for i = j, the autocovariance estimate  in equation 21.14 has

the same form as in 21.9. The autocorrelation and crosscorrelation estimates
at lag k are

(21.11)

(21.12)

(21.13)

(21.14)

. (21.15)

G k( ) E xt m–( ) xt k+ m–( )T=

γi i k( ) E xit µi–( ) xi t k+( ) µi–( )=

γ i j k( ) E xit µi–( ) xj t k+( ) µj–( )=

γ̂i j k( ) 1
n
--- xit xi–( ) xj t k+( ) xj–( )

t 1=

n k–

∑=

xi
1
n
--- xit

t 1=

n

∑=

γ̂ i j k( )

ρ i j k( ) γ̂i j k( )

γ̂i i 0( )γ̂ j j 0( )
-------------------------------=
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Partial 
Autocorrelation

Another useful diagnostic tool for the analysis of the serial dependence is the
partial autocorrelation function. Background on this will be deferred to the
next section, after introducing autoregressive processes.

Examples of Simple 
Use 

The function acf can be used to compute the sample autocovariance,
autocorrelation or partial correlation functions for a specified number k of
lags.

To compute an estimate of the autocorrelation function g(k) for lags k=0, 1,
…, 40 of the univariate series log.lynx we can use the command: 

> llynx.acr <- acf(log(lynx), 40, "correlation") 

The result is plotted automatically (figure 21.1). The horizontal band about
zero represents the approximate 95% confidence limits for H0 : r = 0.

The function acf.plot can be used to plot the results from acf. This
function will take the list returned by the function acf and use its
components in calculating approximate limits and deciding layout and
appropriate labeling.

Figure 21.1:  Autocorrelation for the logarithm of the lynx data.
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21.2 AUTOREGRESSION METHODS

Univariate 
Autoregressions

Consider a time series xt that satisfies the difference equation (recursion)

where et is a white noise process with zero mean and finite variance . The

time series xt is called an autoregressive process of order p and is denoted
AR(p). The xt in equation 21.16 has zero mean, a fact which can be easily
verified. An AR(p) process with nonzero mean m is generated by the equation  

It is worth noting that an AR(p) process is a pth-order Markov process.

Not all values of the autoregression coefficients a1, …, ap result in a
stationary process. In particular, in an AR(1) process

it is fairly easy to show that the condition for stationarity is that |a| < 1. For
a = 1, the AR(1) process becomes a discrete time random walk, which is well
known to be non-stationary. For an AR(p) process, the condition for
stationarity is that the (complex) roots of

lie outside the unit circle. An interpretation of AR(2) models from a physical
point of view is given by Priestley (1981).

Autoregressive models have seen a wide range of uses in statistics (for
example, for forecasting and autoregression-type spectral density function
estimation) and engineering (for example, in speech analysis and recognition
systems) where autoregression modeling is referred to as linear prediction
modeling. For many applications autoregression provides a good approximate
(linear) model which has the virtue of extreme simplicity. In particular, the
equations used to estimate the unknown coefficients a1, …, ap are linear, as
we point out below. Of course one should be careful not to insist on using an
autoregression model where another type of model may be appropriate (for
example, a moving average component is needed, non-stationarity must be

(21.16)

(21.17)

, (21.18)

(21.19)

xt α1xt 1– α2xt 2–
… αpxt p– εt+ + + +=

σε
2

xt µ– α1 xt 1– µ–( ) … αp xt p– µ–( ) εt+ + +=

xt αxt 1– εt+=

φ z( ) 1 α1z– α2 z2– …– αp zp–=
580



Autoregression Methods
dealt with, or a nonlinear model is needed). When in doubt consult an
experienced statistician with a time series background.

The Yule-Walker 
Equations.

Let g(k) be the autocovariance function for the AR(p) process xt. Then it
may be shown that the AR(p) coefficients a1, …, ap satisfy the Yule-Walker
equations

In addition, one can show that.

Given that the AR(p) coefficients satisfy the Yule-Walker equations 21.20,

there is a very natural way to obtain estimates , , …,  based on a

finite sample x1, x2, …, xn of the time series. Namely, replace the g(k) in
21.20 by the estimates

where 

and solve the resulting equations for , …, . Since , we

. (21.20)γ k i–( ) αk

k 1=

p

∑ γ i( )        i 1 2 … p, , ,= =

(21.21)σx
2 γ k( ) αk σε

2+

k 1=

p

∑=

(21.22)

, (21.23)

α1
ˆ α2

ˆ αp
ˆ

γ̂ k( ) 1
n
--- xt x–( ) xt k+ x–( )

t 1=

n k–

∑=

x xt

t 1=

n

∑=

α1
ˆ αp

ˆ γ̂ k–( ) γ̂ k( )=
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21. Analyzing Time Series
can write the equations as 

We call these equations the sample-based Yule-Walker equations. Once the

’s are obtained by solving equation 21.24, we can use them along with the

 in equation 21.21,

to solve for .

In practice, the order of the autoregression is not known and often it is
desired to compare solutions of various orders. Hence we will wish to solve
the equation set 21.24 for a variety of values of p from 1 up through pmax,
where pmax is sometimes 10 or 15 or even larger.

The Levinson-
Durbin Recursion.

Because the matrix of coefficients for the equation set 21.24 is a Toeplitz
matrix (i.e., the elements on each diagonal are all the same), there is a
recursive method which allows you to obtain estimates for a kth-order model
from the estimates of the k-1 model in a fast and accurate manner. The
method is referred to as the Levinson or Levinson-Durbin algorithm. Let ai,k
denote the estimate of the ith autoregression coefficient (ai) in an AR(k)

model. If we have the estimates  and the estimated error

variance  assuming an AR(k-1) model, then estimates for an AR(k)

model are 

(21.24)

γ̂ 1( ) α1γ̂̂ 0( ) α2γ̂̂ 1( ) α3γ̂̂ 2( ) … αpγ̂ p 1–( )+ + + +=

γ̂̂ 2( ) α1γ̂̂ 1( ) α2γ̂̂ 0( ) α3γ̂̂ 1( ) … αpγ̂ p 2–( )+ + + +=

γ̂̂ 3( ) α1γ̂̂ 2( ) α2γ̂̂ 1( ) α3γ̂̂ 0( ) … αpγ̂ p 3–( )+ + + +=

…

γ̂̂ p( ) α1γ̂̂ p 1–( ) α2γ̂̂ p 2–( ) α3γ̂̂ p 3–( ) … αpγ̂ 0( ).+ + + +=

, (21.25)

α̂ j

γ̂ k( )

γ̂ 0( ) α1γ̂ 1( ) α2γ̂ 2( ) … αpγ̂ p( ) σ̂ε
2+ + + +=

σε
2

(21.26)

ai k, … ak 1– k 1–,, ,

σk 1–
2

ak k,

γ̂ k( ) aj k 1–, γ̂ j k–( )
j 1=

k 1–

∑–

σk 1–
2

------------------------------------------------------------------=
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Autoregression Methods
where

and 

From equation 21.28 it may be seen that the squares of the ak,k can be
interpreted as a measure of the usefulness of increasing the order of the AR
process from k-1 to k. The ak,k sequence is called the partial autocorrelation
function or “reflection coefficients," depending on the field of study. This
sequence is useful in diagnosing whether the series is in fact an AR process. If
the process is an AR(p), then all ak,k should be close to zero for k > p. A

common approximation for the standard error of the ak,k for k > p is (1/n)1/2.
See Box and Jenkins (1976).

AIC Order Selection A way of selecting the order of the AR process is to find an order that
balances the reduction of estimated error variance with the number of
parameters being fit. One such measure is Akaike’s Information Criterion
(AIC). For the present case of an order k model, this criterion can be written
as  

If the series is an AR process, then the value of k which minimizes AIC(k) is
an estimate of the order of the autoregression.

Multivariate 
Autoregressions

If the scalar quantities xt, et, and m in equation 21.17 are replaced by m-
dimensional vectors xt, et and m, and the scalars at are replaced by m 3 m
matrices At, we obtain the multivariate pth-order autoregression.

Here et is an m-dimensional white noise series with mean zero and covariance

matrix Q. This covariance matrix is sometimes loosely referred to as the
“prediction variance.”

The vector autoregression xt satisfies a vector analogue of the Yule-Walker

(21.27)

. (21.28)

aj k, aj k 1–, ak k, ak j k 1–,–      for  1 j k 1–≤ ≤–=

σk
2 σk 1–

2 1 ak k,
2–( )=

. (21.29)AIC k( ) n σ̂ε k,
2( )log 2k+=

(21.30)xt µ– A1 xt 1– m–( ) … Ap xt p– m–( ) et+ + +=
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21. Analyzing Time Series
equations 21.20. Namely, with  G(i) =  cov{xt, xt+i } we have

We also have the vector autoregression analogue of 21.21, namely

Sample Yule-Walker equations for this vector case are obtained by replacing

the ’s in 21.22 by

where

and solving the equations

for the estimates , k = 1, …, p. The multivariate version of 21.25 is then

which may be solved for .

. (21.31)

. (21.32)

(21.33)

, (21.34)

(21.35)

, (21.36)

G k i–( )Ak

k 1=

p

∑ G i( ) ,      i 1 2 … p, , ,= =

G 0( ) G k( )Ak Q+
k 1=

p

∑=

γ̂ k( )

G
ˆ

k( ) 1
n
--- xt x–( ) xt k+ x–( )T

t 1=

n k–

∑=

x
1
n
--- xt

t 1=

n

∑=

G
ˆ

k i–( )Âk

k 1=

p

∑ G
ˆ

i( ) ,     i 1 2 … p, , ,= =

A
ˆ

k

Ĝ 0( ) Ĝ k( )Âk Q̂+
k 1=

p

∑=

Q
ˆ
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Autoregression Methods
There is also an analogue of the Levinson-Durbin algorithm

(equations 21.26-21.28), which may be used to obtain estimates ,

i = 1, ...,k and  for a kth-order vector autoregression given estimates ,

i = 1, …, k-1, and  for an order k-1 vector autoregression. This method
is referred to as “Whittle’s recursion.”

Autoregression
Estimation via 
Yule-Walker 
Equations

The S-PLUS function ar.yw fits autoregressive models to multivariate time
series using Whittle’s extension to the Levinson-Durbin recursion. 

Examples of Simple 
Use

The following S-PLUS commands fit an autoregression model to the log of
the lynx time series. 

> llynx.ar <- ar.yw(log(lynx))
> llynx.ar$order.max
  [1] 20
> llynx.ar$order
  [1] 11
> acf.plot(llynx.ar)

> ts.plot(llynx.ar$aic, main=
+      "Akaike Information Criteria for log(lynx)")

The result of the acf.plot command is shown in figure 21.2; the output
from the ts.plot command is shown in figure 21.3. The maximum order
fit defaults to 20 in this case, and the AIC picks a model of order 11.
Figure 21.3 shows the minimum AIC at 12; this plot starts indexing at 1, but
the first element of the aic component is for order 0. 

A plot is also made of the residuals:  

> ts.plot(llynx.ar$resid, main=
+ "Residuals after fitting an AR(11) to log(lynx)")
> abline(h=0, lty=2)

The resulting plot is shown in figure 21.4.

A
ˆ

i k,

Q
ˆ

k A
ˆ

i k,

Q
ˆ

k 1–
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21. Analyzing Time Series
Figure 21.2:  Partial autocorrelation for the lynx data.

Figure 21.3:  AIC for the lynx data. 
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Autoregression Methods
Autoregression
Estimation 
with Burg’s 
Algorithm

This section presents Burg’s algorithm, an alternative to using Yule-Walker
equations for fitting autoregressive models. Burg’s approach is based on
estimating the kth partial correlation coefficient by minimizing the sum of
forward and backward prediction errors.

Given all of the coefficients for the order k-1 model, this is a function only of
ak,k. Equation 21.37 essentially measures how well the order k model predicts
forwards and backwards. The algorithm is optimal in the sense of
maximizing a measure of entropy. See Burg (1967). 

Examples of Simple 
Use

The following S-PLUS commands fit an AR(2) model to the log of the lynx
time series using Burg’s algorithm.

> llynx.arb <- ar.burg(log(lynx),  F, 2)
> llynx.ar <- ar(log(lynx), aic=F, order.max=2)
> llynx.arb$ar
  , , 1
            [,1]
  [1,]  1.5595934
  [2,] -0.5711427
> llynx.ar$ar
  , , 1
            [,1]
  [1,]  1.3504381
  [2,] -0.7200314

Finding the 
Roots of a 
Polynomial 
Equation

The function polyroot finds the zeroes of the complex-valued polynomial
equation:

.

Use this function to find the roots of an autoregression or moving average
operator with user-specified coefficients. For example, if one has estimated

pth-order autoregressive coefficients, , , …, , then the

autoregression polynomial is , and one would

choose a = (a0, …, ak ) with k = p, a0 = 1, and ai = - , i = 1, …, p. 

(21.37)
SS ak k,( ) xt a1 k, xt 1–– …– ak k, xt k––[ ]2

xt k– a1 k, xt k– 1+– …– ak k, xt–[ ]2}.+

{
t k 1+=

n

∑=

akzk … a1z a0+ + + 0=

φ̂1 φ̂2 φ̂p

1 φ̂1 z– φ̂2 z2– …– φ̂p zp–

φ̂ i
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Examples of Simple 
Use

To solve the equation z2 + 5z + 6 = 0: 

> polyroot(c(6,5,1)) 
  [1] -2+0i -3+0i 

21.3 UNIVARIATE ARIMA MODELING
S-PLUS provides several functions for fitting autoregressive integrated
moving-average (ARIMA) models to univariate time series data. ARIMA
models are useful for a wide variety of problems including forecasting, quality
control, seasonal adjustment, spectral estimation, as well as providing a
summary of the data. Box and Jenkins (1976) give a comprehensive account
of ARIMA modeling, and discussions of ARIMA models can be found in
many recent standard textbooks for time series.

ARMA Models A stationary autoregressive moving-average process is obtained by combining
the equations for an MA process given by 21.6 and an AR process given by
21.16. A zero mean ARMA(p,q) process xt can be written in the form 

where et is a white noise process; that is, the et are uncorrelated, and have zero

mean and variance s2. The process et is sometimes called the innovations
process. The parameters f1, …, fp are the autoregressive coefficients, and
the parameters u1, …, uq are the moving-average coefficients.

If the innovations et are Gaussian (the process xt is Gaussian) and the et are
uncorrelated, then they are also independent. This is a frequently used
assumption.

The ARMA model of 21.38 is often written in the form f(B)xt = u(B)et,
where B is a  backshift  operator (that is, B(xt) = xt-1) and

ARIMA Models Many time series encountered in practice are non-stationary. For these series,
simple ARMA models are typically inadequate. However, the differenced
series may be stationary. Box and Jenkins (1976) developed a methodology
for fitting ARMA models to differenced data. These are known as
autoregressive integrated moving-average (ARIMA) models. An

(21.38)

(21.39)

xt φ1xt 1–– …– φpxt p–– εt θ1εt 1–– …– θqεt q––=

φ B( ) 1 φ1B– …– φpBp–=

θ B( ) 1 θ1B– …– θqB
q
.–=
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Univariate ARIMA Modeling
ARIMA(p,d,q) process xt can be defined by

where et, f(B), and u(B) are as above, = = 1-B is the first-difference operator

and =d = (1-B)d is the d-fold differencing operator. For example, with d=1,
the differenced series wt = =xt = xt - xt-1 is assumed to follow an ARMA(p,q)
process: f(B)wt = u(B)et. When d = 2, the twice differenced series wt is an
ARMA(p,q) process:

Seasonal Models Time series data frequently exhibit seasonal cycles or periodicities. For
example, data collected on a monthly basis may have a period of length
s = 12 months, reflecting the seasonal behavior of the process. The framework
for ARIMA models can be extended to handle periodicities as well (see Box
and Jenkins (1976), chapter 9). The seasonal behavior is modeled by using
seasonal autoregressive, moving average, and differencing operators. For a
period of length s, these operators are of the form

The parameters F1, …, Fp are the seasonal autogressive coefficients and the

parameters U1, …, UQ are the seasonal moving average coefficients.  is

the seasonal d-fold differences operator. Typically, F(Bs), U(Bs), and  are

combined with the ordinary operators F(B), U(B), and =d in a
multiplicative fashion.

The multiplicative seasonal ARIMA(p,d,q)3(P,D,Q)s process can be
represented by

In general, S-PLUS allows for any number of multiplicative operators with
arbitrary periods. However, 21.42 should be sufficiently general for most
problems.

(21.40)φ B( )∇2xt θ B( )εt=

wt ∇2xt ∇ xt xt 1––( ) xt 2xt 1–– xt 2–+= = =

(21.41)

(21.42)

Φ Bs( ) 1 Φ1Bs– …– ΦPBsP–=

Θ Bs( ) 1 Θ1Bs– …– ΘQBsQ–=

∇s
D 1 Bs–( )D=

∇s
d

∇s
d

Φ Bs( )φ B( )∇s
D ∇dxt Θ Bs( )θ B( )εt=
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21. Analyzing Time Series
ARIMA Models with 
Regression 
Variables

In addition to using past values to model a series, it is often desirable to use
explanatory or regression variables. The regression variables may simply be a
constant (intercept) term, a deterministic function of time, dummy variables
to model outliers, or lagged values of another time series.
Let zt be a vector of m elements. An ARIMA process yt with (known)
regression variables is defined by

where b is an (unknown) parameter vector and xt is an ARIMA process. For

example, setting = (1, t) would result in a straight line regression model

component  b = b1+b2t with slope b2 and intercept b1.

Identifying and 
Fitting ARIMA 
Models

Box and Jenkins (1976) give a paradigm for fitting ARIMA models, which is
to iterate through the following steps:

1. Model Identification: Determination of the ARIMA model orders
(p,d,q) and (P,D,Q).

2. Estimation of Model Parameters: The unknown parameters in 21.42
and 21.43 are estimated.

3. Diagnostics and Model Criticism: The residuals are used to validate
the model and to suggest potential alternative models which may be
better.

These steps are repeated until a satisfactory model is found.

Model 
Identification

Initial model identification is done using the autocorrelation and partial
autocorrelation functions. These can be computed using the S-PLUS function
acf. See chapter 6 of Box and Jenkins (1976) for a complete discussion on
the identification of ARIMA models.
An alternative procedure for selecting the model order is use of a penalized
log-likelihood measure. One such measure is Akaike’s Information Criterion
(AIC). For autoregressive models, AIC is given by 21.29. For general ARIMA
models, AIC is defined below in 21.46.

Estimation of 
Model 
Parameters 

ARMA Models The log likelihood for an ARMA model 21.40 can be computed using the

(21.43)yt zt'β xt+=

z'
t

z'
t
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Univariate ARIMA Modeling
prediction error decomposition (see Harvey (1981)). Consider an ARMA
process xt as in 21.38, and assume the innovations et are independent
Gaussian random variables. Let

denote the conditional mean one-step-ahead prediction of xt based on the
data x1, x2, …, xt-1, and let

denote the conditional variance of . The parameter s2 is the variance of

the innovations process et. Defining the prediction errors by et = xt - , and

letting L = L(x1, …, xn) denote the likelihood, one can show that.

Fitting an ARMA(p,q) model by Gaussian maximum likelihood involves

finding the estimates , …,  and , …,  which yield a minimum in
21.45. The parameters f1, …, fp and u1, …, uq enter into 21.45 through

21.44. The estimate of s2 is , which can be concentrated out of

the likelihood. The likelihood is, in general, nonlinear in f1, …, fp and

u1, …, uq and so a nonlinear optimizer must be used.

The likelihood for an ARMA model 21.43 with regression variables can be
computed in a similar fashion. In this case replace xt’s by yt’s in 21.45. The
regression coefficients can be concentrated out of the likelihood (see Kohn
and Ansley, (1985)).

A so-called conditional log-likelihood approximation to 21.45 can be
obtained by conditioning on the first p values of the series, where p is the
order of the autoregressive operator.

(21.44)

. (21.45)

x̂t
t 1– E xt x1 … xt 1– φ1 … φp θ1 … θq, , , , , , , ,( )=

σ2ft var x1 … xt 1– φ1 … φp θ1 … θq, , , , , , , ,( )=

x̂t
t 1–

x̂t

2 L x1 … xn, ,( )log– n 2πσ2( )log ft
t 1=

n

∑ 1
σ2
------ et

2 f⁄ t

t 1=

n

∑+ + +=

φ̂1 φ̂p θ̂1 θ̂q

et
2 ft⁄

t 1=

n

∑
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21. Analyzing Time Series
This conditional log-likelihood function is given by.

Bell and Hillmer (1987) give several arguments in favor of using 21.46. The
main advantage with 21.46 is that the AR parameters f1, …,fp can be

concentrated out of the likelihood, reducing the computational complexity
of the nonlinear optimization. Usually, little information is lost in using
21.46 instead of 21.45.

The prediction errors et and their variances ft can be computed in a number
of ways. Ansley (1979) gives an efficient algorithm based on the Choleski
decomposition of the covariance of the process xt. However, if missing values
are present, this algorithm no longer applies. Alternative algorithms are based
on applying the Kalman filter to a state space representation of an ARMA
process. See Jones (1980), Harvey (1981), and Kohn and Ansley (1986) for
various methods based on the Kalman filter approach. All of these methods
handle missing values, although the Kohn and Ansley approach is the most
general.

Multiplicative 
ARIMA Models

Estimating multiplicative ARIMA models by Gaussian maximum likelihood
is a straightforward extension from estimating ARMA models. With no
missing data present, the likelihood for a non-stationary series is obtained by
differencing the data and computing the likelihood for the differenced
process.
With missing values present, the likelihood can be computed using the
Kalman filter: see Kohn and Ansley (1986) and Bell and Hillmer (1987). The
simplest approach is to condition on the first p* + d*  observations, where p*
and d* are the orders of the expanded autoregressive and differencing
operators obtained by multiplying the regular and seasonal AR and the
regular and seasonal difference operators in 21.42. Specifically, p* = p+sP is

the order of the polynomials F(Bs)f(B), and d* = d+sD is the order of

. This gives the general ARIMA analog to the ARMA log-likelihood

21.46 and is equivalent to the differencing approach in the case of no missing
values.

(21.46)

2 L xp 1+ … xn x1 … xp, ,, ,( )log– n p–( ) 2πσ2( )

ftlog

t p 1+=

n

∑ 1
σ2
------ et

2 f⁄ t.
t p 1+=

n

∑+ +

log=

∇s
D∇d
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Univariate ARIMA Modeling
Missing Values in 
the Beginning of 
the Series

If a missing value occurs in the first p* + d*  observations, then conditioning
on the first p* + d*  observations is not possible. In this case, the series can be
reversed, and the likelihood function can be computed for the reversed series.
The likelihood is invariant to reversing the order of the data. If there are
missing values at both the beginning and the end of the series, then the exact
likelihood must be computed using a modification of the Kalman filter,
derived by Kohn and Ansley (1986). However, an approximate likelihood can
be obtained by including a dummy regression variable for each missing value
and replacing the missing value by an arbitrary number (see Bruce and
Martin (1989)). The dummy regression variable is zero at all time points
except for the time of the missing value.

Starting Values for 
the Optimizer

The likelihood is maximized using a general quasi-Newton optimizer (see the
nlmin help file for a discussion of the optimizer). It is necessary to provide
starting values for the ARIMA parameters. Poor starting values can lead to
slow convergence to the maximum, or even worse, convergence to a local
maximum. To avoid this, it is advisable to use a stepwise fitting procedure,
starting with relatively simple ARIMA models and adding one coefficient at a
time. Several tuning constants can be adjusted to provide better performance
(see the nlmin help file). However, these usually do not need to be adjusted.

Transformation to 
Ensure Stationarity 
and Invertibility

The ARIMA coefficients can be transformed to ensure stationarity and
invertibility of the model (see Jones, (1980)). If the solution lies on the
boundary of stationarity or invertibility, then the optimizer may take many
steps to converge. For this reason it may be desirable not to constrain the
model to be invertible.

Warning If printed output from the optimizer is requested, the printed coefficients are
the transformed coefficients, and not the original ARIMA coefficients.

AIC and Model 
Selection

One method of model selection is based on Akaike’s information criterion
(AIC). The best model is given by the model with the lowest AIC value. AIC
is a penalized version of the log-likelihood function 21.46, and is defined by 

where r is the total number of parameters estimated. Specifically, r is the
number of AR, MA, and regression coefficients. For example, for an ARIMA
(1,1,1) model, r=2.

When comparing the AIC values for different models, it is important to
condition the likelihood on the same number of observations. In other words,
m should be the same in 21.47 for all models. This allows one to compare
models with different numbers of AR or differencing coefficients using AIC.

(21.47)AIC 2 L xm 1+ … xn x1 … xm, ,, ,( ) 2r+log–=
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Computational 
Notes

The S-PLUS function arima.mle fits ARIMA models to univariate time
series data through Gaussian maximum likelihood. The conditional form of
the likelihood 21.46 is used.
The regression parameters are concentrated out of the likelihood, as in Kohn
and Ansley (1985). With no missing data, an algorithm similar to that of
Ansley (1979) is used to compute the likelihood. With missing data, the
Kalman filter is used with the state space representation of Kohn and Ansley
(1986). However, missing values are not permitted in the beginning of the
series; see the above discussion on missing values.

By default, the moving average parameters are transformed to ensure
invertibility. However, if the solution lies on the boundary of invertibility,
better performance by the optimizer can be obtained by not transforming the
parameters. In certain circumstances, it might be useful to fit models in
which lower order AR or MA parameters are constrained to be zero. In this
case, the coefficients cannot be transformed to ensure stationarity or
invertibility.

Examples of Simple 
Use 

Simulate an MA(2) series and fit it using a Gaussian maximum likelihood. 

> ma <- arima.sim(100, model=list(ma=c(-.5, -.25)) 
> ma.fit <- arima.mle(ma, model=list(ma=c(-.5, -.25)) 

Fit a Box-Jenkins (0,1,1) 3 (0,1,1) Airline model to the ship data. Use zeroes
as the starting values for the optimizer. 
> model <- list(list(order=c(0,1,1)), list(order= 
+ c(0,1,1), period=12)) 
> fit <- arima.mle(ship, model=model) 

Diagnostics 
and Model 
Criticism

The third stage in fitting ARIMA models consists of validating the model
through examination of the one-step prediction residuals et. See chapter 8 of
Box and Jenkins (1976) for a more complete discussion of ARIMA model
diagnostics. The single most important diagnostic is a plot of the

standardized residuals  over time. If the correct ARIMA model is

fit and the data are Gaussian, then  should behave approximately like a
Gaussian white noise process with zero mean and unit variance. Problems to

look for in the plot of  include outliers, non-homogeneity of variance, and
obvious structure in time.
Another basic technique is to examine the autocorrelation function of the

residuals et. Let  be the autocorrelations of the residuals et. If the model is

adequate, then  should be uncorrelated and approximately Gaussian

ẽt et ft⁄≡

ẽt

ẽt

γ̂k

γ̂k
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Univariate ARIMA Modeling
random variables with mean zero and variance n-1. Hence, the presence of

large autocorrelations  indicates that the model may be inadequate. The

nature of the autocorrelations  may suggest how to improve the model.

However, some caution should be exercised in the use of  to evaluate the

model. For example, the variance times n-1 can be a serious overestimate of
the true variance for small lags, leading to an underestimate of the
significance for lack of fit.

In addition to examining the ’s individually, it is useful to base a diagnostic
on the auto-correlations taken as a whole. Define the portmanteau test
statistic Q by

where K is a fixed maximum number of lags and n is the number of
observations used to compute the likelihood. Typically, K should be between
10 and 20. If the correct ARIMA model is fit, and the data are Gaussian,

then Q is approximately distributed as a x2 random variable on K-r degrees
of freedom, where r is the number of parameters fit to the model.

The S-PLUS function arima.diag computes these diagnostics for an
ARIMA model fit to a univariate time series.

Examples of Simple 
Use

Compute diagnostics for simulated AR(1) series. 

> x <- arima.sim(model=list(ar=.9)) 
> fit <- arima.mle(x, model=list(ar=.9)) 
> diag <- arima.diag(fit) 

Since, by default, plot = TRUE in arima.diag, the diagnostics will be
plotted using the function arima.diag.plot.

Forecasting 
Using ARIMA 
Models

An important application of ARIMA models is to forecast beyond the end of
a series. Under the assumption that the model order and parameters are
known, the forecast means and confidence intervals are easily produced using
the Kalman filter (see Harvey (1981)). Typically, one would first fit an
ARIMA model using the techniques described in sections on pages 590–594.
The resulting model can then be used to produce forecasts for the series.
The S-PLUS function arima.forecast produces forecasts given an ARIMA
model for a univariate time series.

γ̂k

γ̂k

γ̂k

γ̂k

Q n γ̂k
2

k 1=

K

∑=
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21. Analyzing Time Series
Predicted and 
Filtered Values 
for ARIMA 
Models

The S-PLUS function arima.filt produces one-step predicted values and
their variances ft, defined in 21.44. The primary application of arima.filt
is for use in other S-PLUS functions: arima.diag (to compute the residuals)
and arima.forecast (to compute the forecasts).
If autoregressive or differencing operators are present in the model, then
predicted values are not produced for the first p* + d*  time points (p* and
d* are the orders of the expanded autoregressive and differencing
polynomials).

Computational 
Note

The function arima.filt also returns filtered values and their variances.
Let yt be a process which behaves according to a signal plus noise model

where xt is the signal and vt is the noise. A common problem is to extract the
signal by filtering the observed process yt. The filtered values and their
variances are E(xt | y1, …, yt ) and  var(xt | y1, …, yt).

For a pure signal (vt is 0 for all t), the filtered values are simply the
observations themselves. The current version of S-PLUS does not support
signal plus noise models. Hence, the filtered values are the same as the input
series. However, the filtered values are returned for compatibility with future
releases.

Simulating 
ARIMA 
Processes

The S-PLUS function arima.sim generates a simulated ARIMA process of
the form 21.42 or 21.43 given an ARIMA model structure, regression
variables and a vector of innovations or a random generator. The innovations
vector corresponds to et of 21.40, and can be input directly. Alternatively, a
random generator may be supplied, and the innovations are generated
accordingly.
For stationary ARMA processes, the series can be initialized by generating an
initial random state vector according to a state space form of the model. The
initial state vector is computed through transforming a white noise vector by
the Choleski decomposition of the unconditional covariance matrix of the
state vector.

For non-stationary ARIMA processes, the unconditional covariance matrix of
the state vector doesn’t exist. Hence, the simulated series is initialized by
assuming that the initial state vector is zero. This is equivalent to assuming
past innovations and simulated values are zero. To avoid the effects of the
initialization, a series longer than the one needed is generated, and the
simulated series is taken from the end of the generated series.

yt xt vt+=
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Examples of Simple 
Use

Simulate an ARMA(1,1): 

> x <- arima.sim(model=list(ar=.5, ma=-.6), n=100) 

Simulate an ARIMA(0,1,1) with contaminated innovations: 

> rand.gen <- function(n) ifelse(runif(n)>.90, rnorm(n), 
+ rcauchy(n)) 
> x.wild <- arima.sim(100, model=list(ndiff=1, ma=.6), 
+ start.innov=50, rand.gen=rand.gen) 

Modeling 
Effects of 
Trading Days

In many monthly or quarterly economic time series, the data are affected by
the number of trading days in that month. For example, if a given month has
more weekdays and fewer weekends than other months, then one might
expect a higher level of economic activity during that month. One approach
to handling the trading day effect is to include regression variables reflecting
the number of Mondays, Tuesdays, etc., in each month (or quarter).
The function arima.td returns a multivariate time series which is suitable
for use as a regression variable. The first column gives the number of days in
the month (quarter). The following six columns give the number of
Saturdays, Sundays, Mondays, Tuesdays, Wednesdays, and Thursdays minus
the number of Fridays in the month (quarter). See Hillmer, Bell, and Tiao
(1983) for use of trading day variables in ARIMA modeling of time series
data.

Examples of Simple 
Use

> td.ship <- arima.td(ship) 
> mle.td <- arima.mle(ship, model=list(order=c(0,1,1)), 
+ xreg=td.ship) 

21.4 LONG MEMORY TIME SERIES MODELING
Long memory is a common feature of time series in a wide variety of areas. It
has enormous effects on standard statistical quantities such as standard errors
and tests and hence on the conclusions drawn, but it is hard to detect. One
major application has been to time series of wind speeds (Haslett and Raftery,
(1989)), and there long memory means intuitively that there is a tendency to
observe not just windy weeks and months, but windy years and decades and
presumably also windy centuries and millennia; we often say that there is
variation at all temporal scales.
Long memory time series have autocorrelations that decay slowly as lag
increases; typically the autocorrelations tend to zero hyperbolically (that is,

, with a > 0) so that the sum of the autocorrelations is infinite

(that is, ). Thus the autocorrelations between observations

ρ k( ) k α–∼

ρ k( )
k 0=

∞
∑ ∞=
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21. Analyzing Time Series
far away from one another in time while small, are not negligible. The
spectrum of a long memory time series goes to infinity as the frequency goes

to zero at the rate .

One important property is that the variance of the sample mean declines not

at the usual rate of O(n-1), but at a slower rate. If , then

. (Note that a long memory time series is stationary only
if 0 < a # 1.) This can have huge consequences. For example, in the wind
data a was estimated to be 0.34, and this implied that for estimating the
mean wind speed at a given location, twenty years of actual data were worth
only about the same as one month of independent daily observations.

The ARMA models (with no differencing) discussed in sections 21.2 and
21.3 above are, by contrast, short memory models. For them, the
autocorrelations decay exponentially, the sum of the autocorrelations is finite,
the spectrum is finite at zero, and the variance of the sample mean is the

usual O(n-1). Fitting a (short memory) ARMA model to data can give very
misleading results if the long memory property holds, even if the fitted model
matches the lower-lag autocorrelations well. In the wind example, a fitted
short memory ARMA model underestimated the variance of the sample
mean by a factor of more than ten in many cases.

The long memory property in time series was discussed by Mandelbrot
(1977) who called it the “Joseph effect” because of the sequence of seven
years of plenty followed by seven lean years recounted in the Book of Genesis
story of Joseph. Mandelbrot pointed out that long memory time series tend
to be asymptotically approximately self-similar and hence to be, at least
approximately, equivalent to fractals.

Fractionally 
Differenced 
ARIMA 
Modeling

Fractionally 
Differenced ARIMA 
Models. 

The fractionally differenced ARIMA (p,d,q) model has been found to
represent long memory time series quite well. It is defined by equation 21.40,
namely

,

except that now d may take any value in the unit interval [0, 1] instead of

being restricted to being either 0 or 1, and =d = (1-B)d is defined by the

f ω( ) ω 1 α–( )–∼

ρ k( ) k α–∼

var X( ) O n α–( )=

φ B( )∇dxt θ B( )εt=
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Long Memory Time Series Modeling
binomial expansion (1-B)d = , where C(d,j) are the

binomial coefficients. When the series has a nonzero mean m, the model is
better written as .

For model 21.48, , so that a = 1-2d, where a was defined
in section 21.4. This model is stationary only for 0 # d < 1/2, and reduces to
the usual short memory ARMA(p,q) model when d = 0.

Estimation of 
Model Parameters

The log-likelihood for the fractionally differenced ARIMA(p,d,q) model of
equation 21.48 can be computed exactly using the prediction error

decomposition given by equation 21.45, where  and ft are given by

equations 4.3 and 4.4 of Haslett and Raftery (1989). A major practical
problem with maximum likelihood estimation based on this likelihood is
that the required CPU time is O(n2) and this can be enormous for the long
series that are typical of application areas where long memory is known to
arise often; for example in the wind data set, n = 6574.
We therefore use an approximation described in section 4.3 of Haslett and
Raftery (1989) that essentially approximates the dependence of xt on xt-j for

j > M by asymptotic values. This reduces the order of the required CPU time

from O(n2) to O(n) and, in practice, for the wind data it reduced the actual
computer time by a factor of 70. It is extremely accurate. We have found
M = 100 to be a good choice; the exact maximum likelihood estimator can be
recovered by setting M = n.

Computational 
Notes

The S-PLUS function arima.fracdiff estimates the parameters of the
fractionally differenced ARIMA(p,d,q) model and returns exact or
approximate maximum likelihood estimators, standard errors, the covariance
and correlation matrices of the parameter estimates, and the log-likelihood.
The degree of approximation is determined by M; we recommend M = 100.
The exact maximum likelihood estimator can be found by setting M = n, but
if the series is long it can require a lot of CPU time. The log-likelihood is
useful for comparing models; that is, for choosing the number of AR and MA
parameters. An approximate test of the long memory property can be carried
out by dividing the estimate of d by its standard error and comparing the
result with a standard normal distribution.

. (21.48)

C d j,( ) 1–( )j
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∞
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599



21. Analyzing Time Series
Simulating 
Fractionally 
Differenced 
ARIMA 
Processes

The S-PLUS function arima.fracdiff.sim generates a simulated
fractionally differenced ARIMA(p,d,q) series of the form in equation 21.48
given the values of d, the AR and MA parameters, and the mean m.
This uses the prediction error decomposition to generate xt from its
conditional distribution given the previous values.

Examples of Simple 
Use

Simulate a fractionally differenced ARIMA(2, .33,0):

> x.sim <- arima.fracdiff.sim( model = list( d=.33, 
+ ar=c(.01,-.06), mu=3.1)) 
> arima.fracdiff( x.sim, model = list( ar=rep(2,NA))) 

21.5 SPECTRAL ANALYSIS 
Let xt be a stationary time series with sampling interval Dt. A major theorem
for time series states that any series with zero mean (m = Ext = 0) and finite

variance s2 = varxt may be well approximated by a truncated Fourier series 
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Spectral Analysis
where Aj and Bj are random Fourier (series) coefficients, the fj are well-chosen
frequencies, and J is sufficiently large. This approximation of xt as a Fourier
series may be re-expressed in complex exponential form

where the Cj are complex random Fourier coefficients which have zero mean,

ECj = 0 and are uncorrelated:.

The notation  denotes the complex conjugate of a.

Sometimes the set of real coefficients Aj, Bj, or complex coefficients Cj are
referred to as the (discrete time) Fourier transform of xt.

Time series with a nonzero mean may be approximated by adding the mean
m to the right hand side of equation (21.50):

The exact version of approximation 21.50 is an integral known as the spectral
representation of xt. The spectrum or spectral density S(f) for the series xt can be
described in terms of the coefficients Cj defined in 21.50 as:.

Thus the value of the spectrum at frequency fj is the second moment of the
random amplitude at frequency fj. The spectrum S(f) at an arbitrary
frequency f may also be expressed exactly in terms of the autocovariance
sequence .

(21.49)

(21.50)

. (21.51)

. (21.52)

(21.53)
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21. Analyzing Time Series
Namely, S(f) has the exact Fourier series representation

and the autocovariances are the Fourier coefficients of S(f):.

Again, we often refer to S(f) as the (discrete time) Fourier transform of R(l),
and refer to R(l) as the inverse Fourier transform of S(f).

Estimating the 
Spectrum 
From the 
Periodogram

Suppose that we have a time series x1, …, xn observed at a sampling interval
D. The spectrum of this series may be estimated from the periodogram by
using the function spec.pgram. The steps involved in this computation are
described below.

1.  Detrending and De-meaning 

The first step in estimating the spectrum is to ensure that the mean
is zero for the time series. If it is thought that the original series may
contain a linear trend, then this is accomplished by subtracting a
least squares regression line from the series (that is, by replacing xt

with  where  is the least squares linear fit to the

data). If it is thought that there is no trend in the data, it will suffice
to subtract the mean from the series (that is, xt is replaced by 

where  is the sample mean of x1, …, xN). By default the
spec.pgram function removes the least squares line.

2. Tapering 

A data taper is often applied to the (detrended or de-meaned) series.
A taper sequence wt multiplies each value in a series by a number
between 0 and 1. Tapering reduces “leakage" of power. See Bloom-
field (1976) and Priestley (1981) for discussions of tapering. The
spec.pgram function includes a default split cosine taper of ten
percent on each end of the series. See page 608 for further details.

. (21.54)

(21.55)

(21.56)

R l( ) EXtXt l+ ,      l 0 1 2 …,±,±,= =

S f( ) R l( )e il 2π f–

l ∞–=

∞

∑=

R l( ) S f( )eil 2π f fd
1
2
---–

1
2
---

∫=

xt γ̂– β̂t– γ̂ β̂t+

xt x–

x

602
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3. Padding 

Padding consists of increasing the length of the series xt from n to 

by adding  zero values . Padding may

generally be ignored for the spectrum function—see discussions of
the fast Fourier transform (FFT) in the references for explanation.

4. The Periodogram 

To avoid extra notation, let n be the length of the series with or with-
out padding. Let D be the sampling interval; that is, D = 1/freq
where freq is the frequency sampling rate component of the tspar
attribute, and where following the above operations, an estimate of
the power spectrum at discrete Fourier frequencies fk = k/Dn is
found by forming the periodogram

where  is the tapered, detrended series. Note

that = 0 and =  if only a mean was removed from the series.

The discrete Fourier transform (DFT) sum in equation 21.57 is
computed using a mixed radix fast Fourier transform (FFT) algo-
rithm.

5. Smoothing 

The periodogram is smoothed to reduce variability in the spectrum
estimate (the estimates in equation 21.57 do not become less vari-
able as the length of the series increases). However, smoothing also
introduces bias in the estimates. There is a trade-off between the
variability of the estimates and the bias. A thorough analysis might
include inspecting the periodogram with several levels of smoothing.
The smoothing that is performed on the periodogram is a sequence
of running averages. The user can specify the lengths of modified
Daniell windows to be run sequentially over the periodogram for the
spec.pgram function. The spec.pgram function yields the

smoothed estimate , expressed in decibels; that is,

103 log10 .

(21.57)
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21. Analyzing Time Series
6. Degrees of Freedom and Bandwidth 

The degrees of freedom for a x2 approximation of the spectral den-
sity estimate at each Fourier frequency is also computed by
spec.pgram. When there is no smoothing, tapering or padding,
there are n = 2 degrees of freedom. The degrees of freedom n increase
with the amount of smoothing.

Bandwidth is a measure of the amount of smoothing. The formula
for bandwidth used by the spec.pgram is

where aj, j = 0, …,2k are the values of the smoothing filter (which is
returned in the filter component with the index starting at zero)
and 1/Dn is the interval between discrete Fourier frequencies. See
Bloomfield (1976) for details.

Readers with no interest in multivariate time series may skip to the Example
of Simple Use.

Cross Spectra 
Coherency and 
Phase

The cross-spectrum Sxy(fj) between two time series xt and yt at frequency fj is

approximately , where the Cxj and Cyj are given by the

approximation 21.50, with an extra subscript (x or y) to distinguish
coefficients for the two different series. One may think of this complex
quantity as the complex covariance between Cxj and Cyj. The phase of xt and
yt at frequency fj is the argument (angle) of the cross spectrum Sxy(fj).

The squared-coherency K(fj) between xt and yt at frequency fj is the squared
modulus of the cross spectrum at fj, normalized by the product of the two
spectral densities Sx(fj) and Sy(fj):

.

In view of 21.53, we have

which provides the most natural interpretation of squared coherency as the
square of the correlation between the random coefficients Cxj and Cyj of the

(21.58)bw
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Spectral Analysis
series xt and yt at frequency fj.

Smoothing of the spectral estimates is mandatory for the estimation of
coherency—if no smoothing is performed, the estimate is identically 1. See
Priestley (1981). Similarly, the estimation of phase will be basically
meaningless unless smoothing is done.

The spec.pgram function gives estimates of the squared-coherency and the
phase for multivariate series. This output is in the form of matrices with each
column being identified with a particular pair of univariate components of x.
If j is less than k, then the column associated with the pair (j,k) is
(k - 1)(k - 2)/2 + j.

Example of Simple 
Use

A spectral estimate of the square root of the sunspots data may be obtained
with: 

> srsun.sp <- spec.pgram(sqrt(sunspots), 
+ spans=c(3, 5, 7, 9), detrend=F, demean=T) 

The result is shown in figure 21.4. This subtracts the mean from the series
but assumes that there is no trend. The spectrum is smoothed with a series of
4 running averages. By default ten percent on each end of the series has been
tapered with a split cosine bell. The length of the series was automatically

Figure 21.4:  Smoothed periodogram of the sunspot data
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21. Analyzing Time Series
padded from 2739 to 2744. A plot of the spectrum is automatically produced
as a side effect (see function spec.plot for details).

Another simple example of the use of this function is: 

> llynx <- log(lynx) 
> ll.sp <- spec.pgram(llynx, taper=0) 

The result is shown in figure 21.5. This spectral estimate uses no tapering,
and since it uses no smoothing it is the raw periodogram estimate. The data
are detrended—allowing for the possibility that there is a linear trend in the
data. Note that this is probably a poor spectral estimate for this dataset.

Below we analyze monthly CO2 concentrations at Mauna Loa, Hawaii from

January 1958 to December 1975. A ts.plot of the data reveals a strong
linear trend and obvious cyclic behavior. Not surprisingly the cycles appear to
be yearly. The analysis is shown in figure 21.6.

> par(mfrow=c(3,1)) # put three plots in the figure 
> co.sp1 <- spec.pgram(co2) 
> co.sp2 <- spec.pgram(co2, spans=c(9, 9)) 
> co.sp3 <- spec.pgram(co2, spans=c(3, 3, 3)) 

Figure 21.5:  Periodogram of the lynx data
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Spectral Analysis
Autoregressive
Spectrum 
Estimation 

An alternative spectral estimate to the smoothing of the periodogram is to
estimate an autoregressive (or some other) model and use the spectrum of the
estimated model as the spectral estimate.
The spectrum S(f) of an autoregressive process with coefficients a1, …, ap is

where f is the frequency in cycles per unit time and  is the variance of the

innovation process et.

Phase and coherency may also be estimated for multivariate series. The
S-PLUS function spec.ar computes the autoregressive spectrum of a time
series.

Figure 21.6:  Spectral estimates for the CO2 data.
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Examples of Simple 
Use 

> lynx.ar <- ar(log(lynx)) 
> lynx.spar <- spec.ar(lynx.ar, plot=T) 

The function spectrum can be used in the same way as spec.pgram. This
function allows for different types of spectrum estimates. The function
spec.plot can be used to plot the output of any spectrum estimation
function.

Tapering Tapering is a technique applied to time series to reduce the leakage
phenomenon in spectral estimates. Leakage occurs when there is a large
amplitude peak at a particular frequency f. Then the spectral estimates at
frequencies near f can be higher than expected, and can easily obscure nearby
lower amplitude peaks.
A data taper wt, 0 # wt # 1, applied to a time series xt produces a new
tapered series.

Typically the values of wt are close to zero at the ends and close to one in the
central part of the data.

Figure 21.7:  Autoregression spectral estimate for the lynx data.
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Linear Filters
The function spec.taper implements a split cosine bell taper. Let p be the
portion to be tapered at each end of the series and n the length of the series,
then for m = np the split cosine bell taper is .

Examples of Simple 
Use

> lynx.taper <- spec.taper(lynx) 
> lynx.taper.5 <- spec.taper(lynx, .05) 

All the values in lynx.taper are smaller than the corresponding value in
lynx. In lynx.taper.5, five percent of the values on each end are tapered.

21.6 LINEAR FILTERS
The most important and widely used type of filter (referred to as a digital
filter by engineers) is a linear time-invariant filter; that is, a filter in which the
relationship between the input series xt and the filtered output series is
described by a constant coefficient linear difference equation. The class of
linear time invariant (digital) filters has two primary types:

1. Convolution filters, which are usually called finite-impulse response
(FIR) filters in the engineering literature, and moving average (MA)
filters in the statistical literature.

2. Recursive filters, which are usually referred to as infinite-impulse
response (IIR) filters in the engineering literature, and are called
autoregressive (AR) filters in the statistics literature.

Convolution Filters If xt is the original series and  a = (a0, …, aq) is the set of filter coefficients,
then the filtered series yt is related to the original series xt by the convolution
equation.

We note that the filter is a “causal” in that each yt is formed as a linear
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21. Analyzing Time Series
combination of present and past xt’s, namely, xt, xt-1, ... , xt-q. If one is dealing

with a spatial series rather than a time series, or one is dealing with a time
series in an “off-line” mode as opposed to a real-time application (as is usually
the case for users of S-PLUS), then one can use the non-causal symmetric form
of convolution filter

where the filter coefficients are now a-q/2, a-q/2 + 1, …, a0, a1, …, aq/2 with q

an even integer. Usually in this case the aj are symmetric; that is, a-j = aj, for

j = 1,..., q/2.

Recursive Filters. A recursive filter uses an autoregressive-type recursion to transform the series.
If xt is the original series, and a = (a0, …, aq) are the coefficients, then the
filtered series yt is obtained by the recursion.

Examples of Simple 
Use

Here are two examples using convolution filters: 

> flynx <- filter(log(lynx), rep(.2,5)) 
> ts.plot(log(lynx), flynx) 
> gaussfilt <- exp(-((-15:15)^2/7)) 
> gaussfilt <- gaussfilt/sum(gaussfilt) 
> gflynx <- filter(log(lynx), gaussfilt) 
> ts.plot(log(lynx), gflynx) 

The resulting plots are shown in figures 21.8 and 21.9] .

The flynx structure is a simple equal weight moving average of the
logarithm of the lynx data, while gflynx is filtered with a Gaussian filter.

Here is an an example using a recursive filter: 

> set.seed(14) # set the seed to reproduce this example 
> ar.sim <- filter(rnorm(500),c(.5,-.3, .35),"r",
+ init=rnorm(3)) 
> ar.sim <- ar.sim[101:500] 
> ts.plot(ar.sim,main="AR(3) simulation") 
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Linear Filters
Figure 21.8:  Moving average of the lynx data.

Figure 21.9:  Gaussian filtering of the lynx data.
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21. Analyzing Time Series
The above example is a simulation of an AR(3) process. The first part of the
simulation is removed to more closely approximate a stationary process. The
resulting plot is shown in figure 21.10 .

Complex 
Demodulation 
and Least 
Squares Low-
Pass Filtering

Complex demodulation is a technique for analyzing a time series which does
not assume stationarity. Inherent in the technique is the use of a low-pass
filter. Hence these two topics are presented together. The function demod can
be used not only to perform complex demodulation of a time series but also
to generate a least squares low-pass filter with specific qualities.

Complex 
Demodulation.

Suppose that a time series xt satisfies

where Rt and ft are smooth processes (that is, they vary slowly over time) and
zt is a process without a component at frequency l. Rt is the amplitude at
time t of the periodic component with frequency l, and ft is the phase at
time t of this component.

Figure 21.10:  Simulated autoregression.
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Linear Filters
Hence the model is of a series with an oscillation at some given frequency l
that changes slowly over time.

Equation 21.65 may be rewritten using complex numbers.

Now the series is transformed into 

A smooth component of yt will yield estimates of Rt and ft. The problem is
to extract this component.

Least Squares Low-
Pass Filtering

An ideal low-pass filter with cutoff frequency fc has transfer function

That is, all frequencies less than fc are left unchanged while no frequencies
higher than fc are allowed to pass through. Such an ideal filter does not exist,
but it can be approximated arbitrarily well by using a sufficiently complex
filter. A common approach is to design a fixed length filter using the least
squares approximation method. The approximation will get better the longer
the filter length. See Bloomfield (1976) for details. 

Examples of Simple 
Use

In the commands below, the lynx data are demodulated at the peak
frequency of the raw periodogram. The phase and amplitude of the
demodulation are plotted separately.

> lynx.sp <- spectrum(log(lynx))
> lynx.pk <- lynx.sp$freq[lynx.sp$spec==max(lynx.sp$spec)]
> lynx.dem <- demod(log(lynx), lynx.pk, .05, .10)
> ts.plot(lynx.dem$phase, xlab="Time", ylab="Phase")
> ts.plot(lynx.dem$amp, xlab="Time", ylab="Amplitude")

Figure 21.11 shows the phase estimate of demodulation of the lynx data,
while figure 21.12 shows the amplitude estimate of demodulation.

A method for obtaining a low-pass filter of length 50 with cutoff frequency
0.08 when the data are sampled at intervals of one time unit is shown below. 
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21. Analyzing Time Series
> filt50 <- demod(rnorm(200), .1, .08-1/49, 
+ .08+1/49)$filter 

Figure 21.11:  Phase estimate in the demodulation of the lynx data.

Figure 21.12:  Amplitude estimate in the demodulation of the lynx data.
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Robust Methods
21.7 ROBUST METHODS
Outliers in time series typically cause bias and an increase in the variability of
conventional Gaussian maximum likelihood or least squares type estimates.
Furthermore, unacceptably large biases may result even in large sample size
situations when the fraction of outliers is not negligibly small. This problem
occurs in particular for both the Yule-Walker and Burg methods of fitting
autoregressions.
As a simple example, consider the Yule-Walker estimate of the first-order

autoregression parameter  (which is also the lag 1 autocorrelation):

.

Suppose that  is an outlier for some given time t0, say = j, with |j|

large. Then  will be “small,” and in fact,  as , as is easily
verified.

The robust procedures described in this section are designed to minimize the
increased bias and variability due to outliers, either in isolation or in patches.
We shall describe four functions, ar.gm, acm.filt, acm.ave, and
acm.smo.

Typically, ar.gm and acm.ave will be used in conjunction. The ar.gm
function provides initial robust autoregression parameter estimates which are
used by the robust “smoother” algorithm acm.ave. The function acm.smo
is an alternative robust smoother, and both acm.ave and acm.smo use the
robust filter acm.filt as a basic building block.

We elaborate on our setup and terminology. Consider the general
replacement (RO) type outliers model

where xt is a pth-order autoregression, zt is a 0-1 process with probability 1-g
of being 1; that is, P(zt = 1) = 1-g, and wt is a “contamination” process. Here

g is the fraction of contamination. This general replacement model contains
the so-called additive outliers (AO) model

(21.69)

(21.70)
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21. Analyzing Time Series
as a special case where wt = xt +  with vt = 0 when zt = 0 and vt =  when

zt = 1. Although the methods described in this section work for the general
replacement (RO) type outliers model, it is sometimes convenient for
purposes of discussion to use the AO model. In doing so, we think in terms
of the vt having a contaminated normal distribution

,

where H is an arbitrary outlier-generating distribution. N(0, ) is the

“nominal” Gaussian distribution of the additive noise vt. In the context of

21.69 or 21.70, a filter  is an estimate of the unobservable

“signal” xt which depends on the present and past observations y1, …, yt at

time t. A smoother  is an estimate of xt which for each

time t = 1, …, n depends upon all the observations y1, …, yn. This is

common terminology in the engineering literature. Both filters and
smoothers often perform a “smoothing” operation in the sense that linear
filters or smoothers are a weighted linear combination of y1, …, yt and

y1, …, yn, respectively, which often act approximately like local weighted

means of the observations.

Robust filters and smoothers are nonlinear functions of the data which are
designed to give good estimates of xt in the presence of outliers generated by
the model 21.69 or 21.70.

Although acm.filt, acm.ave, and acm.smo are capable of robust filtering

and smoothing, respectively, for the case of  known and positive, neither

these functions nor ar.gm are capable of estimating  from the data.

(Estimation of  along with the autoregression parameters for xt is a more

difficult problem which we will hopefully address in future releases of

S-PLUS.) Thus, we shall for the most part assume that = 0. This

corresponds to the frequently occurring situation where the autoregression xt

is observed perfectly a large fraction 1 - g of the time and observed with
additive outliers a fraction g of the time.

In the case where = 0, the values of xt are observed perfectly a fraction

1 - g of the time (that is, when zt = 0 in 21.69 or when vt = 0 in 21.70) but
are unobservable a fraction g of the time. For this case, we replace the terms
robust filter and robust smoother by robust filter-cleaner and robust smoother-
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Robust Methods
cleaner, respectively. We often shorten these terms to simply filter-cleaner and
smoother-cleaner.

A well-designed filter-cleaner has the following intuitively desirable property:
For times at which yt = xt by virtue of vt = 0 (or zt = 0) we will have = yt.

This will occur a large fraction 1 - g of the time. For times at which yt is a

gross outlier by virtue of vt having a large magnitude,  will be a pure

prediction based on the previous (filter) cleaned values , …, . A well

designed smoother-cleaner behaves similarly except that at the time of

occurrence of gross outliers,  is a pure interpolation based on all the other

(smoother) cleaned data , …, , , …, .

In order to use a robust filter cleaner or smoother cleaner for autoregression
models

we must specify the unknown parameters f1, f2, …, fp, and se, where se is

the scale parameter for the distribution Fe for the  innovations et. In the case

where Fe = N(0, ), we have = .

Since we seldom know the parameters f1, f2, …, fp, or se, we must

estimate them robustly from the data. This may be done using ar.gm which
is a so-called generalized M-estimate or GM estimate (or bounded influence
autoregression estimate) which is described in section on Generalized M-
Estimates for Autoregression. The GM estimate produces robust parameter

estimates , and  which may be used in any one of the robust

filter or smoother functions acm.ave, acm.filt, and acm.smo.

Typically, one will use least squares autoregression model fitting (via ar.yw

or ar.burg) to produce improved parameter estimates , .
These can in turn be used to run acm.ave again to obtain improved
smoother-cleaned values and further improved least squares estimates of these
autoregression parameters. Although one could iterate this procedure several
times, we recommend using just one complete iteration of this form, which

produces a second set of improved values , , .

(Because of the strongly nonlinear nature of acm.ave, further iteration can
lead to poor solutions.)

(21.71)
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21. Analyzing Time Series
Generalized M-
Estimates for 
Autoregression

Generalized M-estimates (GM estimates) ,  of autoregression parameters

fT = (f1, f2, …, fp) and innovations scale se are obtained by solving the
equations

where the observed time series is y1, y2, …, yn, = (yt, yt-1, …, yt-p+1), x is

a bounded and continuous function, and W(yt), wt are nonnegative data-

dependent weight functions. As we shall see below, wt depends on  as well.
We shall focus our description on 21.72, details concerning 21.73 being
available in Martin (1980).

The equation 21.72 provides a linear weighted least squares estimate, linear
in the case where the “big” weights W(yt) and the “little” weights wt are
replaced by fixed weights; that is, weights independent of both the data yt

and the estimate . Because the wt (but not W(yt)) depend upon , the
equations 21.72 are nonlinear. They are solved by an iterative weighted least
squares method:

where iter is the desired number of iterations, starting with the least squares

estimate . The equation 21.73 is also iterated, yielding estimate

\widehat  at iteration j.

The big weights W(yt) are constructed so that W(yt)yt is bounded and
continuous, and the little weights wt are constructed so that wt ? (yt+1 -

) is bounded and continuous. This achieves the basic requirement for

robustness that the summands of the estimating equation 21.72 be bounded

(21.72)

(21.73)

(21.74)
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Robust Methods
and continuous. Specifically, the weights  are obtained from a psi-function

cc, with tuning constant c, as follows:

.

Two types of psi-functions are used, namely Huber’s (Huber (1964)) favorite
psi:

 

and Tukey’s bisquare functions (see Mosteller and Tukey, (1977)):

The separate tuning constants chr and cbr for the c function applied to
residuals are adjusted to obtain a compromise between high efficiency when
the data are actually Gaussian, and robustness towards outliers.

The “big” weights W(yt) are also derived from a psi function of either the
Huber or Tukey type. As a default, ar.gm uses the Tukey type psi-function.
Details concerning the formation of the weights W(yt) may be found in
Martin (1980).

The main ideas behind the choice of big weights and little weights is as
follows. The use of the default choice of basing the big weights W(yt) on the
Tukey bisquare is that when yt is not too large, W(yt) will be close to one and
therefore have little effect, but when yt is “very large” (that is, when yt is a
gross outlier in the vector sense), W(yt) will be zero and yt will have no

influence on the estimate  .

Similar comments apply when wt is based on the Tukey bisquare. When the

residual rt = (yt+1 - ) is not too large, wt will be close to one, whereas

when |rt| is “very large;” for example, when yt+1 is a gross outlier, wt will be

zero.

The only difficulty is that when wt is based on the Tukey bisquare cB,cbr, the

equations 21.72 have multiple solutions and starting the iteration 21.74 with
least squares might lead to a poor solution. This difficulty is avoided when wt
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21. Analyzing Time Series
is based on the Huber psi-function cH,chr, since then 21.72 has an essentially

unique solution. However, basing wt on cH,chr does not result in as much

robustness toward large outliers as does basing wt on cB,cbr. Thus the strategy

adopted is to iterate 21.74 a number of times iterh using wt based on the
Huber psi-function, followed by a number of iterations iterb using wt based
on the Tukey psi-function. 

Examples of 
Simples Use 

> robar <- ar.gm(bicoal.tons, 2) 

Robust 
Filtering

First consider the special case where xt in 21.70 is an AR(1) process with
known parameter f. In this case the robust filtering algorithm is given by

where st is a measure of scale for the observation prediction residuals

rt = yt - f . The quantity st is computed using an auxiliary data-
dependent recursion. (See Martin (1981) for details). The psi-function we
use is the Hampel 2-part redescending type:

The robust filter has the property that if yt is a gross outlier large enough that

the scaled residual (yt - f )/Rt is larger in absolute value than b, then 

is a pure prediction based on the previous robust filter value: = f .

Now consider the case where xt is a pth order autoregression. In this case, xt

may be represented in state space form

where = (et, 0, …, 0) and = (xt, xt-1, ..., xt-p+1) are p-dimensional

vectors, and
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Robust Methods
is the so-called state transition matrix. In this case the robust filter value of
time t is

namely the first component of the vector filtered value  obtained from the
recursion

where  is obtained from an auxiliary data-dependent recursion (see Martin

and Thomson (1982), for details), and

is the first component of the vector one-step-ahead prediction .

In the usual case where we can use acm.filt as a filter-cleaner by setting s0

(= s0 below) equal to zero, it turns out that

.

Then it is easy to check that when the Hampel two-part psi-function CHA,a,b

is used and yt is a “good” datapoint by virtue of (yt - )/st being less than

a in magnitude, then = yt, so yt is not altered if it is “good”. This will
usually be the case for most of the data points when acm.filt is used in the
filter-cleaner mode. 

Examples of Simple 
Use 

> gm <- ar.gm(bicoal.tons, 3) 
> bicoal.filt <- acm.filt(bicoal.tons, gm) 

Two-Filter 
Robust 
Smoother

The robust smoother acm.ave is constructed using two acm.filt robust

filters, one “forward” filter  going forward in time over the data and one

“backward” filter  going backward in time over the data.
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t 1––

s
--------------------- 

 +=

m̃t

ŷt
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21. Analyzing Time Series
Let  denote the backward one-step-ahead predictor of xt given the data

yt+1, …, yn. Let  denote conditional mean squared error, conditioned on

y1, …, yt, for filtering for the forward filter (this is computed in acm.filt).

And let  be the conditional mean-squared error, conditioned on

yt+1, …, yn, for predicting xt for the backward filter (this is also computed in

acm.filt). Then the robust smoother  is obtained by confining  and

 in the natural Bayesian way

.

This smoother has the following characteristics when used as a smoother-
cleaner by setting s0 = s0 = 0; “Good” data points yt are left unaltered, while

gross outliers yt are replaced by interpolates based on the cleaner data

, …, , , …, .

Examples of Simple 
Use 

> gm <- ar.gm(bicoal.tons, 3) 
> bicoal.smo <- acm.ave(bicoal.tons, gm) 

Alternative 
Robust 
Smoother

The alternative robust smoother acm.smo is an approximate conditional
mean type robust smoother. For details, see Martin (1979). 

Examples of Simple 
Use

> gm <- ar.gm(bicoal.tons, 3) 
> bicoal.smo <- acm.smo(bicoal.tons, gm) 

x̂t 1+ t,
-

pt
+

mt
-

x̂t
n x̂t

+

x̂t 1+ t,
-

x̂t
n mt

-xt
+ pt

+xt 1 t,+
-+

pt
+ mt

-+
---------------------------------------=

x̂1 x̂t 1– x̂t 1+ x̂n
622



References
21.8 REFERENCES
Ansley, C. F. (1979). An algorithm for the exact likelihood of a mixed
autoregressive-moving average process.  Biometrika   66: 59–65.
Bell, W. and Hillmer, S. (1987). Initializing the Kalman filter in the non-
stationary case. Research Report CENSUS/SRC/RR-87/33, Statistical
Research Division, Bureau of the Census, Washington, DC, 20233.

Bloomfield, P. (1976). Fourier Analysis of Time Series: An Introduction. Wiley,
New York.

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and
Control. Holden-Day, Oakland, CA.

Bruce, A. and Martin, R. D. (1989). Leave-k-out diagnostics for time series.
Journal of the Royal Statistical Society, Series B/  51:363–401

Burg, J. P. (1967). Maximum Entropy Spectral Analysis. Paper presented at
the 37th Annual International S. E. G. Meeting, Oklahoma City, OK.

Chatfield, C. (1984). The Analysis of Time Series: An Introduction, 3rd ed.
Chapman and Hall, London.

Dennis, J. E., Gay, D. M. and Welsch, R. E. (1980). An adaptive nonlinear
least-squares algorithm.  ACM Transaction Mathematical Software 7:348–383.

Harvey, A. C. and Pierse, A. G. (1984). Estimating missing observations in
economic time series.  Journal of the American Statistical Association 79:125–
131.

Haslett, J. and Raftery, A.E. (1989). Space-time modelling with long-
memory dependence: Assessing Ireland’s wind power resource (with
Discussion). Journal of the Royal Statistical Society, series C—Applied Statistics,
38:1–50.

Huber, P. J. (1964). Robust estimation of a location parameter. Annals of
Mathematical Statistics, 35:73–101.

James, D. A., and Pregibon, D. (1992). Chronological Objects in S. AT&T
Technical Report. AT&T Bell Laboratories, Muray Hill, NJ 07974.

Jones, R. H. (1980). Maximum likelihood fitting of ARIMA models to time
series with missing observations.  Technometrics  22:389–395.

Kohn, R. and Ansley, C. F. (1985). Efficient estimation and prediction in
time series regression models.  Biometrika, 72:694–697.

Kohn, R. and Ansley, C. F. (1986). Estimation, prediction, and interpolation
for ARIMA models with missing data. Journal of the American Statistical
Association, 81:751–761.

Mandelbrot, B.B. (1977). Fractals: Form, Chance and Dimension. Freeman,
623



21. Analyzing Time Series
San Francisco.

Martin, R. D. (1979). Approximate conditional mean type smoothers and
interpolators. In Smoothing Techniques for Curve Estimation, pp. 117–143. T.
Gasser and M. Rosenblatt, eds. Springer Verlag, Berlin.

Martin, R. D. (1980). Robust estimation of autoregressive models. In
Directions in Time Series, pp. 228–254. D. R. Brillinger and G. C. Tiao, eds.
Institute of Mathematical Statistics, Hayward, CA.

Martin, R. D. (1981). Robust methods for time series, pp. 683–759. In
Applied Time Series Analysis. D. F. Findley, ed. Academic Press, New York.

Martin, R. D. and Thomson, D. J. (1982). Robust resistant spectrum
estimates.  Proceedings of the IEEE, 70:1097–1115.

Mosteller, F. and Tukey, J. W. (1977). Data Analysis and Regression. Addison-
Wesley, Reading, MA.

Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press,
London.

Shumway, R. H. (1988). Applied Statistical Time Series Analysis. Prentice
Hall, Englewood Cliffs, NJ.

Singleton, R. C. (1969). An algorithm for computing the mixed radix fast
Fourier transform. IEEE Transactions on Audio and Electronics, Au-17:93–
103.

Whittle, P. (1983) Prediction and Regulation by Linear Least-Square Methods,
2nd ed. University of Minnesota Press, Minneapolis. 
624



S-PLUS functions are available for modeling survival times 
using parametric and nonparametric approaches.

OVERVIEW OF SURVIVAL 
ANALYSIS 22
22.1 Overview of S-PLUS Functions 627

 Survival Curve Estimates 629

 Comparing Kaplan-Meier Survival Curves 629

 Cox Proportional Hazards Models 630

 Parametric Survival Models 631

 Predicted Survival 631

 Utility Functions 631

22.2 Missing Values 633

22.3 References 634

625



22. Overview of Survival Analysis

626



OVERVIEW OF SURVIVAL ANALYSIS 22
The term survival analysis originated in the study and analysis of times to
death (that is, survival times) for medical patients diagnosed with some fatal
disease. Survival analysis is now a well-developed field of statistical research
and methodology pertaining to modeling and testing hypotheses of failure
time data for humans as well as animals, machines, electronic equipment,
automobile components, etc. Hence, the methodology is far more general
than the analysis of survival times. In fact, fields of study other than medicine
have given other names to the identical methodology discussed here. This
chapter might just a well have been called any one of the following:

• Analysis of Failure Time Data

• Reliability Analysis

• Event History Analysis

However, because of the focus of most of the examples and because of the
history of the development of this material we call it Survival Analysis. This
helps to simplify the presentation. In examples, we will simply refer to
patients (or people or subjects) and their survival times. You can substitute the
appropriate terminology for your field of study as you read if you wish. 

Modeling of survival times is based on two distinct approaches—parametric
and nonparametric. The material in this and the following chapters covers
both approaches. The addition of parametric survival models extends the
functionality of earlier versions of S-PLUS to include methods that predate
the nonparametric methods but are still widely used in industrial and
manufacturing settings where estimation of component and system reliability
may require extrapolation from accelerated tests. The nonparametric
methods, widely used in clinical trials, include Kaplan-Meier estimates of
survival, Cox proportional hazards regression models and extensions due to
Andersen and Gill (1982). Miller (1981) and Kalbfleisch and Prentice (1980)
are excellent references.

22.1 OVERVIEW OF S-PLUS FUNCTIONS
Survival analysis in S-PLUS Version 3.3 is based on the survival4.11 StatLib
entry produced by Terry Therneau of the Mayo Clinic. It differs only slightly
from the version 4.1 code found in StatLib. The expected survival routines
have been modified to use "dates" objects for dates, and there have been

1. Copyright © 1994, Mayo Foundation for Medical Education and Re-
search. All Rights Reserved.
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22. Overview of Survival Analysis
some minor bug fixes and enhancements. Terry Therneau has been an
important contributor to this documentation of survival analysis in S-PLUS.
A companion document which discusses more fully some of the topics
presented here can be retrieved from StatLib as survival4.doc.
Table 22.1 displays the relative differences between the survival analysis

functions in S-PLUS Version 3.3, or higher, compared to Version 3.2. Survival
analysis in Version 3.3 is a considerable enhancement to that in Version 3.2.
New functionality includes parametric survival models, formula-based model
specification, a test for proportional hazards in a Cox model, and predicted
survival based on an age and sex matched cohort from a known population.
All of the Version 3.2 functionality is maintained in Version 3.3 but the
function names have changed. In somes cases functionality has been
combined into fewer S-PLUS functions. For example, the functionality of
coxreg and agreg in Version 3.2 is now contained in the single function
coxph. The old survival functions are now deprecated. They will be removed
from S-PLUS in some future version after 3.3.

In this section we present a brief overview of the functions used for doing
survival analysis in S-PLUS. This section provides an overview of the type of

Table 22.1: Survival Analysis functions in S-PLUS Version 3.3, or higher, compared to 
S-PLUS Version 3.2 

Function Description Version 3.3 or higher Version 3.2

Parametric regression models survreg None

Cox proportional hazards models coxph coxreg

Andersen-Gill extension toCox models coxph agreg

Formula representation for failure/status Surv None

Fit a survival curve survfit surv.fit

Compare survival curves survdiff surv.diff

Compute a test for proportional hazards cox.zph None

Plot a survival curve plot.survfit plot.surv.fit

Plot method for Cox model plot.coxph None

Predicted survival for age-sex matched cohort survexp None

Handling of missing values naresid, 
naprint

None
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Overview of S-PLUS Functions
computations, model fitting, and graphical displays available for doing
survival analysis in S-PLUS. More in depth information is contained in the
chapters that follow.

Survival Curve 
Estimates

The function survfit fits a Kaplan-Meier or a Fleming-Harrington survival
curve or computes the predicted survival curve for a Cox proportional
hazards model.

Examples • Simple Kaplan-Meier estimate 

survfit(Surv(time, status), data = leukemia) 

• Print the survival curve estimate, standard errors, and confidence
intervals. 

summary(survfit(Surv(time, status), data = leukemia)) 

• Fleming-Harrington estimate 

survfit(Surv(time, status), data = leukemia, type =
+ "fleming-harrington") 

• Kaplan-Meier estimate with two groups 

survfit(Surv(time, status) ~ group, data = leukemia) 

• Predicted survival at the average predictor for a Cox model 

survfit(coxph(Surv(futime, fustat) ~ age, data =ovarian))

• Predicted survival at other than the average predictor for a Cox
model. 

survfit(coxph(Surv(futime, fustat) ~ age, data =
+ ovarian), newdata = data.frame(age = 70)) 

Important 
Options

Kaplan-Meier or Fleming-Harrington estimate of survival.

Greenwood or Tsiatis variance estimate.

Comparing 
Kaplan-Meier 
Survival Curves

The function survdiff computes one and k-sample versions of the

Fleming-Harrington  family of tests. This includes the log-rank and
Gehan-Wilcoxon tests as special cases.

Examples • Test for the presence of a separate baseline survival for each sex. 

survdiff(Surv(time, status) ~ sex, data = lung) 

• One-sample test 

G
ρ
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22. Overview of Survival Analysis
pred <- survexp(time ~ ratetable(sex = sex, year = 1970,
+ age = age * 365.25), data = lung, cohort = F)
survdiff(Surv(time, status) ~ offset(pred), data = lung) 

Cox 
Proportional 
Hazards 
Models

The function coxph fits a Cox proportional hazards model.

Examples • Standard Cox model 

coxph(Surv(time, status) ~ group, data = leukemia) 

• Time dependent data. 

coxph(Surv(start, stop, event) ~ (age + surgery) *
+ transplant, data = heart) 

• Stratified model, with a separate baseline per institution, and
institution specific effects for sex. 

coxph(Surv(time, status) ~ strata(sex) * age, data=lung) 

• Force in a known term, age, without estimating a coefficient for it. 

coxph(Surv(time, status) ~ offset(age) + sex, data=lung) 

Important 
Options

Breslow, Efron, or exact partial likelihood methods for handling ties.

cox.zph computes a test of proportional hazards for the fitted Cox model,
and estimates of time-dependent coefficients suitable for graphing.

Examples • Compute proportional hazards test for fitted model. 

cox.zph(coxph(Surv(time, status) ~ age + sex + ph.ecog,
+ data = lung, na.action = na.omit)) 

• Display the estimated coefficients as a function of time. 

plot(cox.zph(coxph(Surv(time, status) ~ age + sex +
+ ph.ecog, data = lung, na.action = na.omit))) 

Important 
Option

Global test in addition to the tests for each covariate.
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Parametric 
Survival 
Models

The function survreg fits a parametric survival model.

Examples • Fit a Weibull distribution. The default link function is log. 

survreg(Surv(days, event) ~ voltage, data = capacitor) 

• Fit an extreme value distribution. 

survreg(Surv(days, event) ~ voltage, link = "identity",
+ data = capacitor) 

• Fit a log-logistic distribution. 

survreg(Surv(days, event) ~ voltage, dist = "logistic",
+ data = capacitor) 

Important 
Options

Distributions: smallest extreme value, Weibull, logistic, log-logistic, normal ,
log-normal, exponential, or Rayleigh.

Fix the scale parameter.

Predicted 
Survival

The function survexp predicts survival for an age and sex matched cohort
of subjects given a baseline matrix of known hazard rates for the population.
Most often these are U.S. mortality tables. Also, a prior Cox model can act as
the rate table.

Examples • Average conditional cohort survival, defaults to U.S. white. 

survexp(time ~ ratetable(sex = sex, year = 1970, age = age
+ * 365.25), conditional = T, data = lung) 

• Data to enter into a one sample test for comparing the given group
to a known population. 

pred <- survexp(time ~ ratetable(sex = sex, year = 1970,
+ age = age * 365.25), data = lung, cohort = F) 

Important 
Options

Matrix of known hazards: U.S., Arizona, Florida, and Minnesota are
included.

Estimates of "individual" or "cohort" expected survival.

Utility 
Functions

Surv is a packaging function; like I and C it doesn’t transform its argument.
This is used for the left hand side of all formulas used by the survival model
fitting functions.
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22. Overview of Survival Analysis
Examples • Right censored data with status = 1 for death and status = 0
for censored. 

Surv(time, status) 

• Right censored data, a value of 3 corresponds to a death 

Surv(time, status == 3) 

• Counting process data, as in the agreg function of Version 3.2. 

Surv(start, stop, event) 

• Left censored data 

Surv(time, status, type = "left") 

naresid, naprint provide a new way for handling missing values.

• Can specify a global NA action through the options list. For example: 

options(na.action = "na.omit") 

• The print methods label the output of the action taken. For
example, when na.omit is the action a message similar to the
following is printed with the fit object: 

"14 observations deleted due to missing". 

• NAs are inserted in prediction and residual vectors so they match the
length of the original data. This makes, for example, the plotting of
residuals versus the original variables easier.

strata marks a variable or group of variables as strata.

• If there are multiple variables, each unique combination forms a
stratum.

Examples These examples use the variables in the ovarian data frame.

• Specify rx as a stratification variable. 

strata(rx) 

• Specify rx and residual.dz as stratification variables. 

strata(rx, residual.dz) 

• Make NA a separate group rather than omitting NA. 

strata(rx, na.group=T) 

• cluster identifies correlated groups of observations, and is used on
the right-hand side of a formula. For example: 
cluster(group) 
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Missing Values
22.2 MISSING VALUES
The handling of missing values (NA) for the survival analysis functions has
been enriched as outlined in the Utility Functions section of section 22.1,
Overview of S-PLUS Functions. The main improvements follow:

1. You can specify a global default function for handling missing values.
This frees you from having to do it in the call to the model fitting
function. For example, to set the global missing value action to
delete missing values row-wise you do 

> options(na.action = "na.omit") 

2. A brief report of the action taken is included when printing a fitted
model. For example, if na.omit is the action, a message something
like the following will be included when the fit object is printed: 

"14 observations deleted due to missing". 

3. When residuals and predictions are computed, NAs are appropriately
inserted so that the resulting vectors are the same length as the
original variables. This allows you to plot, for example, the residuals
versus the predictors without having to worry about the residual
vector being a different length than the original data. Because of this
feature you can do the following: 

fit <- coxph(Surv(time, status) ~ age + sex + ph.ecog
+ ph.karno, data = lung, na.action =na.omit)

plot(lung$age, residuals(fit)) 

 Warning Specifying a global default for handling NAs through the options list effects all
the model fitting functions that call model.frame.default (which is most
of them). The tree function doesn’t, so it is immune to the global setting.
However, virtually all the rest of the model fitting functions do call
model.frame.default, so the global setting will be in effect for those
functions. It is known that there are some side effects (errors produced) when
fitting generalized additive models (the gam function). Because the global
action for handling NAs has not been thoroughly tested for all the fitting
functions, it is recommended that you provide the NA action function (e.g.,
na.omit) as the na.action argument to the fitting function rather than
rely on the global action.
Additionally, if you fit a survival model relying on a global NA action and use
the fitted model in later computations, errors and/or incorrect values can
result if the global NA action is different than at the time of fitting the model.
If you expect to change the global NA action, it is safer to provide the NA
action function as the na.action argument to the fitting function rather
than as a global action.
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This discussion of estimating the survival distribution, 
S(T), will familiarize you with the methods.
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ESTIMATING SURVIVAL 23
A survival function defined over time t is, by definition, the probability that a
person survives at least to time t. More formally, let T be a positive random
variable with distribution function F(t) and density f(t). The survival
function S(t) is

S(t)= 1 - F(t) = P{T>t},

and the hazard rate or hazard function   is

.

The hazard rate has the interpretation  = P{patient dies in the next small

unit of time, , given they have survived to time t}. A constant hazard
indicates that, over each interval, a constant proportion of surviving subjects
is expected to die. A familiar example is radioactive decay, where the “death”
of a molecule corresponds to its decay. Constant hazard may also be
associated with some fatal diseases, such as metastatic cancer.

The cumulative hazard   is defined as

.

What distinguishes survival analysis from most other statistical methods is
the presence of censoring. In a study of survival following two different
treatment regimens, for example, analysis of the trial typically occurs well
before all of the patients have died. For those still alive at the time of analysis,
the true survival time is known only to be greater than the time observed to
date. Such an observation is said to be censored. Survival data is presented to
the computer program as a pair , where  is the observed survival

time and  if the observation is censored,  if a death is

observed. Survival data is often presented using a + for the censored
observation, so that a set of times might be 8, 11+, 14, 22, 36+, etc.

Let  denote the m distinct death times. Let  be an

indicator function which is 1 if person i is still at risk at time s and 0

otherwise, that is, . Then the number at risk at time s is

. We can similarly define d(s) as the number of deaths

occurring at time s.

λ t( )

λ t( )
f t( )
S t( )
--------=

λ t( )

∆t

Λ t( )

Λ t( ) λ t( )dt
0

t∫ S t( )log–= =

ti δi,( ) ti

δ i 0= δi 1=

t∗1 t∗2 … t∗m< < < Yi s( )

Yi s( ) 1 if s t i
∗≤=

r s( ) Yi s( )
1

n∑=
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23. Estimating Survival
In order to discuss some of the more recent methods in survival analysis, it is
helpful to recast the problem as a counting process, a notation found in
Andersen and Gill (1982) and others. A good reference is Fleming and
Harrington (1981). Let  be a counting process associated with the ith

subject, so  increases by 1 at each observed event (for example, heart

attack). In this notation a subject can have multiple events.  is an

indicator function as before, but now can have multiple transitions from 0
(zero) to 1 (one), with a subject entering and leaving the risk set. 

23.1 KAPLAN-MEIER ESTIMATOR
The most common estimate of the survival distribution, the Kaplan-Meier
(KM) estimate, is a product of survival probabilities

,

where r and d are the number at risk and the number of deaths, respectively,
as defined above. Graphically, the Kaplan-Meier survival curve appears as a
step function with a drop at each death. Censoring times are often marked on
the plot as “+” symbols.

Example: AML 
Study

The data presented in table 23.1 are preliminary results from a clinical trial to
evaluate the efficacy of maintenance chemotherapy for acute myelogenous
leukemia (AML). The study was conducted by Embury et al. (1977) at
Stanford University. After reaching a status of remission through treatment
by chemotherapy, the patients who entered the study were assigned randomly
to two groups. The first group received maintenance chemotherapy; the
second, or control, group did not. The objective of the trial was to see if
maintenance chemotherapy prolonged the time until relapse.

The Kaplan-Meier estimator of survival for the maintained group is
computed by hand as follows:

Ni t( )

Ni

Yi t( )

S
ˆ

KM t( )
r t i( ) d ti( )–

r t i( )
---------------------------

ti t<
∏=

Table 23.1: Data for AML maintenance study. A + indicates a censored value.

Group Length of complete remission (in weeks)

Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+

Non-maintained 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45
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Kaplan-Meier Estimator
.

In S-PLUS , the survfit function produces Kaplan-Meier survival curve
estimates by default. Suppose the data displayed in table 23.1 is in a data
frame named leukemia, with variables

time time to relapse

status indicator whether the observed time was a relapse (1) or
censored (0).

group treatment group indicator taking values Maintained
and Nonmaintained.

You compute the KM estimate as follows: 

> leukemia.surv <- survfit(Surv(time,status) ~ group,
 + leukemia) 
> summary(leukemia.surv)
Call: survfit(formula = Surv(time, status) ~ group, data = 
leukemia)

               group=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   9     11       1    0.909  0.0867       0.7541        1.000
  13     10       1    0.818  0.1163       0.6192        1.000
  18      8       1    0.716  0.1397       0.4884        1.000

S 0( ) 1,=

S 9( ) S 0( ) 10
11
------× 0.91,= =

S 13( ) S 9( ) 9
10
------× 0.82,= =

S 18( ) S 13( ) 7
8
---× 0.72,= =

S 23( ) S 18( ) 6
7
---× 0.61,= =

S 28( ) S 23( ) 6
6
---× 0.61,= =

S 31( ) S 23( ) 4
5
---× 0.49,= =

S 34( ) S 31( ) 3
4
---× 0.37,= =

S 48( ) S 34( ) 1
2
---× 0.18= =
639



23. Estimating Survival
  23      7       1    0.614  0.1526       0.3769        0.999
  31      5       1    0.491  0.1642       0.2549        0.946
  34      4       1    0.368  0.1627       0.1549        0.875
  48      2       1    0.184  0.1535       0.0359        0.944

               group=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   5     12       2   0.8333  0.1076       0.6470        1.000
   8     10       2   0.6667  0.1361       0.4468        0.995
  12      8       1   0.5833  0.1423       0.3616        0.941
  23      6       1   0.4861  0.1481       0.2675        0.883
  27      5       1   0.3889  0.1470       0.1854        0.816
  30      4       1   0.2917  0.1387       0.1148        0.741
  33      3       1   0.1944  0.1219       0.0569        0.664
  43      2       1   0.0972  0.0919       0.0153        0.620
  45      1       1   0.0000      NA           NA           NA

The survfit function returns an object of class "survfit". The function
produces the tabled output including columns for the survival estimates, the
standard errors of the estimates, and confidence bounds for the estimates.
The NAs on the last line result from not being able to estimate a standard
error and, consequently, a confidence interval for zero survival on a log
survival scale.

23.2 NELSON AND FLEMING-HARRINGTON ESTIMATORS
Another approach is to estimate , the cumulative hazard, using Nelson’s
estimate,  

,

or, using counting process notation,

.

The Nelson estimate is also a step function. It starts at zero and has a step of
size d(t)/r(t) at each death.

One problem with the Nelson estimate is that it is susceptible to ties in the
data. For example, assume that 3 subjects die at 3 nearby times t1, t2, t3, with
7 other subjects also at risk. Then the total increment in the Nelson estimate
will be 1/10 + 1/9 + 1/8. However, if time data were grouped such that the

Λ

Λ
ˆ

N t( )
d ti( )
r t i( )
-----------

ti t<
∑=

Λ
ˆ

N t( )
dNi s( )
r s( )

----------------
0

t

∫
i 1=

n

∑=
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Nelson and Fleming-Harrington Estimators
distinction between t1, t2, and t3 was lost, the increment would be the smaller
step 3/10. If there are a large number of ties this can introduce significant
bias. One solution is to employ a modified Nelson estimate that always uses
the larger increment, as suggested by Nelson and Fleming and Harrington
(1984). This is not an issue with the Kaplan-Meier estimate. With or without
ties the multiplicative step will be 7/10.

The relationship , which holds for any continuous
distribution, leads to the Fleming-Harrington (FH) [Fleming and
Harrington (1984)] estimate of survival:  

This estimate has natural connections to survival curves for a Cox model. For
sufficiently large sample sizes the FH and KM estimates will be arbitrarily
close to one another, but keep in mind that unless there is heavy censoring
the number at risk, r(t), is always small in the right hand tail of the estimated
curve.

Example: AML 
Study (cont.)

You produce the Fleming-Harrington estimate of survival for the data in
table 23.1 by specifying the type argument in the call to survfit. 

> summary(survfit(Surv(time, status) ~ group,
+ data = leukemia, type = "fleming-harrington"))

Call: survfit(formula = Surv(time, status) ~ group, data = 
leukemia, type = "fleming-harrington") 

               group=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   9     11       1    0.913  0.0871       0.7575        1.000
  13     10       1    0.826  0.1174       0.6253        1.000
  18      8       1    0.729  0.1422       0.4974        1.000
  23      7       1    0.632  0.1572       0.3882        1.000
  31      5       1    0.517  0.1731       0.2687        0.997
  34      4       1    0.403  0.1781       0.1695        0.958
  48      2       1    0.244  0.2038       0.0477        1.000

               group=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   5     12       2   0.8465   0.109       0.6572        1.000
   8     10       2   0.6930   0.141       0.4645        1.000
  12      8       1   0.6116   0.149       0.3791        0.987

(23.1)

Λ t( ) S t( )log–=

S
ˆ

FH tj( ) e
Λ
ˆ

N tj( )–
=
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23. Estimating Survival
  23      6       1   0.5177   0.158       0.2849        0.941
  27      5       1   0.4239   0.160       0.2021        0.889
  30      4       1   0.3301   0.157       0.1300        0.838
  33      3       1   0.2365   0.148       0.0692        0.808
  43      2       1   0.1435   0.136       0.0225        0.914
  45      1       1   0.0528     Inf       0.0000        1.000

You produce the usual Nelson estimate, similarly, by specifying type =
"fh". Specifying type = "fh2" produces a modified Nelson estimate. For
example, you produce the Fleming-Harrington and Nelson estimates more
simply as follows: 

# Fleming-Harrington 
> survfit(Surv(time, status) ~ group, data = leukemia,
+ type = "flem")

# Nelson Estimate 
> survfit(Surv(time, status) ~ group, data = leukemia,
+ type = "fh") 

23.3 VARIANCE ESTIMATION

Several estimates of the varaiance of  are possible. Since  can be
treated as a sum of independent increments, the variance is a cumulative sum
with terms of

Greenwood,

Tsiatis,

Klein.

See Klein (1991) for details. Using equation (23.1) and the simple Taylor

series approximation , the variance of the KM or FH
estimators is

Klein also considers two other forms for the variance of S, but concludes

• For computing the variance of  the Tsiatis formula is preferred.

(23.2)

Λ
ˆ

N Λ
ˆ

N

d t( )
r t( ) r t( ) d t( )–[ ]
---------------------------------------

d t( )
r

2
t( )

-----------

d t( ) r t( ) d t( )–[ ]
r

3
t( )

----------------------------------------

var log f var f f
2⁄≈

var S
ˆ

t( )( ) S
ˆ 2

t( )var Λ
ˆ

N t( )( ).=

Λ
ˆ

N
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Variance Estimation
• For computing the variance of , the Greenwood formula along
with  equation (23.2) is preferred.

Confidence intervals for S(t) can be computed on the plain (identity) scale,

on the cumulative hazard or log-survival scale,,

or on the log-hazard or log-log survival scale,,

where se refers to the standard error.

Confidence intervals based on equation (23.3) may give survival probabilities
that are greater than 1 or less than zero. Those based on equation (23.4) may
sometimes be greater than 1, but those based on equation (23.5) are always
between 0 and 1. For this reason many users prefer the log-hazard
formulation. Link (1984), (1986), however, suggests that confidence
intervals based on the cumulative-hazard scale have the best performance. All
three methods have been implemented in the survfit function and are
referred to as the "plain", "log", and "log-log" confidence types. By
default, the summary.survfit confidence intervals based on the log-
survival (or cumulative hazard) scale. Intervals on the two other scales may be
specified through the conf.type argument to survfit. Intervals on the
other scales are computed based on the following relationships: 

A further refinement to the confidence intervals is suggested by Dorey and
Korn (1987). When the tail of the survival curve contains much censoring
and few deaths, there will be one or more long flat segments. Confidence
intervals based strictly on equation (23.3), (23.4), or (23.5) are constant
across these intervals. Dorey and Korn point out that, as censored subjects are
removed from the sample, the effective sample size decreases, so the actual
reliability of the curve should also decrease. Their correction retains the
original upper confidence limit and a modified lower limit which agrees with
the standard limits at each death time but is based on the effective number at
risk  between death times.

S ± 1.96 se(S), (23.3)

(23.4)

(23.5)

S
ˆ

exp log S 1.96 seΛ( )±( )

exp exp– log log S–( ) 1.96 se log Λ( )±( )( )

se S( ) Sse Λ( )≅

se log Λ( ) 1
Λ
---- se Λ( )≅
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23. Estimating Survival
Three lower confidence limit methods (the conf.lower argument) are
implemented in survfit. The usual method (conf.lower = "usual")
uses, optionally, either the Greenwood or the Tsiatis formulation unaltered.

Peto’s method (conf.lower = "peto") assumes that

,

where r(t) is the number at risk, and . The Peto limit is known
to be conservative. The modified Peto limit (conf.lower = "modified")
chooses c such that the variance at each death time is equal to the usual
estimate but between death times the usual variance estimate is multiplied by
r*(t)/r(t) , where r(t) is the number at risk and r*(t)  is the number at risk at
the last jump in the curve (last death time). This is almost identical to Dorey
and Korn’s estimator and is the recommended procedure.

Example: AML 
Study (cont.)

Applying the methods of this section to the leukemia data, you can
compute the conservative lower confidence intervals of Peto for survival
based on the log-hazard scale as follows: 

> summary(survfit(Surv(time, status) ~ group,
+ data = leukemia,
+ conf.type = "log-log", conf.lower = "peto"))
Call: survfit(formula = Surv(time, status) ~ group, data =
 leukemia, conf.type = "log-log", conf.lower = "peto")

               group=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   9     11       1    0.909  0.0867       0.5390        0.987
  13     10       1    0.818  0.1163       0.4729        0.951
  18      8       1    0.716  0.1397       0.3645        0.899
  23      7       1    0.614  0.1526       0.2854        0.835
  31      5       1    0.491  0.1642       0.1802        0.753
  34      4       1    0.368  0.1627       0.1132        0.657
  48      2       1    0.184  0.1535       0.0288        0.525

               group=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   5     12       2   0.8333  0.1076       0.5235        0.956
   8     10       2   0.6667  0.1361       0.3753        0.860
  12      8       1   0.5833  0.1423       0.2906        0.801
  23      6       1   0.4861  0.1481       0.2024        0.730
  27      5       1   0.3889  0.1470       0.1421        0.650
  30      4       1   0.2917  0.1387       0.0901        0.561

var Λ
ˆ

N t( )( ) c r⁄ t( )=

c 1 S
ˆ

t( )–≡
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Mean and Median Survival
  33      3       1   0.1944  0.1219       0.0476        0.461
  43      2       1   0.0972  0.0919       0.0166        0.349
  45      1       1   0.0000      NA           NA           NA

23.4 MEAN AND MEDIAN SURVIVAL
For the Kaplan-Meier estimate, the estimated mean survival is undefined if
the last observation is censored. The procedure used by S-PLUS is to redefine
the estimate to be zero beyond the last observation. This gives an estimated
mean that is biased towards zero, but there are no compelling alternatives
that do better. With this definition, the mean is estimated as

,

where  is the Kaplan-Meier estimate and T is the maximum observed
follow-up time in the study. The variance of the mean is

,

where  is the total number of deaths up to time t,

and  is the number at risk at time t.

The sample median is defined as the first time at which . Upper
and lower confidence intervals for the median are defined in terms of the
confidence intervals for S: the upper confidence interval is the first time at

which the upper confidence interval for . This corresponds to
drawing a horizontal line at 0.5 on the graph of the survival curve, and using
intersections of this line with the curve and its upper and lower confidence
bands. In the event that the survival curve has a horizontal portion at exactly
0.5 (for example, an even number of subjects and no censoring before the
median) then the average time of that horizontal segment is used. This agrees
with the usual definition of the median for uncensored data when the sample
size is an even number. If neither confidence band for S(t) reaches 0.5, as in
the example which follows, then the corresponding confidence limit for the
median is unknown and is reported as an NA.
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23. Estimating Survival
Example: AML 
Study (cont.)

The mean, median, and confidence intervals for the median survival time are
part of the table produced by printing a "survfit" object. For the
leukemia data set these statistics are produced as follows: 

> leukemia.surv <- survfit(Surv(time, status) ~ group,
+ leukemia) 
> leukemia.surv
Call: survfit(formula = Surv(time, status) ~ group, data = 
leukemia)

                     n events mean se(mean) median 0.95LCL 0.95UCL
   group=Maintained 11      7 52.6    19.83     31      18      NA
group=Nonmaintained 12     11 22.7     4.18     23       8      NA

Printing the object returned by survfit produces a brief report of the
resulting fits; for each fit, the print method prints the number of subjects in
the cohort (n), the total number of events (events), as well as the mean, its
standard error (se(mean)), the median, and confidence intervals for the
median survival time (the last two columns).

23.5 COMPARISON OF SURVIVAL CURVES
Assume that we wish to compare p different groups with respect to their
survival distributions. One method is to form the  table at each death
time.

If there are no tied deaths, then d = 1 for each table. Treating this table as a
simple multinomial experiment with d events in N trials, the expected
number of deaths in each group is  with a standard multinomial

variance matrix V.

Treating each of the k unique death time tables as independent, we can sum
over the tables to obtain an observed and an expected number of deaths for

each group. This “O-E" vector has variance matrix . The argument

Groups: 1 2 ... p

Deaths d1 d2 dp d

Alive and at 
risk

a1 a2 ap a

Totals n1 n2 np N

p 2×

dni N⁄

Vk∑
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More on survfit
may be generalized by the inclusion of weights wk for each death time. The

overall weighted vector is then , where Ok is the top row of

table k, Ek is the expected, and the variance is . When wk = 1 this is

the Mantel-Haenszel or log-rank test, for wk = nk it is the Gehan-Wilcoxon
test, and for wk = SKM(tk) it is the Peto-Peto modification of the Wilcoxon
test.

The survdiff function implements a family of tests suggested by Fleming
and Harrington (1981) for comparing two or more survival curves. A single
parameter  controls the weights given to different survival times; 

yields the log-rank test and  the Peto-Wilcoxon. Other values give a

test that is intermediate to these two. The default value is .

The log rank test is most powerful for a proportional hazards alternative, that
is, when  for any two groups i and j, and some constant c

which is independent of time. This assumption is found to hold, at least
approximately, in many clinical trials. Other values for  produce tests more

sensitive to early differences in S (  > 0) or to later differences (  < 0).

Example: AML 
Study (cont.)

Returning to the leukemia data frame, compare the two treatment groups
using survdiff. The survdiff function takes a formula and a data frame
as its first two arguments. Recalling that  by default, the log-rank test
for difference between the maintained and non-maintained groups is
produced as follows: 

> survdiff(Surv(time, status) ~ group, leukemia)
                     N Observed Expected (O-E)^2/E
   group=Maintained 11        7   10.689     1.273
group=Nonmaintained 12       11    7.311     1.862

Chisq= 3.4 on 1 degrees of freedom, p= 0.06534 

Thus, there is mild evidence to suggest that the maintained group has better
survival than the non-maintained group.

23.6 MORE ON SURVFIT
The survfit function fits Kaplan-Meier or, optionally, Fleming-Harrington
survival curves. For example, 

wk Ok Ek–( )∑
wk

2
Vk∑

ρ ρ 0=

ρ 1=

ρ 0=

λ i t( ) λ j t( )⁄ cij=

ρ
ρ ρ

ρ 0=
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23. Estimating Survival
> sf <- survfit(Surv(futime, fustat) ~ rx + residual.dz,
+ ovarian) 
> sf

Call: survfit(Surv(futime, fustat) ~ rx + residual.dz,
data = ovarian) 

                    n events mean se(mean) median 0.95CI 0.95CI
rx=1, residual.dz=1 5      1  989      101     NA    638     NA
rx=1, residual.dz=2 8      6  430      131    298    156     NA
rx=2, residual.dz=1 6      2  943      161     NA    563     NA
rx=2, residual.dz=2 7      3  833      156     NA    464     NA

results in four Kaplan-Meier survival curves, indexed by the two levels of
treatment (rx) and the two levels of residual disease (residual.dz). The
right hand side of the formula is interpreted differently than it would be for
an ordinary linear or Cox model. The survfit function uses the + operator
to specify an interaction.

A summary of important options to survfit are:

weights case weights

type Type of fit—"kaplan-meier", "fleming-
harrington" or "fh2".

error Type of variance estimate—"greenwood" or
"tsiatis".

conf.int=0.95 Level for the two-sided confidence interval of
median survival.

conf.type="log" One of "none", "plain", "log", or "log-
log".

conf.lower One of "usual", "peto", or "modified".

The plot.survfit function plots survival curves returned by survfit.
For the AML data, you can plot survival curves, and add a title and legend by
doing 

> plot(leukemia.surv, xlab = "Survival Time in Weeks",
+ ylab = "Proportion Surviving", cex = 2, lty = 2:3) 
> title("AML Maintenance Study") 
> legend(c(75, 130), c(0.95, 0.85),
+ c("Maintenance", "No Maintenance"), lty = 2:3) 

Figure 23.1 displays the results of plotting the Kaplan-Meier estimates of
survival stratified by the maintenance grouping variable group. Some
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More on survfit
important optional arguments to plot.survfit are as follows:

conf.int Plot confidence intervals for the curves. Default
is TRUE for a single curve and FALSE for
multiple curves.

mark.time If logical, indicates whether to mark the curves at
censoring times. If a numeric vector, the curve is
marked at each time indicated.

mark = 3 A vector of characters or integers specifying
special symbols used to mark the curve. The
default value produces a + at the censored values.

cex = 1 The character size of the censor marks.

By default, confidence intervals are suppressed if there are multiple curves.
Marks are normally placed on the curve(s) at each censoring time. If there are
a large number of censored observations, this can make the plot too “busy”,
and the mark.time option would be used to specify the time values at which
curves are labeled.   

Figure 23.1:  Kaplan-Meier estimates of survival for the maintained
and non-maintained groups of the AML study.
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23. Estimating Survival
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THE COX PROPORTIONAL HAZARDS 
MODEL 24

The Cox proportional hazards model is the most commonly used regression
model for survival data. If Zi(t) is the vector of covariates for the ith
individual at time t, the model assumes that the hazard for a subject is of the
form 

l(t; Zi)=l0(t)ri(t),

where

is referred to as the risk score for the ith subject, b is a vector of regression
parameters, and l0(t) is an arbitrary and unspecified baseline hazard

function. The vector of coefficients b does not include an intercept term; it is
absorbed into l0. The exponential function guarantees that l is positive for

any b. Assume that a death has occurred at time t* . Then conditional on this
death occurring, the likelihood that it would be subject i rather than some
other subject is

The product of the terms (equation (24.1)) over all death times,

, was termed a partial likelihood by Cox (1972).

Maximization of  gives an estimate for b without the need to
estimate the nuisance parameter l0(t). An estimator of the covariance matrix

is given by the inverse of the second derivative matrix. The proportional
hazards model is non-parametric in the sense that it depends only on the
ranks of the survival times. It remains sensitive, however, to skewed

.
(24.1)

r i t( ) eβ'Zi t( )=

Li β( )
λ0 t∗( ) r i t∗( )

Yj t∗( ) λ0 t∗( ) r j t∗( )
j

∑
----------------------------------------------------

r i t∗( )

Yj t∗( ) r j t∗( )
j

∑
------------------------------------= =

L β( ) Li β( )∏=

L β( )( )log
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24. The Cox Proportional Hazards Model
covariates. The first derivative of  is the p by 1 vector

and the p by p information matrix is

where  is the weighted covariate mean for those still at risk at time t

.

Cox proposed, and it was later shown by Efron (1977) and Oakes (1977),
that the partial likelihood contains “nearly” all of the information about b.
That is, the calendar times when deaths occur give information about the
overall hazard rate l0 but little about the relative rates for different values of

Z. The Cox model thus gives very efficient estimates as compared to a
parametric proportional hazards model, such as the Weibull, even when the
data actually come from the parametric model. The notation for Li in
equation (24.1) is derived from the counting process representation found in
Fleming and Harrington (1991). It allows for several extensions to the
original Cox model formulation including:

• multiple events per subject,

• time-dependent covariates including cation variables,

• discontinuous intervals of risk—Yi may change states from 1 to 0
and back again multiple times,

(24.2)

(24.3)

, (24.4)
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• left truncation—subjects need not enter the risk set at time 0.

This extension is known as the multiplicative hazards model.

Example: 
Ovarian Cancer

This example uses data from a study of ovarian cancer [EFD+79]. The
variables are:

futime The number of days from enrollment until death or
censoring, whichever comes first.

fustat An indicator of death (1) or censoring (0).

age The patient age in years (actually, the age in days
divided by 365.25)

residual.dz An indicator of the extent of residual disease.

rx An indicator of the treatment given.

ecog.ps A measure of performance score or functional status,
using the Eastern Cooperative Oncology Group’s
scale. It ranges from 0 (fully functional) to 4 (com-
pletely disabled). Level 4 subjects are usually consid-
ered too ill to enter a randomized trial such as this.

The data is stored in a data frame named ovarian. A summary produces the
following: 

> summary(ovarian) 
      futime          fustat           age 
 Min.   :  59.0  Min.   :0.0000  Min.   :38.89 
 1st Qu.: 368.0  1st Qu.:0.0000  1st Qu.:50.17 
 Median : 476.0  Median :0.0000  Median :56.85 
 Mean   : 599.5  Mean   :0.4615  Mean   :56.17 
 3rd Qu.: 794.8  3rd Qu.:1.0000  3rd Qu.:62.38 
 Max.   :1227.0  Max.   :1.0000  Max.   :74.50 
  residual.dz         rx            ecog.ps 
 Min.   :1.000   Min.   :1.0     Min.   :1.000 
 1st Qu.:1.000   1st Qu.:1.0     1st Qu.:1.000 
 Median :2.000   Median :1.5     Median :1.000 
 Mean   :1.577   Mean   :1.5     Mean   :1.462 
 3rd Qu.:2.000   3rd Qu.:2.0     3rd Qu.:2.000 
 Max.   :2.000   Max.   :2.0     Max.   :2.000 

Start by modeling survival as a function of age only: 

> ov.fit1 <- coxph(Surv(futime, fustat) ~ age, ovarian) 
> ov.fit1 
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24. The Cox Proportional Hazards Model
Call: coxph(formula = Surv(futime,fustat) ~ age, 
data=ovarian) 
     coef exp(coef) se(coef)    z      p 
age 0.162      1.18   0.0497 3.25 0.0012 
Likelihood ratio test=14.3  on 1 df, p=0.000156  n=26 

Printing the resulting fit produces the estimated coefficient , the

estimated relative risk for a one unit change in the variable , the standard

error of the estimated coefficient, a z-test  along with its p-value
for the significance of the estimated coefficient, and a likelihood ratio test for
goodness of fit. The z-test is sometimes referred to as Wald’s test. An estimate
of the relative risk of dying of ovarian cancer for two patients in the study
differing in age by one year is 1.18 which is significantly larger than one (p =
0.000156). The older patient has an estimated 1.18 times higher risk of
dying of ovarian cancer than the younger patient. You produce a summary of
the survival curve with a combination of the summary function and the
survfit function. For example, 

> summary(survfit(ov.fit1)) 
Call: survfit.coxph(object = ov.fit1)
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   59     26       1    0.988  0.0142        0.961        1.000 
  115     25       1    0.974  0.0244        0.927        1.000 
  156     24       1    0.955  0.0364        0.886        1.000 
  268     23       1    0.933  0.0482        0.844        1.000 
  329     22       1    0.897  0.0621        0.783        1.000 
  353     21       1    0.862  0.0724        0.732        1.000 
  365     20       1    0.824  0.0819        0.678        1.000 
  431     17       1    0.775  0.0934        0.612        0.982 
  464     15       1    0.724  0.1032        0.548        0.958 
  475     14       1    0.673  0.1112        0.487        0.931 
  563     12       1    0.596  0.1226        0.398        0.892 
  638     11       1    0.520  0.1287        0.321        0.845 

The Fleming-Harrington estimate of survival for a patient with age equal to
the average is produced in this case because the model was fit using coxph
and survival for a particular age was not specified with the newdata
argument. Produce a plot of the survival curve, figure 24.1, at the average age
as follows: 

> plot(survfit(ov.fit1), xlab = "Survival in Days", 
+ ylab = "Proportion Surviving") 
> title("Suvival for Ovarian Cancer Study") 

The default, when you plot only one curve, is to add confidence limits.

β̂( )

e β̂( )

β̂( ) se β̂( )⁄( )
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Hypothesis Tests
24.1 HYPOTHESIS TESTS
Once you fit a Cox model, three tests of hypothesis are produced which are
asymptotically equivalent but not always in practice. Let b0 be the initial

value of the coefficients and  the solution after fitting the model. The
likelihood ratio test is defined as

and is the most reliable. The Wald statistic, , where

 is the estimated variance-covariance matrix, is perhaps the most natural

because it provides a per variable test rather than an overall measure of

significance. The score test is defined as  where U is the vector of
derivatives given by equation (24.3) and I is the information matrix given by
equation (24.4), both evaluated at b0. The score test does not require

iteration and, consequently, is more computationally efficient if a large
number of models are to be tested.

Figure 24.1:  Cox regression estimate of survival for a subject of average
age (56.17 years), from the ovarian cancer study.
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24. The Cox Proportional Hazards Model
Example: 
Ovarian Cancer 
(cont.)

For the ovarian cancer example, you can compute all three tests by
computing a summary of the resulting fit. 

> summary(ov.fit1) 
Call: coxph(formula = Surv(futime, fustat) ~ age, data = 
ovarian)
  n= 26 
     coef exp(coef) se(coef)  z        p 
age 0.162      1.18   0.0497 3.25 0.0012 
    exp(coef) exp(-coef) lower .95 upper .95 
age      1.18      0.851      1.07       1.3 

Rsquare= 0.423   (max possible= 0.932 ) 
Likelihood ratio test= 14.3 on 1 df,    p=0.000156 
Wald test            = 10.6 on 1 df,    p=0.00116 
Efficient score test = 12.3 on 1 df,    p=0.000463 

The summary of a fit returns the efficient score test in addition to the
likelihood ratio test and Wald’s test resulting from simply printing the fit.
Additionally, a confidence interval is estimated for the relative risk estimated

by exp(coef), . To produce confidence limits with a different confidence
level use the conf.int argument in the call to summary. For example,
specifying conf.int = .99 produces 99% confidence intervals for the
relative risk. It is clear that age is an important predictor of survival. Let’s add
the other predictors to the model. 

> ov.fit2 <- coxph(Surv(futime, fustat) ~ age + 
+ residual.dz + rx + ecog.ps, ovarian) 
> ov.fit2 
Call: 
coxph(formula = Surv(futime, fustat) ~ age + 
        residual.dz + rx + ecog.ps, data = ovarian) 

              coef exp(coef) se(coef)      z      p 
age          0.125     1.133   0.0469  2.662 0.0078 
residual.dz  0.826     2.285   0.7896  1.046 0.3000 
rx          -0.914     0.401   0.6533 -1.400 0.1600 
ecog.ps      0.336     1.400   0.6439  0.522 0.6000 

Likelihood ratio test=17 on 4 df, p=0.0019 n= 26 

To check for an overall improved fit over the age only model compute the
likelihood ratio test between the models as follows:

eβ̂
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Stratification
> -2*(ov.fit1loglik[2] - ov.fit2loglik[2]) 
[1] 2.749708 

The loglik component of the fit is a vector of the log likelihoods for two
fits. The null model (intercept only) is the first value, and the current model
is the second value. Noting that there is a difference of three degrees of
freedom between the models, the p-value for the likelihood ratio test is
computed as follows: 

> pchisq(2.75, df = 3) 
[1] 0.5682029 

There is no significant difference between the two models indicating that
residual.dz, rx, and ecog.ps don’t improve the fit. This will not work if
there are missing values.

24.2 STRATIFICATION
A simple extension of the Cox model is to allow multiple strata. The hazard
for a subject contained in stratum j is then

.

When a variable is entered into the model as a stratification factor rather than
as a covariate it allows for non-proportional hazards to exist between levels of
the variable. However, the disadvantage is that no b is available to estimate
the effect of that variable. For instance, in a multi-center drug study the
enrolling center is often entered into the model as a stratum variable. Because
of different patient populations, for example, a higher proportion of acute
cases, the centers may well have different shapes for their baseline survival
curves, and if modeled as a covariate this non-proportionality could bias the
estimate of the treatment effect.

Example: 
Ovarian Cancer 
(cont.)

You can stratify the ovarian cancer fit with respect to treatment, rx, still
fitting age as a covariate, as follows: 

> ov.fit3 <- coxph(Surv(futime, fustat) ~ age + strata(rx),
+ data = ovarian) 
> survfit(ov.fit3) 
Call: survfit.coxph(object = ov.fit3) 
                 n events mean se(mean) median 0.95LCL 0.95UCL
strata(rx)=rx=1 13      7  512     72.8    638     329      NA
strata(rx)=rx=2 13      5  522     22.5     NA     475      NA

Printing the resulting fit displays the usual summary statistics for the survival
curve for each stratum. Applying the summary function to the fit produces a
more detailed table which includes the survival curve, standard errors and
confidence intervals for each stratum:

λ t Z,( ) λ j t( ) eβZ t( )=
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24. The Cox Proportional Hazards Model
> summary(survfit(ov.fit3)) 
Call: survfit.coxph(object = ov.fit3) 

               strata(rx)=rx=1 
time n.risk n.event survival std.err lower 95% CI upper 95% CI 
  59     13       1    0.978  0.0269       0.9264            1
 115     12       1    0.950  0.0481       0.8607            1
 156     11       1    0.910  0.0758       0.7725            1
 268     10       1    0.862  0.1050       0.6793            1
 329      9       1    0.736  0.1525       0.4902            1
 431      8       1    0.625  0.1698       0.3671            1
 638      5       1    0.341  0.2225       0.0947            1

               strata(rx)=rx=2 
time n.risk n.event survival std.err lower 95% CI upper 95% CI
 353     13       1    0.943  0.0560        0.840        1.000
 365     12       1    0.880  0.0814        0.734        1.000
 464      9       1    0.791  0.1126        0.598        1.000
 475      8       1    0.701  0.1319        0.484        1.000

 563      7       1    0.602  0.1461        0.374        0.968 

Figure 24.2:  A plot of the stratified fit of the ovarian cancer data
adjusted for average age.
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Residuals
You produce a plot of the stratified fit as follows: 

> plot(survfit(ov.fit3), lty = 2:3) 
> legend(100, .6, c("Treatment 1","Treatment 2"), lty= 2:3) 
> title("Ovarian Cancer Stratified by Treatment") 

The plot is one method to view a non-parametric estimate of treatment
effect, after adjusting for possible differences in age distributions.

24.3 RESIDUALS
The Breslow (or Tsiatis, Link, or Nelson-Aalen) estimate of the baseline
hazard is

.

The martingale residual at time t is

The residual is computed at  and . If there are no time-
dependent covariates, then ri(t) can be factored out of the integral, giving

. The deviance residual is a normalizing transform of

the martingale residual

The other two residuals are based on the score process Uij(b,t) for the ith

subject and the jth variable:

.

The score residual is defined, for each subject and each variable (an n by p

matrix) as . It is the sum of the score process over time. The usual

score vector U(b) (equation (24.2)) is the column sum of the matrix of score
residuals. The martingale and score residuals are integrals over time for a
given subject. Specifically, in setting up a multiplicative hazards model, a
single subject is represented by multiple lines of the input data, as though the
subject was a set of different individuals observed over disjoint times. The

. (24.5)
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24. The Cox Proportional Hazards Model
residual for that person is the sum of the residuals for these “pseudo” subjects.
The Schoenfeld residuals (1982) are defined as a matrix

with one row per death and one column per covariate, where i and ti are the
subject and the time that the event occurred. The Schoenfeld residuals are
related to the score process Uij(b,t). Sum the score process over individuals to

get a total score process . This is just the score vector

at time t, so that at  we must have . Because 
is discrete, our estimated score process will also be discrete, having jumps at
each of the unique death times. There are two simplifying identities for these
residuals:

Note that  is zero when subject i is not in the risk set at time t. Since
the sums are the same for all t, each increment of the processes must be the
same as well. Comparing the second of these to equation (24.6), we see that
the Schoenfeld residuals are the increments or jumps in the total score
process. There is a small nuisance with tied death times: under the integral
formulation the O-E process has a single jump at each death time, leading to
one residual for each unique event time, while under the Schoenfeld
representation there is one residual for each event. In practice, the latter
formulation has been found to work better for both plots and diagnostics, as
it leads to residuals that are approximately equivariant. For the alternative of
one residual per unique death time, both the size and variance of the residual
is proportional to the number of events. 

The last and most general residual is the entire score process Rijk where i

indexes subjects, j indexes the covariates, and k indexes the event times.

.

The score and Schoenfeld residuals are seen to be marginal sums of this array.
Lin, Wei and Ying (1992) suggest a global test of the proportional hazards
model based on the maximum of the array.

(24.6)

(24.7)
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Residuals
Uses for the 
Residuals

Four possible uses of residuals are addressed in this section.

1. Discovering the correct functional form for a predictor.

2. Identifying subjects who are poorly predicted by the model.

3. Identifying influential points, that is, points with high leverage.

4. Assessing the proportional hazards assumption.

Discovering the 
Functional Form 
for a Predictor

The martingale residual, Mi, is given by equation (24.5) evaluated at .
Assume that the true functional form for a covariate in the exponent is h(Z).
Then Therneau, Grambsch, and Fleming show that the martingale residuals,
after regression on the other variables, satisfy

A smoothed plot of the Mi versus x will give an approximate image of the
true functional form, with the y-axis scaled by a constant that depends on the
proportion of censoring. If there are several covariates, then the martingale
residuals from a model with all of the covariates except Z1, say, can be plotted
against the residuals of a regression of Z1 on the others, similar to adjusted
variable plots for the linear model in Chambers et al. (1983). 

Another use is to plot the residuals from a null model, that is, with
iter.max=0, against each predictor. This is roughly equivalent to the
standard scatter plots of y against each Z that is used for uncensored data,
before a model is fit. Addition of a local regression smooth curve using
loess gives, in both cases, a first approximation to what transformations, if
any, might be appropriate for each Z.

Identifying Poorly 
Predicted 
Subjects

The martingale residuals can be highly skewed. The deviance residual, di, is a
normalized transform of Mi. Recent experience has shown that deviance
residuals do not work well and cannot be recommended.

Identifying 
Influential Points

In a linear model, the influence of a point on the fit depends on both its
residual and its distance from the center of the predictor space, roughly

. In a Cox model, the mean of the covariates changes over

time as subjects leave the risk set, which suggests an average of some sort. The
score residuals are a decomposition of the first derivative or score vector; large
values indicate a point with high leverage. In particular, -I-1Li, where I-1 is
the Cox model variance matrix, is approximately the change that would
occur in b if observation i were dropped from the model. These changes in b
are returned when you specify type = "dfbeta" or type = "dfbetas"
to the residuals function.

t ∞=

E Mi( )8 h t( ) h–( ) E Ni( )

residi Zi Z–( )⋅
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24. The Cox Proportional Hazards Model
Assessing the 
Proportional 
Hazards 
Assumption

The Schoenfeld residuals are increments in time for the total score process.
See equation (24.6). If the proportional hazards assumption holds, the
Schoenfeld residuals should be a random walk. Conversely, assume that some
variable, such as treatment, has a large positive effect early but that the effect
trails off. The treatment might influence how many patients survive to some
point t, but once they are “cured" it has no influence on survival beyond t. In
this case, proportional hazards does not hold and the fitted models will
underestimate the true treatment effect for small t, and overestimate it for
large t. If treatment has a beneficial effect, that is, b < 0, then the Schoenfeld
residuals would have an early negative trend followed by a late positive trend.
Harrell (1986) suggests using the correlation of rank(time) with this
residual as a test for non-proportional hazards. Therneau et al. (1990) use the
maximum of the absolute cumulative summed Schoenfeld residual, a
Kolmogorov type test. Grambsch and Therneau further show that a rescaled
Schoenfeld residual can correct for correlation among the covariates and be
more interpretable. This result is the basis for the cox.zph function.

Example: Lung 
Cancer

This example examines data from a study of lung cancer patients conducted
by the North Central Cancer Treatment Group. The lung data frame
includes the usual survival times (time) and indicator variable of death or
censoring (status) plus the following additional variables on each patient:
inst A numeric code for the institution at which the patient

was hospitalized.

age Patient’s age.

sex 1=male, 2=female.

ph.ecog Physician’s estimate of the ECOG performance score 
(0–4).

ph.karno Physician’s estimate of the Karnofsky score, a competi-
tor to the ECOG performance score.

pat.karno Patient’s assessment of his/her Karnofsky score.

meal.cal Calories consumed at meals excluding beverages and
snacks.

wt.loss Weight loss in the last 6 months.

A summary of the lung data frame follows: 
> summary(lung) 
      inst            time          status         age 
Min.   : 1.00   Min.   :   5.0   Min.   :1.000   Min.   :39.00 
1st Qu.: 3.00   1st Qu.: 166.8   1st Qu.:1.000   1st Qu.:56.00 
Median :11.00   Median : 255.5   Median :2.000   Median :63.00 
Mean   :11.09   Mean   : 305.2   Mean   :1.724   Mean   :62.45 
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Residuals
3rd Qu.:16.00   3rd Qu.: 396.5   3rd Qu.:2.000   3rd Qu.:69.00 
Max.   :33.00   Max.   :1022.0   Max.   :2.000   Max.   :82.00 
NA’s   : 1.00 
sex ph.ecog ph.karno pat.karno 
Min.   :1.000   Min.   :0.0000   Min.   : 50.00   Min.   : 30.00 
1st Qu.:1.000   1st Qu.:0.0000   1st Qu.: 75.00   1st Qu.: 70.00 
Median :1.000   Median :1.0000   Median : 80.00   Median : 80.00 
Mean   :1.395   Mean   :0.9515   Mean   : 81.94   Mean   : 79.96 
3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.: 90.00   3rd Qu.: 90.00 
Max.   :2.000   Max.   :3.0000   Max.   :100.00   Max.   :100.00 
                NA’s   :1.0000   NA’s   : 1.00    NA’s   :  3.00 
    meal.cal         wt.loss 
Min.   :  96.0   Min.   :-24.000 
1st Qu.: 635.0   1st Qu.:  0.000 
Median : 975.0   Median :  7.000 
Mean   : 928.8   Mean   :  9.832 
3rd Qu.:1150.0   3rd Qu.: 15.750 
Max.   :2600.0   Max.   : 68.000 
NA’s   :  47.0   NA’s   : 14.000 

Note that the status variable takes values one (censoring) and two (event)
as does the sex variable (1 = Male, 2 = Female). The coxph function
recognizes either a 0/1 or a 1/2 binary variable as an indicator of censored/
event status so you needn’t transform the status variable in this case. Let’s
start the example by fitting a model on all the variables stratified by sex. 

> lung.fit1 <- coxph(Surv(time, status) ~ strata(sex) + 
+     age + ph.ecog + ph.karno + pat.karno + meal.cal + 
+     wt.loss, data = lung, na.action = na.omit) 
> lung.fit1 
Call: coxph(formula = Surv(time, status) ~ strata(sex) + 
              age + ph.ecog + ph.karno + pat.karno + 
              meal.cal + wt.loss, data = lung, 
              na.action = na.omit) 
               coef exp(coef) se(coef)     z      p 
age        9.05e-03     1.009 0.011601  0.78 0.4400 
ph.ecog    7.07e-01     2.029 0.222773  3.17 0.0015 
ph.karno   2.07e-02     1.021 0.011282  1.84 0.0660 
pat.karno -1.33e-02     0.987 0.008050 -1.65 0.0980 
meal.cal  -5.27e-06     1.000 0.000263 -0.02 0.9800 
wt.loss   -1.52e-02     0.985 0.007890 -1.93 0.0540 

Likelihood ratio test=21.6 on 6 df, p=0.00145 n=168 
   (60 observations deleted due to missing) 
665



24. The Cox Proportional Hazards Model
The resulting fit indicates that age and meal.cal are not important
predictors of survival. Let’s drop them from the model. 

> lung.fit2 

Call: 
coxph(formula = Surv(time, status) ~ strata(sex) + 
        ph.ecog + ph.karno + pat.karno + wt.loss, 
        data = lung, na.action = na.omit) 
             coef exp(coef) se(coef)     z p 
ph.ecog    0.6495     1.915  0.20070  3.24 0.0012 
ph.karno   0.0173     1.017  0.01031  1.68 0.0930 
pat.karno -0.0167     0.983  0.00726 -2.30 0.0220 
wt.loss   -0.0137     0.986  0.00691 -1.99 0.0470 
Likelihood ratio test=25.7 on 4 df, p=3.61e-05 n=210 
   (18 observations deleted due to missing) 

Because of the different number of missing values for these two models, you
cannot compare them directly using a likelihood ratio like we did for the
ovarian data.

Assessing 
Functional Form

Now take a look at the functional form of the relationship with respect to
each of the important predictors in the model. Do this by plotting the
martingale residuals from a model with the variable of interest removed
versus the variable of interest. Then add a loess smooth line to estimate the
relationship. You can accomplish both the plot and adding the smooth by
using the scatter.smooth function. To make the handling of NAs (missing
values) a bit easier, begin by creating a new data frame with just the variables
in the model and with the NAs removed. 

> nlung <- na.omit(lung[, c("time", "status", "sex", 
+ "ph.ecog", "ph.karno", "pat.karno", "wt.loss")]) 

Note the 18 row difference between the two data frames is confirmed by the
number of NAs that were deleted in fitting lung.fit2. 

> dim(nlung) 
[1] 210 7 
> dim(lung) 
[1] 228 10 

The four plots displayed in figure 24.3 show the estimated relationships for
each predictor. 

> par(mfrow = c(2,2)) 
> attach(nlung) 
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Residuals
> fit1 <- coxph(Surv(time,status) ~ strata(sex) + ph.karno + 
+     pat.karno + wt.loss, data = nlung) 
> scatter.smooth(ph.ecog, resid(fit1)) 
> fit2 <- coxph(Surv(time,status) ~ strata(sex) + ph.ecog +
+     pat.karno + wt.loss, data = nlung) 
> scatter.smooth(ph.karno, resid(fit2)) 
> fit3 <- coxph(Surv(time,status) ~ strata(sex) + ph.ecog +
+     ph.karno + wt.loss, data = nlung) 
> scatter.smooth(pat.karno, resid(fit3)) 
> fit4 <- coxph(Surv(time,status) ~ strata(sex) + ph.ecog +
+     ph.karno + pat.karno, data = nlung) 
> scatter.smooth(wt.loss, resid(fit4)) 

All of the relationships look reasonably linear.

Figure 24.3:  Plots of the martingale residuals for four models with each variable in turn left out
of the model for the the lung cancer study.
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24. The Cox Proportional Hazards Model
Poorly Predicted 
Subjects

Subjects with large deviance residuals are poorly predicted by the model. You
produce the deviance residual plot for the second lung cancer model as
follows: 

> plot(resid(lung.fit2, type = "deviance")) 

Figure 24.4 displays the resulting plot. There are no wildly deviant
observations.

Influence Another set of plots examines the influence of individual observations on the
parameter estimates. Use the changes in the estimated scaled coefficient due
to dropping each observation from the fit (type = "dfbetas") as a
measure of influence. The first of the four plots is created as follows: 

> bresid <- resid(lung.fit2, type = "dfbetas") 
> plot(1:228, bresid[,1], type = "h", 
+          ylab = "Scaled change in coef", 
+          xlab = "Observation") 
> title("ph.ecog") 

The remaining plots are created by selecting the appropriate columns of
bresid and changing labels on the plots. The resulting plots are displayed in
figure 24.5. Note the use of 1:228 to generate the indices for the

Figure 24.4:  Plots of the deviance residuals for model lung.fit2 of the
lung cancer study.
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Residuals
observations even though the fit had only 210 observations after deleting
missing values. The dimension of bresid is 228 3 4. The number of rows
matches that of lung because the naresid method for omitting missing
values (na.omit) inserts NAs in the residual matrix returned.

The largest change in a regression coefficient is 0.6 standard errors of the
coefficient for ph.karno (upper right corner plot). Since the coefficient for
ph.karno is marginally significant at best you need not worry much about
this observation. The other plots are reasonable.

Assessing 
Proportional 
Hazards

You can examine the assumption of proportional hazards both graphically
and statistically for the lung.fit2 model. The plot, figure 24.6, is produced
as follows: 

Figure 24.5:  A plot of influence by observation number for the four important predictors for the
lung cancer study.
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24. The Cox Proportional Hazards Model
> plot(cox.zph(lung.fit2)) 

All of the smooth curves are flat indicating proportional hazards is a
reasonable assumption. Statistical tests for significant slope in the scatter
plots of figure 24.6 support the interpretation of the graphical displays. 

> cox.zph(lung.fit2) 
              rho  chisq     p 
  ph.ecog 0.05189 0.3905 0.532 
 ph.karno 0.14216 2.2081 0.137 
pat.karno 0.04773 0.3812 0.537 
  wt.loss 0.00857 0.0131 0.909 
   GLOBAL      NA 4.4476 0.349 

Plotting the 
Resulting Fit

Finally, you can plot estimated survival curves for the lung.fit2 model as
follows: 
> plot(survfit(lung.fit2), lty = 2:3) 

Figure 24.6:  A plot of the rescaled Schoenfeld residuals to assess the proportional hazards
assumption for four covariates in lung cancer study.
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Using the Counting Process Notation
> legend(500, .9, c("Male", "Female"), lty = 2:3) 
> title("Survival for Male and Female 
+ Patients\nwith Average Covariates") 

The fitted Cox models are presented in figure 24.7. Recall that the model was
stratified on sex. The resulting survival curves are for two pseudo patients (a
male and a female) with average values for each of ph.ecog, ph.karno,
pat.karno and wt.loss.

24.4 USING THE COUNTING PROCESS NOTATION
The Anderson-Gill formulation of the proportional hazards model as a
counting process is useful not only theoretically, but also in the practice of
fitting models. From a data analysis point of view, each subject is treated as an
observation of a (very slow) Poisson process. A censored subject is thought of
not as incomplete data, but as one whose event count is still zero. Time-
dependent covariates effect the rate for upcoming events, and can depend in
any way on past observation of the subject. Furthermore, intervals of
observation need not be contiguous. Organizing data in this framework has
advantages. Each subject is represented by a set of observations: sij , tij , dij , xij ,
kij , j=1, …, ni, where (sij , tij] is an interval of risk, open on the left and closed
on the right, dij  = 1 if the subject had an event at time tij , xij  is the covariate

Figure 24.7:  Cox regression estimation of baseline survival curves for a
sample of lung cancer patients.
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24. The Cox Proportional Hazards Model
vector over the interval, and kij  is the stratum the subject belongs to during
the interval. Data sets like this are easy to construct in S-PLUS. Following are
a few specific examples to aid in constructing the analysis data frame.

Multiple 
Events

This example comes from a study of myocardial infarction (heart attack)
patients where one of the events of interest is fatal or non-fatal re-infarction.
Several patients had multiple events. The maximum number of events was
three. Analysis was done using the counting process formulation by breaking
any patient with multiple events into multiple intervals of risk. For example,
one patient had infarctions on days 100 and 185 and was followed until day
250. This patient had three rows of data with time intervals (0, 100], (100,
185], and (185, 250] and corresponding event status codes of 1, 1, and 0.

Time-
Dependent 
Covariates

The most common type of time-dependent covariates are repeated
measurements on a subject or a change in the subject’s treatment. Both of
these situations are easily handled by the counting process formulation. As an
example consider the Stanford heart transplant study, where treatment is a
time-dependent covariate. Suppose there are two patients whose time from
enrollment to death is 102 and 343 days, respectively, and that the second
patient had a heart transplant 21 days after enrollment. The data for these
two patients displayed is in table 24.1.

The static covariates such as age and surgery are repeated over the multiple
rows for a given patient. A minor modification is needed when there is a tie
between the event or censoring time and the time at which a time-dependent
covariate changes value. In this case, decrease the time for the time-
dependent covariate slightly so it precedes the event or censoring time. For
the heart transplant study for a patient who is transplanted and dies on day 5,
the transplant time is set to 4.9 and the death is recorded at 5. Multiple test
results are easily coded as well. For a patient with tests on days 0, 60, and
120, and follow-up to day 140, the data would be coded as three time
intervals, 0–60, 60–120, and 120–140. This implicitly assumes that the
time-dependent covariate is a step function with jumps at the measurement

Table 24.1: Data for two hypothetical patients in the Stanford heart transplant
study

Interval Status Transplant Age Prior Surgery

(0,102] 1 0 41 0

(0,21] 0 0 48 1

(21,343] 1 1 48 0
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Using the Counting Process Notation
points. Alternatively, you can break at the midpoints between the
measurement times or interpolate the test measurements over smaller
intervals of time. If test results vary markedly from visit to visit, interpolation
of the measurements or redesign of the study may be required.

Discontinuous 
Intervals of 
Risk

In a study of tumor progression and it relationship to a particular blood
marker, the key time-dependent variable is the monthly measurement of the
marker. A few patients, however, had a gaps in their visit record. One choice
for analysis is to interpolate these patients values over the missing time
periods. An alternate, more conservative, course is to treat the values on the
marker as missing. This strategy effectively removes these subjects from the
risk set for the missing visit times, but they are not removed entirely from the
study.
Another application of discontinuous risk intervals results when multiple
events are possible, but the treatment for an event temporarily protects the
patient from another event. In the study of hip-fracture in the elderly,
hospitalization following a fracture protects the patient from further
fractures. For studies with low event rates, discontinuous risk intervals will
probably have little impact on the analysis.

Multiple Time 
Scales

The usual Cox model forms risk groups based on time since entry. For some
studies a more logical grouping might be based on another alignment, such as
age or time since diagnosis. An example is with Parkinson’s disease patients.
Natural history of the disease suggests that risk groups be based on the time
since diagnosis. The Mayo Clinic is a referral center and frequently receives
such patients sometime after diagnosis. Using the counting process
formulation, the interval for a referred patient who is enrolled one year after
diagnosis and who has an event in the second year is (1,2]. This patient is not
in the risk set for an early enrollee with an event at six months. The risk set
for the event at two years is all subjects. This is known as left truncation.

Time-
Dependent 
Strata

Another case where alignment is a potential issue concerns time-dependent
strata. The example is a study of Dutch patients with primary biliary cirrhosis
of the liver (PBC). PBC is a rare but fatal chronic liver disease of unknown
cause. The hazard rate for patients with the disease grows over time, as does
the rate of degeneration in their hepatic function, tracked by various blood
tests. A portion of the patients receive a liver transplant at some point during
the follow-up. One objective of the study was to assess the value of covariates
such as age and bilirubin in predicting patient outcome, both before and after
transplantation. Transplant was treated as a time-dependent stratification
variable. In the post transplant strata, the most natural hazard function is
based on time since transplant. Surgical death is a major risk for such an
extensive procedure, and this time scale properly aligns the patient’s clock
with the dominating hazard.
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24. The Cox Proportional Hazards Model
Proper alignment for time-dependent strata is not always clear. One
appealing method of analysis for the myocardial infarction study is to place
patients into new strata after each cardiac event. The baseline hazard for a
patient with multiple events may be quite different than the group as a
whole. It is not obvious, however, whether time since enrollment or time
since last event is the better index of an appropriate risk group.

24.5 MORE DETAILED EXAMPLES
Complex Cox models usually involve time-dependent data which is handled
by using the counting process notation developed by Andersen and Gill
(1982). For a technical reference see Fleming and Harrington (1991). The
examples in this section involve time-dependent variables in some way. In the
first example, the Stanford Heart Transplant Study, the time dependency is
on a binary covariate indicating whether the patient has had a heart
transplant. For patients that received a heart transplant during the study, the
transplant variable changes. The second example involves a bladder cancer
study for patients with multiple occurrences of bladder tumors. The multiple
events are modeled using the counting process notation and an additional
notion of correlated responses.

Stanford Heart 
Transplant 
Study

The example below reproduces an analysis of the Stanford heart transplant
study found in Kalbfleisch and Prentice (1980), section 5.5.3. The data itself
is taken from Crowley and Hu (1977) because the values listed in the
appendix of Kalbfleisch and Prentice are rounded and do not reproduce the
results of their section 5.5. The covariates in the study, contained in the
heart data frame, are described as follows:

transplant patient received a heart transplant (1) or not (0)

age (age at acceptance in days)/365.25 - 48

year (date of acceptance in days since 1 Oct 1967) / 365.25

surgery prior surgery (1=yes, 0=no),

The transplant variable is the only time-dependent variable. From the
time of admission into the study until the time of death a patient was eligible
for a heart transplant. The time to transplant depends on the next available
donor heart with an appropriate tissue-type match. In the heart data frame,
a transplanted patient is represented by two rows of data. The first is over the
time period from enrollment (time 0) until the transplant, and has
transplant = 0. The second is over the period from transplant to death or
last follow-up and has transplant = 1. All other covariates are the same on
the two lines. Subjects without a transplant are represented by a single row of
data. Each row of data contains two variables start and stop which mark
674



More Detailed Examples
the time interval  (start, stop ] for the data, as well as an indicator
variable event which is 1 (one) if there was a death at time stop and 0
(zero) otherwise. For example, a subject who was transplanted at day 10 and
followed up until day 31, has a first row of data corresponding to the time
interval (0,10] and a second row corresponding to the interval (10,31]. Here
is the code to fit the six models found in Kalbfleisch and Prentice. Note the
use of the options call, which forces the factors to be coded as dummy
variables. See the help file on contr.treatment for more details. Since the
data set contains tied death times, you must use the Breslow approximation
to match the coefficients that Kalbfleisch and Prentice produce. See the
section Computations for Tied Deaths for more details on methods for
handling ties. 
> options(contrasts=c("contr.treatment", "contr.poly")) 
> heart.fit1 <- coxph(Surv(start, stop, event) ~ 
+                     (age + surgery)*transplant, 
+                     data = heart, method = "breslow") 
> heart.fit2 <- coxph(Surv(start, stop, event) ~ 
+                     year * transplant, 
+                     data = heart, method="breslow") 
> heart.fit3 <- coxph(Surv(start, stop, event) ~ 
+                     (age + year)*transplant, 
+                     data = heart, method="breslow") 
> heart.fit4 <- coxph(Surv(start, stop, event) ~ 
+                     (year + surgery)*transplant, 
+                     data= heart, method="breslow") 
> heart.fit5 <- coxph(Surv(start, stop, event) ~ 
+                     (age + surgery)*transplant + year, 
+                     data= heart, method="breslow") 
> heart.fit6 <- coxph(Surv(start, stop, event) ~ 
+                     age*transplant + surgery + year, 
+                     data= heart, method="breslow") 

A summary of the first fit produces the following: 
> summary(heart.fit1) 
Call: 
coxph(formula = Surv(start, stop, event) ~ (age + 
        surgery) * transplant, data = heart, method =
        "breslow") 

n= 172 
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              coef         exp(coef) se(coef)      z 
               age  0.0138     1.014   0.0181  0.763 
           surgery -0.5457     0.579   0.6109 -0.893 
        transplant  0.1181     1.125   0.3277  0.360 
    age:transplant  0.0348     1.035   0.0273  1.276 
surgery:transplant -0.2916     0.747   0.7582 -0.385 

                      p 
               age 0.45 
           surgery 0.37 
        transplant 0.72 
    age:transplant 0.20 
surgery:transplant 0.70 

                   exp(coef) exp(-coef) lower .95 
               age     1.014      0.986     0.979 
           surgery     0.579      1.726     0.175 
        transplant     1.125      0.889     0.592 
    age:transplant     1.035      0.966     0.982 
surgery:transplant     0.747      1.339     0.169 
                   upper .95 
               age      1.05 
           surgery      1.92 
        transplant      2.14 
    age:transplant      1.09 
surgery:transplant      3.30 

Rsquare= 0.07   (max possible= 0.969 ) 
Likelihood ratio test= 12.4 on 5 df,   p=0.0291 
Wald test            = 11.6 on 5 df,   p=0.0402 
Efficient score test = 12 on 5 df,   p=0.0345 

Note that the sixth line of the summary indicates that n = 172. This is the
number of observations in the study, not the number of subjects. There are
actually 103 patients, of which 69 had a transplant and are thus represented
using 2 rows of data. You can create a table of coefficients similar to
Kalbfleisch and Prentice’s table 5.2 as follows: 
> var.names <- c("age","year","surgery","transplant", 
+   "age:transplant", "year:transplant", 
+   "surgery:transplant") 
> round(rbind(heart.fit1$coef[var.names], 
+   heart.fit2$coef[var.names], heart.fit3$coef[var.names], 
676



More Detailed Examples
+   heart.fit4$coef[var.names], heart.fit5$coef[var.names], 
+   heart.fit6$coef[var.names]), digits = 4) 
       age   year surgery transplant age:transplant 
[1,] 0.014     NA  -0.546      0.118          0.035 
[2,]    NA -0.265      NA     -0.282             NA 
[3,] 0.016 -0.274      NA     -0.588          0.034 
[4,]    NA -0.254  -0.236     -0.292             NA 
[5,] 0.015 -0.136  -0.419      0.077          0.027 
[6,] 0.015 -0.136  -0.621      0.047          0.027 
     year:transplant surgery:transplant 
[1,]              NA             -0.292 
[2,]           0.136                 NA 
[3,]           0.201                 NA 
[4,]           0.164             -0.550 
[5,]              NA             -0.298 
[6,]              NA                 NA 

When there are time-dependent covariates, the predicted survival curve can
present something of a dilemma. The usual call to survfit is for a pseudo
cohort whose covariates do not change: 
> heart.surv1 <- survfit(heart.fit2, 
+                    data.frame(year=2, transplant=0) ) 
> heart.surv2 <- survfit(heart.fit2, 
+                    data.frame(year=2, transplant=1) ) 

The second curve, heart.surv2, represents a cohort of patients whose
transplant variable is always 1, even on day 0, that is, patients who had no
waiting time for a transplant. There were none of these in the study, so just
what does it represent? Time-dependent covariates that represent repeated
measurements on a patient, such as a blood enzyme level, are particularly
problematic. With time-dependent covariates, it is easy to create predicted
survival curves for “patients” that never would or perhaps never could exist. 

Because the model depends on the time-dependent covariate, transplant,
a proper predicted survival requires specification of a future covariate history
for the patient in question. (See the discussion of internal and external
covariates in section 5.3 of Kalbfleisch and Prentice for a more complete
exposition on these issues.) It is possible to obtain the projected survival for
some particular pattern of change in the covariates by supplying a multiple-
line data frame that reflects that pattern and setting individual = T. The
example below produces the survival curve for a cohort aged 50 with prior
surgery and a transplant at 6 months. That is, over the time interval (0,.5] the
covariate set is (50, 1, 0), and over the time interval (.5, 3] it is (50, 1, 1).
Note that start and stop times are in days rather than years. In order to
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specify the time points the failure time variables, start, stop, and event,
must be specified in the data frame as well as the covariates, though the value
for event will be ignored. 

> newdata <- data.frame(start=c(0,183), stop=c(183,3*365), 
+     event=c(1,1), age=c(50,50), surgery=c(1,1), 
+     transplant=c(0,1)) 
> survfit(heart.fit1, newdata, individual=T) 

Bladder Cancer 
Study

This example is taken from the paper by Wei, Lin, and Weissfeld (1989). The
study is of time to recurrence of bladder cancer and the data is contained in
the bladder data frame. The bladder data frame has either 4 or 5 rows for
each subject. Each subject had four recurrences of bladder cancer and some
were followed beyond the fourth recurrence. The variables in bladder are
defined as follows:

id patient ID

rx treatment group (1 = placebo, 2 = thiopeta)

size size of the largest initial tumor

number the number of initial tumors

start entry into the study or the time of last recurrence

stop time to event (months)

event indicator of cancer recurrence (1) or censoring (0)

enum number of recurrences of bladder cancer

A summary of bladder follows: 

> summary(bladder) 
        id           rx             size 
 Min.   : 1   Min.   :1.000   Min.   :1.000 
 1st Qu.:22   1st Qu.:1.000   1st Qu.:1.000 
 Median :43   Median :1.000   Median :1.000 
 Mean   :43   Mean   :1.447   Mean   :2.106 
 3rd Qu.:64   3rd Qu.:2.000   3rd Qu.:3.000 
 Max.   :85   Max.   :2.000   Max.   :8.000 
 
      number           stop           event 
 Min.   :1.000   Min.   : 1.00   Min.   :0.0000 
 1st Qu.:1.000   1st Qu.:12.00   1st Qu.:0.0000 
 Median :1.000   Median :25.00   Median :0.0000 
 Mean   :2.012   Mean   :25.06   Mean   :0.3294 
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 3rd Qu.:3.000   3rd Qu.:37.00   3rd Qu.:1.0000 
 Max.   :7.000   Max.   :59.00   Max.   :1.0000 
 
       enum 
 Min.   :1.00 
 1st Qu.:1.75 
 Median :2.50 
 Mean   :2.50 
 3rd Qu.:3.25 
 Max.   :4.00 

We create two data frames for analysis. The first one has only the first four
rows for each subject and has start removed. 

> bladder1 <- bladder[bladderenum<5,] 
> bladder1start <- NULL 

The second ones has removed all rows for which start and stop are equal. 

> bladder2 <- bladder[bladderstart< bladderstop, ] 

WLW fit four separate models, one for each recurrence, and then combined
the results. The first of the individual fits is based on time from the start of
the study until the first event, for all patients; the second fit is based on time
from the start of the study until the second event, again for all patients, etc.
The model estimated by WLW is fit by the following commands. The key
addition to the model is cluster(id), which asserts that subjects with the
same value of the variable id may be correlated. In order to compare the
results directly to Wei, Lin, and Weissfeld (1989), we first set the factor
contrasts to "contr.treatment". 

> options(contrasts=’contr.treatment’) 
> wfit <- coxph(Surv(stop, event) ~ (rx + size + number)*
+ strata(enum) + cluster(id), bladder1, method=’breslow’) 
> rx <- c(1,4,5,6) # coefficients for the treatment effect 
> cmat <- diag(4); cmat[,1] <- 1 # contrast matrix 
> cmat %*% wfit$coef[rx]   # coefs in WLW (table 5) 
           [,1] 
[1,] -0.5175702 
[2,] -0.6194396 
[3,] -0.6998691 
[4,] -0.6504161 
> wvar <- cmat %*% wfit$var[rx,rx] %*% t(cmat)
>           # var matrix (eqn 3.2) 
> sqrt(diag(wvar)) 
[1] 0.3075006 0.3639071 0.4151602 0.4896743 
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The same coefficients can also be obtained, as WLW do, by performing four
separate fits but it takes more work. A major advantage of the fitting the
model as above is that it allows us to fit submodels that are not available using
separate fits for each stratum. In particular, the model 

> Surv(stop, event) ~ rx + (size + number) * strata(enum) 
+        + cluster(id) 

differs only in that there is no treatment by strata interaction, and gives an
average treatment coefficient of -.60, which is near to the weighted average of
the marginal fits (based on the diagonal of wvar) suggested by WLW. WLW
also give the results for two suggestions proposed by Prentice et al. (1981).
For time to first event these are the same as above. For the second event they
use only patients who experienced at least one event, and use either the time
from start of study (method a) or the time since the occurrence of the last
event (method b). The code for these is follows: 
> fit2pa <- coxph(Surv(stop, event) ~ rx + size + number,
+ bladder2, subset = (enum==2)) 
> fit2pb <- coxph(Surv(stop-start, event) ~ rx + size +
+ number, bladder2, subset = (enum==2)) 

Lastly, the authors also make use of an Andersen-Gill model for comparison.
This model has the advantage that it uses all of the data directly, but because
of correlation it may underestimate the variance of the relevant coefficients. A
method to address this is given in a paper by Lee, Wei, and Amato (1992); it
is essentially the same method found in the WLW paper. This method for
variance estimation is invoked by specifying the cluster(id) term. 
> afit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number + cluster(id), data=bladder2) 
> afit 
Call: 
coxph(formula = Surv(start, stop, event) ~ rx + size +
number + cluster(id), data = bladder2) 

          coef exp(coef) se(coef) robust se      z     p 
    rx -0.4116     0.663   0.1999    0.2415 -1.704 0.088 
  size  0.1637     1.178   0.0478    0.0569  2.876 0.004 
number -0.0411     0.960   0.0703    0.0723 -0.568 0.570 

Likelihood ratio test=14.7  on 3 df, p=0.00213 n= 190 
> sqrt(diag(afit$var)) 
[1] 0.24151999 0.05690736 0.07228107 
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> sqrt(diag(afit$naive.var)) 
[1] 0.19989234 0.04776578 0.07029462 

The naive estimate of standard error is .20, the correct estimate of .24 is
intermediate between the naive estimate and the linear combination estimate.
Further discussion on these estimators can be found in the section Robust
Variance Estimation.

24.6 ADDITIONAL TECHNICAL DETAILS
The remaining subsections provide additional details on computations and
options available for fitting proportional hazards models, including:

• the handling of ties

• the effect of ties on the definitions of residuals

• tests for proportional hazards

• robust variance estimation

• the handling of case weights

• details about the computations of coxph

Computations 
for Tied 
Deaths

For untied data, the terms in the partial likelihood (equation (24.1)) look like

where r1, r2, …, rn are the subject risk scores. Assume that the real data are
continuous, but the recorded data have tied death times. For example, several
subjects might die on the first day of their hospital stay but they do not all
perish at the same moment. For a simple example, assume 5 subjects, ordered
by time of death or censoring, are in a study and the first two die at the same
recorded time. If the time data had been more precise, then the first two
terms in the likelihood would be either

or

.

Notice that the numerators remain constant, but the denominators do not.
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The question is how do you approximate the the correct term for the
likelihood? 

The Breslow approximation is the most commonly used because it is the
easiest to program. It simply uses the complete sum, r1 + r 2 + r 3 + r 4 + r 5,
for both denominators. Clearly, if the proportion of ties is large this will
deflate the partial likelihood. 

The Efron approximation uses .5r1 + .5r2 + r 3 + r 4 + r 5 as the second
denominator, based on the idea that r1 and r2 each have a 50% chance of
appearing in the “true” second term. If there were 4 tied deaths, then the
ratios for r1 to r4 would be 1, 3/4, 1/2, and 1/4 in each of the four
denominator terms, respectively. Though it is not widely used, the Efron
approximation is only slightly more difficult to program than the Breslow
version. In particular, since the down-weighting is independent of any case
weights and thus of b, the form of the derivatives of the likelihood is
unchanged. 

An alternate approach attempts an “exact” computation. The exact partial
likelihood, comes from viewing the data as genuinely discrete. The

denominator in this case is  if there are two subjects tied,

 if there are three subjects tied, etc. 

When using the coxph function to fit proportional hazards models, you can
specify any of the above three methods for handling ties. The default is the
Efron approximation (method = "efron"). The other two may be
specified by setting method = "breslow" or method = "exact". Note
that when there are no ties, all three methods produce the same likelihood
function.

Effect of Ties 
on Residual 
Definitions

The Efron approximation induces changes in the residuals’ definitions. In
particular, the Cox score statistic is still

but the definition of  has changed if there are tied deaths at time s. If

there are d deaths at s, then there are d different values of  used at the time

r i r ji j≠∑
r i r j r ki j k≠ ≠∑

, (24.8)U Zi s( ) Z s( )–( ) Ni s( )d
0

∞
∫

i 1=

n

∑=

Z s( )

Z
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point. The Schoenfeld residuals use , the average of these d values, in the
computation. The martingale and score residuals require a new definition of

. If there are d tied deaths at time t, we again assume that in the exact (but
unknown) untied data there are events and corresponding jumps in the
cumulative hazard at t ± e1 < …< t ± ed. Then each of the tied subjects will in
expectation experience all of the first hazard increment, but only (d-1)/d of
the second, (d-2)/d of the next, and etc. If we equate observed to expected
hazard at each of the d deaths, then the total increment in hazard at the time
point is the sum of the denominators of the weighted means. Returning to
our earlier example of 5 subjects of which 1 and 2 have tied deaths:

.

For the null model where ri=1 for all i, this agrees with the suggestion of
Nelson (1969) to use 1/5+1/4 rather than 2/5 as the increment to the
cumulative hazard. The formula for the score residuals is demonstrated using,
again, our previous example with five subjects the first two being tied. For
subject one the residual at time one is the sum a+b where

.

This product does not neatly collapse into  but is easy to

compute. The connection between residuals and the exact partial likelihood
is not as precise and are thus not implemented. If residuals are requested after
a Cox fit with method = "exact" the Breslow formulae are used.

Tests for 
Proportional 
Hazards

The key ideas of this section are taken from Grambsch and Therneau (1994).
Most of the common alternatives to the hypothesis test of proportional
hazards can be cast in terms of a time-varying coefficient model. That is, we
assume that

.

(If Zj is a 0/1 covariate such as treatment, this formulation is completely
general in that it encompasses all alternatives to proportional hazards.) The
proportional hazards assumption is then a test for b(t) = b, which is a test for

zero slope in the appropriate plot of  on t. Let i index subjects, j index
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variables, and k index the death times. Then let sk be the Schoenfeld residual
and Vk be the contribution to the information matrix (equation (24.4)) at
time tk. Define the rescaled Schoenfeld residual as

.

The main results are:

• , so that a smoothed plot of s* versus time gives a

direct estimate of .

• Many of the common tests for proportional hazards are linear tests
for zero slope, applied to the plot of s* versus g(t) for some function
g. In particular, the Z:PH test popularized in the SAS PHGLM
procedure corresponds to g(t) = rank of the death time. The test of
Lin (1991) corresponds to g(t) = K(t), where K is the Kaplan-Meier.

• Confidence bands, tests for individual variables, and a global test are
available, and all have the fairly standard “linear models” form.

• The estimates and tests are affected very little if the individual
variance estimates Vk are replaced by their global average

. Calculations then require only the

Schoenfeld residuals and the standard Cox variance estimate I-1.

For the global test, let g(t) be the desired transformation of time, and gk =

g(tk) be the value of g at the kth death time. Then

is asymptotically x2 on p degrees of freedom, where

.

Because the sk sum to zero, a little algebra shows that the above expression is
invariant if gk is replaced by gk - c for any constant c. Subtraction of a mean
will, however, result in less computer round-off error. A further simplification

s∗k β̂ skVk
1–+=

E s∗
k

( ) β tk( )=

β̂ t( )

V Vk d⁄∑ I d⁄= =

T gksk∑ 
  ′
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 =
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  Vk∑ 
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occurs by using , leading to

For a given covariate j, the diagnostic plot will have on the vertical axis

and gk on the horizontal. The variance matrix of is Sj = (A - cJ) + cI,

where A is a d3d diagonal matrix whose kth diagonal element is ,

, J is a d3d matrix of ones and I is the identity matrix. The constant

cI reflects the uncertainty in s* due to the  term. If only the shape of b(t) is
of interest (for example, is it linear or sigmoid) the c could be dropped. If
absolute values are important (for example, b(t)=0 for t>2 years) it should be
retained. For smooths that are linear operators, such as splines or the loess

function, the final smooth is  for some matrix H. Then  is

asymptotically normal with mean 0 and variance . Standard errors are

computed using ordinary linear model methods. If Vk is replaced with ,

then Sj simplifies to . With the same substitution, the

component-wise test for linear association is 

The cox.zph function uses equation (24.9) as a global test of proportional
hazards, and equation (24.10) to test individual covariates. The plot method
for cox.zph uses a natural spline smoother. Confidence bands for the

smooth are based on the full covariance matrix, with  replacing Vk. 

Though the simulations in Grambsch and Therneau (1993) did not uncover

any situations where the simpler formulae based on  are less reliable, such
cases could arise. The substitution trades a possible increase in bias for a
substantial reduction in the variance of the individual Vk. It is likely to be
unwise in those cases where the variance of the covariates, within the risk sets,

. (24.9)

(24.10)
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24. The Cox Proportional Hazards Model
differs substantially between different risk sets. Two examples come to mind.
The first would be a stratified Cox model, where the strata represent different
populations. In a multi-center clinical trial, for instance, inner city, Veterans
Administration, and suburban hospitals often service quite disparate

populations. In this case a separate average  should be formed for each
strata. A second example is where the covariate mix changes markedly over
time, perhaps because of aggressive censoring of certain patient types. These
cases have not been addressed directly in the software. However,
coxph.detail returns all of the Vk matrices, which can then be used to
construct specialized tests for such situations. 

Clearly, no one scaling function g(t) will be optimal for all situations. The
cox.zph function directly supports four common choices: identity, log,
rank, and 1 – Kaplan-Meier. By default, it will use the last of these, based on
the following rationale. Since the test for proportional hazards is essentially a
test for significant regression of the scaled residual modeled linearly in the gk,
we would expect this test to be adversely effected if there are outliers in the
gk. We would also like the test to be at most mildly affected by the censoring
pattern of the data. The Kaplan-Meier transform appears to satisfy both of
these criteria.

Robust 
Variance 
Estimation

The following technical discussion of robust variance estimation for Cox
models leads to a rather simple implementation conceptually. The basic idea
is to compute an approximate matrix of changes in estimated coefficients, L,
resulting from leaving out each observation one at a time. The robust
estimate of variance is then .  relates to other variance estimators as
follows:

•  is equivalent to the “working independence” estimate in
generalized estimating equations models.

•  is an approximate jackknife estimate of variance.

•  is equivalent to the Wei, Lin, and Weissfeld (1989) variance
estimate for a Cox model.

•  is a robust sandwich estimate as discussed in Huber (1967).

If the observations are grouped and correlated within groups, the above idea
works if entire groups (rather than individual observations) are left out for
computing the approximate jackknife variance estimate. This case
corresponds to Cox models with a counting process formulation and
multiple observations per subject. The resulting estimator of variance is
called the grouped jackknife estimator.

V

L′L L′L

L′L

L′L

L′L

L′L
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The Sandwich 
Estimator

The following discussion describes the general sandwich estimator, a
modification of the sandwich estimator for grouped data, and
implementation for Cox models. Robust variance calculations are based on
the sandwich estimate

where  is the usual information matrix, and B is a “correction term”.
The genesis of this formula can be found in Huber (1967), who discusses the
behavior of any solution to an estimating equation

.

Of particular interest is the case of a maximum likelihood estimate based on
distribution f (so that ), when in fact the data are

observations from distribution g. Then, under appropriate conditions, is

asymptotically normal with mean b and covariance , where

and B is the covariance matrix for . Under most situations

the derivative can be moved inside the expectation, and A will be the inverse
of the usual information matrix. This formula was rediscovered by White
(1980), (1982), and is also known in the econometric literature as White’s
method. Under the common case of maximum likelihood estimation we have

By interchanging the order of the expectation and the derivative, A-1 is the
expected value of the information matrix, which will be estimated by the
observed information I. Since E[ui(b)] = 0,
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24. The Cox Proportional Hazards Model
where ui(b) is assumed to be a row vector. If the observations are
independent, then the ui will also be independent and the cross terms in
equation (24.11) will be zero. A natural estimator of B is

where U is the matrix of score residuals, the ith row of U equals . The

column sums of U are the efficient score vector F. 

As a simple example consider generalized linear models. McCullagh and
Nelder (1989) maintain that overdispersion “is the norm in practice and
nominal dispersion the exception.” To account for overdispersion they
recommend inflating the nominal covariance matrix of the regression

coefficients  by a factor

,

where Vi is the nominal variance. Smith and Heitjan (to appear) show that

AB may be regarded as a multivariate version of this variance adjustment
factor, and that c and AB may be interpreted as the average ratio of actual

variance  to nominal variance Vi. By premultiplying by AB, each

element of the nominal variance-covariance matrix A is adjusted differentially
for departures from nominal dispersion.

Modified 
Sandwich 
Estimator

When the observations are not independent, the estimator B must be

adjusted accordingly. The “natural” choice  is not available of

course, since  by definition. However, a reasonable estimate is
available when the correlation is confined to subgroups. In particular, assume

(24.11)
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that the data comes from clustered sampling with j= 1, 2, …, k clusters,
where there may be correlation within clusters but observations from
different clusters are independent. Using equation (24.11), the cross-product
terms between clusters can be eliminated, and the resulting equation
rearranged as

,

where  is the sum of ui over all subjects in the jth cluster. This leads to the

modified sandwich estimator

,

where the collapsed score matrix  is obtained by replacement of each
cluster of rows in U by the sum of those rows. If the total number of clusters
is small, then this estimate will be sharply biased towards zero, and some
other estimate must be considered. In fact, rank(V) < k, where k is the
number of clusters. Asymptotic results for the modified sandwich estimator
require that the number of clusters tend to infinity.

Implementation 
for Cox Models

Application of these results to the Cox model proceeds by defining a
weighted Cox partial likelihood and letting

,

where w is the vector of weights. This approach is used by Cain and Lange to
define a leverage or influence measure for Cox regression. In particular, they
derive the leverage matrix

,

where Lij  is the approximate change in  when observation i is removed

from the data set. Their estimate can be recognized as a form of the
infinitesimal jackknife (see, for example, the discussion in Efron (1982) for
the linear models case). 

The connection to the jackknife is quite general. For any model stated as an
estimating equation, the Newton-Raphson iteration has step

,

the column sums of the matrix . At the solution  the iteration’s
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24. The Cox Proportional Hazards Model
step size is, by definition, zero. Consider the following approximation to the
jackknife

1. treat the information matrix I as fixed

2. remove observation i

3. beginning at the full data solution , do one Newton-Raphson
iteration.

This is equivalent to removing one row from L, and using the new column

sum as the increment. Since the column sums of  are zero, the

increment must be . That is, the rows of L are an approximation

to the jackknife, and the sandwich estimate of variance  is an
approximation to the jackknife estimate of variance. Lin and Wei (1989)
show the applicability of Huber’s work to the partial likelihood, and derive

the ordinary Huber sandwich estimate , the
approximate jackknife. When the data are correlated, the appropriate form of
the jackknife is to leave out an entire subject at time, rather than one
observation, that is, the grouped jackknife. To approximate this, we leave out

groups of rows from L, leading to  as the approximation to the jackknife.

Examples: Lee, Wei, and Amato (1992) consider highly stratified data sets which arise
from inter-observation correlation. As an example they use paired eye data on
visual loss due to diabetic retinopathy, where photocoagulation was randomly
assigned to one eye of each patient. There are n/2=1742 clusters (patients)
with 2 observations per cluster. Treating each pair of eyes as a cluster, they

derive the modified sandwich estimate , where  is derived from L
in the following way. L will have one row, or observation, per eye. Because of

possible correlation, we want to reduce this to a leverage matrix  with one
row per individual. The leverage (or row) for an individual is simply the sum
of the rows for each of their eyes. (A subject, if any, with only one eye would
retain that row of leverage data unchanged). The resulting estimator is shown
to be much more efficient than analysis stratified by cluster. A second
example given in Lee, Wei, and Amato concerns a litter-matched experiment.
In this case the number of rats per litter may vary. 
Wei, Lin, and Weissfeld (1989) consider multivariate survival times. An
example is the measurement of both time to progression of disease and time
to death for a group of cancer patients. The data set again contains 2n
observations, time and status variables, subject id, and covariates. It also
contains an indicator variable etype to distinguish the event type,

β̂

L β̂( ) 0=
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L ′L
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progression vs. survival. The suggested model is stratified on event type, and
includes all strata 3 covariate interaction terms. One way to do this with
coxph is 

> fit2 <- coxph(Surv(time,status) ~ (rx + size + number)*
+ strata(etype)) 
> Ltilde <- residuals(fit2, type=’dfbeta’,
+ collapse=subject.id) 
> newvar <- t(Ltilde) 

The per subject leverage matrix  is newvar. An alternate way to do this is 

> fit2a <- coxph(Surv(time,status) ~ (rx + size + number)*
+ strata(etype) + cluster(id)) 

The cluster argument asserts that subjects with the same value of id may
be correlated. The data for fitting the above two models is not built into
S-PLUS. However, similar computations can be performed using the
bladder data frame for comparison. Two ways of producing the robust
variance estimate follow: 

> bladder2 <- bladder[bladder$start< bladder$stop, ] 
> afit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number + cluster(id), data=bladder2) 
> sqrt(diag(afitvar)) 
[1] 0.24151999 0.05690736 0.07228107 

Now doing it an alternate way: 

> bfit <- coxph(Surv(start, stop, event) ~ rx + size + 
+ number, data = bladder2) 
> db <- resid(bfit, type="dfbeta", collapse = bladder2$id) 
> sqrt(diag(t(db) 
[1] 0.24876453 0.05842243 0.07421445 

Using the grouped jackknife approach, as suggested here, rather than separate
fits for each event type has some practical advantages:

• It is easier to program, particularly when the number of events per
subject is large.

• Other models can be encompassed, in particular one need not
include all of the strata 3 covariate interaction terms.

• There need not be the same number of events for each subject. The
method for building up a joint variance matrix requires that all of
the score residual matrices be of the same dimension, which is not
the case if information on one of the failure types was not collected
for some subjects.

L′˜ L̃
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24. The Cox Proportional Hazards Model
Weighted Cox 
Models

A Cox model that includes case weights has been suggested by Binder (1992)
in the context of survey data. If wi are the weights, then the modified score
statistic is

The individual terms ui are still  but the weighted mean  is

changed in the obvious way to include both the risk weights r and the

external weights w. The information matrix can be written as ,

where di is the censoring variable and vi is a weighted covariance matrix. The
definition of vi changes in the obvious way from equation (24.4). If all of the
weights are integers, then for the Breslow approximation this reduces to
ordinary case weights, that is, the solution is identical to what you obtain by
replicating each observation wi times. With the Efron approximation or the
exact partial likelihood approximation replication of a subject results in a
correction for ties. The coxph function allows general case weights. Residuals
from the fit are such that the sum of weighted residuals is zero, and the
returned values from the coxph.detail function are the individual terms ui

and vi, so that U and I are weighted sums. The sandwich estimator of

variance has  as its central term, where W is the diagonal matrix of

weights. The estimate of  and the sandwich estimate of its variance are
unchanged if each wi is replace by cwi for any c>0. 

For either of the Breslow or the Efron approximations, the extra
programming to handle weights is modest. For the Breslow method the logic
behind the addition is straightforward, and corresponds to the derivation
given above. For tied data and the Efron approximation, the formula is based
on extending the basic idea of the approximation, 

to include the weights, as necessary. Returning to the simple example of the
section Computations for Tied Deaths, the second term of the partial
likelihood is either

. (24.12)U β( ) wiui β( )
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or

.

To compute the Efron approximation, separately replace the numerator with
.5(w1r1 + w2r2) and the denominator with .5w1r1 + .5w2r2 + w3r3 + w4r4 +

w5r5. 

An exciting use of weights is presented in Pugh et al. (1993), for inference
with missing covariate data. Let pi be the probability that none of the
covariates for subject i is missing, and pi be an indicator function which is 0 if
any of the covariates actually is NA, so that E(pi) = pi. The usual strategy is to
compute the Cox model fit over only the complete cases, that is, those with
pi=1. If information is not missing at random, this can lead to serious bias in

the estimate of . A weighted analysis with weights of pi /pi will correct for
this imbalance. There is an obvious connection between this idea and survey
sampling. Both reweight cases from underrepresented groups. 

In practice pi will be unknown, and the authors suggest estimating it using a
logistic regression with pi as the dependent variable. The covariates for the
logistic regression may be some subset of the Cox model covariates (those
without missing information), as well as others. In an example, the authors
use a logistic model with follow-up time and status as the predictors. Let T be
the matrix of score residuals from the logistic model, that is,

,

where a are the coefficients of the fitted logistic regression. Then the

estimated variance matrix for  is the sandwich estimator , where

.

This is equivalent to first replacing each row of U with the residuals from a
regression of U on T, and then forming the product . Note that if the
logistic regression is completely uninformative (  = constant), this reduces

to the ordinary sandwich estimate.

Computations The coxph function is used to fit Cox proportional hazards models. The
input data is assumed to consist of observations or rows of data, each of
which contains the covariate values Z, a status indicator variable
(1 = event, 0 = censored), an optional stratum indicator variable
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24. The Cox Proportional Hazards Model
(referenced by the strata function), along with the time interval (start, stop]
over which this information applies. This means that each row is treated as a
separate subject whose Yi variable is 1 (one) on the interval (start, stop] and 0
(zero) otherwise. and that the risk set at time t only uses the applicable rows
of the data. 
The code for coxph does not specifically accommodate time-dependent
covariates, time-dependent strata, multiple events, or any of the other special
features mentioned. Consequently, it is your responsibility to construct an
appropriate data set. This strategy leads to a fitting program that is simpler,
shorter, easier to debug, and more computationally efficient than one with
multiple specific options. A significantly more important benefit is that the
flexibility inherent in building the proper data set allows analyses not
originally considered—left truncation is a case in point. 

The more common way to deal with time-dependent Cox models is to do a
computation for each death time. For example, BMDP and SAS PHREG do
this. One advantage of this over the algorithm implemented in coxph is the
ability to code continuously varying time-dependent covariates. The coxph
function only accommodates step functions. However, this does not appear
to be a deficiency in practice. For the common case of repeated
measurements on each subject, the data for coxph are quite easy to set up
since they correspond to the original measurements of one line of data per
visit. 

The coxph function typically runs much faster when there are stratification
variables in the model. When strata are introduced, coxph spends less time
locating the current risk set because it only looks within the stratum it is
estimating. 
If the start time is omitted, it is assumed to be zero for all cases. In this case
the algorithm is equivalent to the standard Cox model.

24.7 REFERENCES
Andersen, P. K. and Gill, R. D. (1982). Cox's regression model for counting
processes: A large sample study. Annals of Statistics, 10:1100–1120.
Binder, D.A. (1992). Fitting Cox's proportional hazards models from survey
data. Biometrika, 79:139–147.

Chambers, J. M. and Cleveland, W. S. and Kleiner, B. and Tukey, P. A.
(1983). Graphical Methods for Data Analysis. Wadsworth, Belmont, CA.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal
Statistical Society, Series B, 34:187–202.

Crowley, J. and Hu, M. (1977). Covariance analysis of heart transplant data.
694



References
Journal of the American Statistical Association, 72:27–36.

Efron, B. (1977). The efficiency of Cox's likelihood function for censored data.
Journal of the American Statistical Association, 72:557–565.

Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans.
Technical Report CMBS-NSF Monograph 38, SIAM.

Fleming, T. and Harrington, D. (1991). Counting Processes and Survival
Analysis. Wiley, New York.

Grambsch, P. and Therneau, T.M. (1994). Proportional hazards tests and
diagnostics based on weighted residuals. Biometrika, 81:515–526.

Harrell, F. (1986). The PHGLM procedure. SAS Supplemental Library User's
Guide, Version 5. SAS Institute, Inc., Cary, NC.

Huber, P.J. (1967). The behavior of maximum likelihood estimates under non-
standard conditions. In Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, 1:221–233.

Kalbfleisch, J. and Prentice, R. L. (1980). The Statistical Analysis of Failure
Time Data. Wiley, New York.

Lee, E.W., Wei, L.J., and Amato, D. (1992). Cox-type regression analysis for
large number of small groups of correlated failure time observations. In J.P Klein
and P.K. Goel, editors, Survival Analysis, State of the Art, pages 237–247.
Kluwer Academic Publishers, Netherlands.

Lin, D.Y. and Wei, L.J. (1989). The robust inference for the Cox proportional
hazards model. Journal of the American Statistical Association, 84:1074–
1079.

Lin, D.Y. (1991). Goodness-of-fit analysis for the Cox regression model based on
a class of parameter estimators. Journal of the American Statistical Association,
86:725--728.

Lin, D.Y., Wei, L.J., and Ying, Z. (1992). Checking the Cox model with
cumulative sums of martingale-based residuals. Technical Report #111, Dept.
of Biostatistics, U. of Washington.

McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models, 2nd
edition. Chapman and Hall, London.

Oakes, D. (1977). The asympotic information in censored survival data.
Biometrika, 64:441-448.

Pugh, M., Robins, J., Lipsitz, S., and Harrington, D. (1993). Inference in the
Cox proportional hazards model with missing covariate data, in press.

Prentice, R.L., Williams, B.J., and Peterson, A.V. (1981). On the regression
analysis of multivariate failure time data. Biometrika, 68:373--89.

Schonfeld, D. (1982). Partial residuals for the proportional hazards regression
695



24. The Cox Proportional Hazards Model
mode. Biometrika, 69:239-241.

Smith, P.J. and Hietjan, D.F. (to appear). Testing and adjusting for
overdispersion in generalized linear models. 

Therneau, T. M. and Grambsch, P. M. and Fleming, T. R. (1990).
Martingale-based residuals for survival models. Biometrika, 77:147–160.

Wei, L.J., Lin, D.Y., and Weissfeld, L (1989). Regression analysis of
multivariate incomplete failure time data by modeling marginal distributions.

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator
and a direct test for heteroskedasticity. Econometrica, 48:817–830.

White, H. (1982). Maximum likelihood estimation of misspecified models.
Econometrika, 50:1–25.
696



Parametric methods are used where extrapolation of 
results is necessary to predict failure rates.

PARAMETRIC REGRESSION IN 
SURVIVAL MODELS 25
25.1 IRLS Formulation 699

 Derivatives of the Log Likelihood 702

25.2 Distributions 703

25.3 Computations 705

25.4 Residuals 707

25.5 Example 707

25.6 References 712

697



25. Parametric Regression in Survival Models

698



PARAMETRIC REGRESSION IN SURVIVAL 
MODELS 25

In contrast to the non-parametric (and semi-parametric) survival curve
estimates of Kaplan-Meier, Fleming-Harrington, and Cox, among others,
this chapter presents a parametric formulation to the estimation problem.
The development and use of parametric survival models actually predates
that of the non-parametric methods. Although, non-parametric methods
now dominate in fields of study where the primary concern is to assess the
relative risk of failing (for example, dying) for two subjects that have different
covariables (for example, treatment regimens), parametric methods are still
vitally important in situations where extrapolation of results is necessary to
predict failure rates under different conditions than those in the original
study. A typical question addressed by non-parametric methodology is “How
much does the risk of dying decrease if a new treatment is given to a lung
cancer patient.” A typical question addressed by the parametric methodology
in an accelerated testing setting is “What proportion of heaters will fail when
run at  for 2 years” even though the original study ran heaters at
temperatures ranging from   to  for only four months.

In a manufacturing setting, studies of failure rates for new products cannot
typically be done under normal operating conditions because they take too
long to complete. Consequently, accelerated tests are conducted, exposing the
product to more severe stresses than normal so that failures occur and then
extrapolation is used to estimate failure rates under normal operating
conditions. If the data are reasonably well modeled by one of the parametric
distributions, parametric models provide information for assessing properties
of the baseline hazard function which the non-parametric models don’t.

The parametric survival distributions implemented in  S-PLUS are

• Normal (Gaussian) and log-normal

• Smallest extreme value and Weibull

• Logistic and log-logistic

• Exponential

• Rayleigh

25.1 IRLS FORMULATION
With some care, parametric survival can be formulated as an iteratively
reweighted least squares (IRLS) problem used in Generalized Linear Models

1100°F

1520°F 1710°F
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25 Parametric Regression in Survival Models.
(GLM) of McCullagh and Nelder (1989). A detailed description of this setup
for general maximum likelihood computation is found in Green (1984). This
is the approach used for fitting parametric survival curves in S-PLUS.
Let y be the response vector, and xi be the vector of covariates for the ith
observation. Assume that

for some distribution f, where y may be censored and t is a differentiable
transformation function.

Then the likelihood for t(y) is

,

where  exact,  right,  left, and  interval  refer to uncensored, right censored, left

censored, and interval censored observations, respectively, and  is the

lower endpoint of a censoring interval. Then the log likelihood is defined as

Derivatives of the log likelihood with respect to the regression parameters are 

where  is the vector of linear predictors.

Thus if we treat  as fixed, then iteration is equivalent to IRLS with weights

of  and adjusted dependent variable of . The Newton-
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IRLS Formulation
Raphson step defines an update  by

where D is the diagonal matrix formed from , and U is the vector .

The current estimate  satisfies , so that the new estimate 
will have

This implementation allows the returned fit object to inherit from class
"glm". Consequently, stepwise methods are inherited allowing one step
update approximations effectively under the assumption that the extra
parameters are fixed. This is a useful and quick first approximation for new
fits.

There are several differences between this parametric survival formulation
and generalized linear models (GLM).

1. A GLM assumes that y comes from a particular distribution and a
transformation (called the link function) of the mean of y

 is linearly related to the predictors. That is, if t is the

link function then . For parametric survival models, we
assume that the transformed data, t(y), follows the given
distribution. If the data are uncensored, the fit of a gaussian model
with log link will not be the same as a GLM fit with log link. In this
case, the survival fitting function assumes that the error distribution
is log-normal.

2. The starting estimate procedure for a GM has been modified. The
regression coefficients are not independent of . The procedure

starts with a naive estimate of , the variance of y, ignoring
censoring. With sigma fixed, the parameters for the other variables
can be estimated by doing one iteration with . For interval

censoring, the midpoint is used. Then  is reestimated as the
variance of the unweighted residuals and iteration continues.

3. The maximized value of the log likelihood for a right or left censored
observation is 0, since by making  sufficiently large or small the
relevant integral is 1. Thus, there is no “deviance correction". There
is, however, for interval censored values.

, (25.5)

. (25.6)
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25 Parametric Regression in Survival Models.
Derivatives of 
the Log 
Likelihood

This section is very similar to the appendix of Escobar and Meeker (1992).
Let f and F denote the density and cumulative distribution functions,
respectively, of one of the parametric survival distributions. Using
equation (25.2) for defining g1,…,g4, we have

To obtain the derivatives for g2, set the upper endpoint zu to  in the
equations for g4.  To obtain the equations for g3, left censored data, set the

lower endpoint to . See section 25.3, Computations, for comments on
parameterization with respect to  instead of .
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Distributions
25.2 DISTRIBUTIONS
The presentation of the distributions contained in this section are similar to
that in Nelson (1982). Derivatives of the terms in the log likelihood,
equation (25.2), are presented following the details for each distribution.
For each distribution the standardized variable, z, is defined by
equation (25.1) where  is the linear predictor and  is the scale

parameter. The details for each distribution are written in terms of the
standardized variable, z.

Gaussian This is, perhaps, the most frequently used distribution in applied statistics. It
is more commonly known as the normal distribution. The standardized
variable, z, defined by equation (25.1) has mean 0 (zero) and variance 1
(one). The standard normal distribution is then defined by

The derivatives of the terms in the log likelihood, equation (25.2), are given
by

For uncensored data, the “standard” GLM results are obtained by
substituting g1 into equations (25.2)-(25.6). The first derivative vector is

equal to X'r where  is a scaled residual, the update step D-1U is

independent of the estimate of , and the maximum likelihood estimate of

 is the sum of squared residuals. None of these hold so neatly for right
censored data.

Smallest Extreme 
Value

If y has the smallest extreme value distribution, then ey has a Weibull
distribution and e-y has a Gompertz distribution. To fit a Weibull model let
t(y) = log(y). If the scale is constrained to be 1 (one) and a log transform is
applied to y, an exponential model is fit. A log transform of y with the scale
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25 Parametric Regression in Survival Models.
constrained to be 0.5 yields a Rayleigh distribution. If y is reflected about
zero, that is, t(y) = -log(y) and right and left censoring indicators are
exchanged, the resulting fit is equivalent to fitting a Gompertz distribution.
The signs of the returned coefficients and residuals will be reversed, however.
The standardized variable, z, defined by equation (25.1) has mean 0.5722

and variance . Let w = ez, then the standard smallest extreme value
distribution is defined as

The derivatives for the terms in the log likelihood, equation (25.2), are given
by: 

The mode of the distribution is at z = 0 with f(0) = 1/e. For an exact

observation the deviance term has . For interval censored data where

the interval is of length b = zu - zl, most mass is covered if the interval has a

lower endpoint of a = log(b/(eb - 1)), so that the contribution to the
deviance is

.

In the literature, the cumulative distribution function for the Gompertz is

sometimes written as . Rewriting this with ,

however, we see that  can be absorbed into the intercept term.

Logistic This distribution is very close to the Gaussian except in the extreme tails, but
it is far easier work with. All the computations are closed form. However,
very small data values combined with a log transformation lead to extreme
values, in which case the results will differ. (In such cases the rationality of a
Gaussian fit may also be in question). The standardized variable, z, defined
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Computations
by equation (25.1) has mean 0 (zero) and variance . Let w= ez, then
the standard logistic distribution is defined by

The derivatives for the terms in the log likelihood, equation (25.2), are given
by:

The distribution is symmetric about 0, so for an exact observation the
contribution to the deviance term is -log(4). For an interval censored
observation with span 2b the contribution is

 

Other 
Distributions

This general approach would seem to apply to any distribution with a
support over the entire line. The connection to GLM, however, requires that
the weights, , be positive, that is, that the distribution is log-concave.
This is not true for the Cauchy distribution, for instance, or any other whose
tails are heavier than the double exponential.

25.3 COMPUTATIONS
Perhaps surprisingly, these likelihoods do not always behave well. The
iteration seems to be particularly sensitive to the scale parameter. Our starting
estimate may not be so good, since it does not account for the amount of
censoring. For small data sets it is easy to find starting estimates that lead to
divergence of the Newton-Raphson method.
Because of this, the internal routine used for estimating the parameters has
been updated to a ridge-stabilized weighted likelihood. The basic operations
of this are
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25 Parametric Regression in Survival Models.
• A Choleski decomposition is used on the information matrix I,
which returns an indicator of whether the matrix is positive definite.
The matrix is always symmetric by construction. Denote symmetric
positive definite by SPD.

• If the matrix is not SPD, then the step  is taken

instead of the the usual step defined by , where D is the

diagonal of I. That is, the diagonal of I is multiplied by . For

large enough , the matrix will become diagonally dominant and

therefore SPD. The value of  is increased through the series

1,2,4, ... until  is SPD.

• The ridge parameter  is reduced if possible by a factor of 4 in each
iteration. It never returns to 0 (zero), however, once ridge
stabilization has been invoked.

• If an iteration leads to a worsening of the log likelihood, then step
halving is employed.

Though quite stable, it can take a surprising number of steps for the program
to leave a bad region of the parameter space. If I is far from SPD, the ridge
correction can cause the iteration steps to be very small. It may easily take 8-
10 iterations to get “back on track”. Normally the GLM type of parameter
initialization is very good, a ridge estimate is not required, and convergence
occurs in 3-5 iterations.

One side effect of this procedure is that the iteration is immune to any
singularities in the model matrix. If the model matrix is singular then its
coefficients may be indeterminate, but the values of  are still well defined.
The procedure finishes by doing one iteration of the IRLS algorithm by
calling the lm.wfit function. Nice side effects of this are the handling of the
singular.ok option and creation of most of the data items needed to
inherit from class "glm".

Parameterization is in terms of . This avoids the boundary condition
at 0 (zero), and decreases the number of iterations considerably for some
cases. This implementation is made by applying the chain rule:

I τD+( )δ U=

Iδ U=

1 τ+

τ
τ

I τD+

τ

η

log(σ )
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Residuals
Though deviance is reported, minimization is based on the log-likelihood. In
these models the scale parameter is a part of our iteration set, unlike GLM
where scale is estimated after the end of iteration. Like GLM models,
however, the deviance is calculated as though the scale parameter were fixed
in advance.

25.4 RESIDUALS
The residuals function returns a matrix containing the following columns

• The component of the deviance residual

•

•

•

•

•

These data can be used for various influence diagnostics, in the fashion of
Escobar and Meeker (1992). (Note that their  is our .) “User friendly”
functions that make use of these for plots have yet to be written.

25.5 EXAMPLE
Parametric survival curves are estimated using the survreg function. The
capacitor data frame contains data from a simulated life testing of
capacitors from Meeker and Duke (1982). The capacitor data frame is
close enough to the data modeled in Nelson (1990), page 302, that it works
as a verification data set. The variables in capacitor are:
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25 Parametric Regression in Survival Models.
• daystime to failure

• eventindicator of failure (1) or censoring (0)

• voltagevoltage at which the test was run

A summary of this data frame follows: 

> summary(capacitor)
       days            event          voltage
 Min.   :  0.68   Min.   :0.000   Min.   :20.00
 1st Qu.: 73.87   1st Qu.:0.000   1st Qu.:26.00
 Median :300.00   Median :0.000   Median :26.00
 Mean   :205.20   Mean   :0.432   Mean   :26.72
 3rd Qu.:300.00   3rd Qu.:1.000   3rd Qu.:29.00
 Max.   :300.00   Max.   :1.000   Max.   :32.00

You fit a Weibull model to the capacitor data as follows: 

> capac.fit1 <- survreg(Surv(days, event) ~ voltage,
+ data = capacitor) 

You don’t have to specify the distribution or the link function in this case
because survreg defaults to link = "log" and dist = "extreme", the
smallest extreme value distribution, together which correspond to the
Weibull distribution. Printing the resulting fit produces the following
display: 

> capac.fit1 
> survreg(Surv(days, event) ~ voltage, data = capacitor)
Call:
survreg(formula = Surv(days, event) ~ voltage, data = 
capacitor)

Coefficients:
 (Intercept)    voltage Log(scale)
    24.14074 -0.6403556  0.1855962

Dispersion (scale) = 1.203936
Degrees of Freedom: 125 Total; 122 Residual
Residual Deviance: 116.3684

The summary of the fit object looks almost identical to the summary of a
glm fit object: 

> summary(capac.fit1)
Call:
survreg(formula = Surv(days, event) ~ voltage, data = 
capacitor)
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Example
Deviance Residuals:
   Min     1Q Median    3Q  Max
 -2.49 -0.762  0.136 0.673 1.57

Coefficients:
              Value Std. Error z value        p
(Intercept)  24.141     2.4495    9.86 6.49e-23
    voltage  -0.640     0.0811   -7.89 2.93e-15
 Log(scale)   0.186     0.1113    1.67 9.54e-02

Extreme value distribution: Dispersion (scale) = 1.203936

    Null Deviance: 241 on 124 degrees of freedom
Residual Deviance: 116 on 122 degrees of freedom (LL= -122)
Number of Newton-Raphson Iterations: 6 

Correlation of Coefficients:
           (Intercept) voltage
   voltage -0.998
Log(scale)  0.561      -0.559 

Voltage is clearly quite significant in the model. Let’s examine a plot of the
deviance residuals to see how well the model fits. The deviance residuals
versus the logged fitted values are displayed in figure 25.1.

> plot(log(fitted(capac.fit1)), resid(capac.fit1)) 
> title("Deviance Residuals vs Log Fitted Values")

You can now compute percentiles from the model. The percentile formulas
are taken from Nelson (1990), page 64. Noting that for a Weibull
distribution the pth percentile is given by

 and that

A function for estimating the percentiles follows: 

> "weib.percentile" <-
function(p, stress, coefs, scale)
{
        up <- - log(1 - p)
        alpha <- exp(sum(coefs * c(1, stress)))

Tp α loge 1 p–( )–[ ]1 β⁄
=

loge α( ) α0 α1voltage+=

β 1 scale parameter from the fit( )⁄=
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25 Parametric Regression in Survival Models.
        percentile <- alpha * (up^scale)
        names(percentile) <- paste(100 * p, "%", sep = "")
        percentile
}

Using the model information we now estimate the time in years for for
various percentages of units to fail when operating at 20 volts. 

> weib.percentile(c(.01,.05,.1), 20, coef(capac.fit1),
+ 1.204)/365.25
        1%       5%      10%
 0.8998401 6.404023 15.23506

Thus, it takes about 6.4 years for 5% of the units to fail when operating at 20
volts.

The example in Nelson (1990), page 302, displays a Weibull model with the

Figure 25.1:  Deviance residuals versus fitted values for a model of
capacitor failure times versus voltage.

•

•
••

•

•

•
••
••

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

log(fitted(capac.fit1))

re
si

d
(c

a
p

a
c.

fit
1

)

4 6 8 10

-2
-1

0
1

Deviance Residuals vs Log Fitted Values
710



Example
logged scale parameter, , modeled as a linear function of

. We fit and display a partial summary of this second model as

follows: 

> capac.fit2 <- survreg(Surv(days, event) ~ log(voltage),
+ data = capacitor) 
> summary(capac.fit2)
Call:
survreg(formula = Surv(days, event) ~ log(voltage), data = 
capacitor)
Deviance Residuals:
  Min     1Q Median    3Q  Max
 -2.5 -0.718 0.0894 0.668 1.54

Coefficients:
               Value Std. Error z value        p
 (Intercept)  67.945      8.151    8.34 7.69e-17
log(voltage) -18.546      2.395   -7.74 9.78e-15
  Log(scale)   0.191      0.111    1.71 8.67e-02

Extreme value distribution: Dispersion (scale) = 1.210292 

    Null Deviance: 241 on 124 degrees of freedom
Residual Deviance: 116 on 122 degrees of freedom (LL= -12 )
. . .

Now applying the weib.percentile function to capac.fit2 we obtain
percentiles similar to those (56.0794, 394.2983, 915.1363) on page 302 of
Nelson (1990). 

> weib.percentile(c(.001, .005, .01), log(20),
+ coef(capac.fit2), 1.2103)
   0.1%     0.5%       1%
 56.075 394.2635 915.0514

Note that the survreg function does not take a weights argument like
most of the other model fitting functions. Consequently, if you have a
variable of case weights, you have to expand the data frame by replicating the
cases according to their weights. This is what we did to create the
capacitor data frame. The original data frame had 25 capacitors censored
at 300 days for voltage 20, 39 capacitors censored at 300 days for voltage 26,
and 7 capacitors censored at 300 days for voltage 29. Originally, there was a
case.weights variable so that only three rows in the capacitor data
frame represented these censored observations. They looked like the

loge α( )

loge voltage( )
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25 Parametric Regression in Survival Models.
following: 
  days censor case.weights voltage
 1 300      1           25      20
 2 300      1           39      26
 3 300      1            7      29

We expanded these rows in the following way: 

> capacitor <- capacitor[rep(1:dim(capacitor)[1],
+ capacitor$case.weights), ] 

The indicies to the rows of the data frame are replicated according to
case.weights and the subscripting repeats the appropriate rows.

Warning You can apply other transformation functions (for example, ^2, sqrt), to the
predictor variable(s) as you can for other model fitting functions in S-PLUS.
However, there is no safe prediction function like predict.gam is for linear
models. Consequently, you need to be wary of using functions like poly, bs
and ns which produce parameter estimates dependent on the original data.
For models created using these transformations, functions like
weib.percentile will not produce correct computations because simply
multiplying the estimated coefficient(s) times the new data values is not valid
for these complex transformations. See the help file for predict.gam for a
discussion of safe prediction.
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Expected survival curves are typically used for comparison 
purposes with other survival studies.
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EXPECTED SURVIVAL 26
This chapter describes several methods for estimating expected survival
curves. Typically expected curves are used for comparison with another study.
Sometimes the results of an earlier study are compared with a later one to
assess, for example, improvement in treatment. Expected survival curves can
be computed from tables of hazards rates or from a previously computed Cox
model.
The methodology described in this chapter includes the computation of
individual and cohort expected survival curves. Individual expected curves are
typically used to compute tests to compare the observed survival with that
expected (for example, the one-sample log-rank test) for a matched (for
example, on age, sex, and year of entry) control population. Cohort expected
curves are useful for graphical comparisons, sample size computations, and
forecasting.

Three methods are available for computing cohort expected survival curves:
the Ederer or “exact” method, Hakulinen’s method, and the conditional
estimate. In the Cox model literature, these have been called the “direct-
adjusted,” “Bonsel,” and “expected survival” curves. Each method generates a
matched control for each subject in the study and then computes the
expected survival for the matched controls. The difference between the
methods lies in the assumptions made when computing the expected
survival. The basic assumptions of each and a brief description of its utility
follows:

Ederer Assumes complete follow-up, that is, no censoring.
Each control is followed until death. This is most
appropriate when doing forecasting, sample size
calculations or other predictions of the “future”
where censoring is not an issue.

Hakulinen Assumes maximal potential follow-up. Each control is
followed until death or censoring of its matched case.
Useful for graphical comparison with the study
population.

conditional Has the same assumptions and is asymptotically
equivalent to Hakulinen’s method.

The implementation of expected survival curve estimation allows inputing
you own table of hazard rates or computing expected survival based on a
previous Cox model. Additionally, the notion of person years of follow-up
time is discussed as an example.  
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26. Expected Survival
26.1 INDIVIDUAL EXPECTED SURVIVAL
Let  and  be the derived hazard and cumulative hazard functions,

respectively, for subject i, starting at their time of entry to the study. Then
 is the subject’s expected survival function.

Some authors use the product form  where the q are

yearly probabilities of death, and yet others an equation similar to actuarial
survival estimates. Numerically it makes little difference which form is
chosen, and the S functions use the hazard based formulation for its
convenience.

The survival tables published by the Department of the Census contain one
year survival probabilities by age and sex, optionally subgrouped as well by
race and geographic region. The entry for age 21 in 1950 is the probability
that a subject who turns 21 during 1950 will live to his or her 22nd birthday.
The tables stored in S contain the daily hazard rate  rather than the
probability of survival p

for convenience. If a, s, and y are subscripts into the age by sex by calendar
year table of rates, then the cumulative hazard for a given subject is simply
the sequential sum of . That is, the

patient progresses through the rate table on a diagonal line whose starting
point is (date of entry, age at entry, sex), see Berry (1983) for a nice graphical
illustration.

26.2 COHORT EXPECTED SURVIVAL
The expected survival curve for a cohort of n subjects is an “average” of the n
individual survival curves for the subjects. There are 3 main methods for
combining these; for some data sets they can give substantially different
results.  Let Se be the expected survival for the cohort as a whole, and Si, 

be the individual survival and hazard functions. All three methods can be
written as

and differ only in the weight function wi.

λ i t( ) Λi t( )

Si t( ) exp Λi t( )–( )=

S 1 Π 1 qk–( )–=

λ

p exp 365.25 λ×–( )=

λasy number of days in statea s y, ,( )×

(26.1)
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Cohort Expected Survival
The cohort curve should be distinguished from the individual curve for an
average subject. For example, assume we had a cohort of grandfathers and
their grandsons, the grandfathers average 70 years and the grandsons average
10 year of age. The cohort curve, which is an estimate of the curve we would
expect from long term follow-up of these subjects, is considerably different
than the curve for the “average” subject with mean age of 40 years.

The Exact 
Method

A weight function of wi(t) = Si(t) corresponds to the exact method. This is
the oldest and most commonly used technique, and is described in Ederer,
Axtel and Cutler (1961). An equivalent expression for the estimate is

The exact method corresponds to selecting a population matched control for
each subject in the study, and then computing the expected survival of this
cohort assuming complete follow-up. The exact method is most appropriate
when doing forecasting, sample size calculations or other predictions of the
“future" where censoring is not an issue.

A common use of the expected survival curve is to plot it along with the
Kaplan-Meier estimate of the sample in order to assess the relative survival of
the study group. When used in this way, several authors have shown that the
exact method can be misleading if censoring is not independent of age and
sex (or whatever the matching factors are for the referent population).
Indeed, independence is often not the case. For example, in a long study it is
not uncommon to allow older patients to enroll only after the initial phase. A
severe example of this is demonstrated in Verheul et al. (1993), concerning
aortic valve replacement over a 20 year period. The proportion of patients
over 70 years of age was 1% in the first ten years, and 27% in the second ten
years. Assume that analysis of the data took place immediately at the end of
the study period. Then the Kaplan-Meier curve for the later years of follow-
up time will be too flat, since it is computed only over the early enrollees,
who are younger on the average. The Ederer or exact curve will not reflect this
bias, and makes the treatment look better than it is. The exact expected
survival curve forms a reference line, in reality, for what the Kaplan-Meier
will be when follow-up is complete, rather than for what the Kaplan-Meier is
now.

Hakulinen’s 
Method

In Hakulinen’s method (1982, 1985), each study subject is again paired with
a fictional referent from the cohort population, but this referent is now
treated as though he/she were followed in the same way as the study patients.
Each referent thus has a maximum potential follow-up; that is, they will

(26.2)Se t( ) 1 n⁄( ) Si t( )∑=
717



26. Expected Survival
become censored at the analysis date. Let ci(t) be a censoring indicator which
is 1 during the period of potential follow-up and 0 thereafter; the weight
function for the Hakulinen or cohort method is wi(t) = Si(t)ci(t).

If the study subject is censored then the referent would presumably be
censored at the same time, but if the study subject dies the censoring time for
his/her matched referent will be the time at which the study subject would
have been censored. For observational studies or clinical trials where censoring
is induced by the analysis date this should be straightforward, but
determination of the potential follow-up could be a problem if there are large
numbers lost to follow-up. (However, as pointed out long ago by Berkeson, if
a large number of subjects are lost to follow-up then any conclusion is subject
to doubt. Did patients stop responding to follow-up letters at random,
because they were cured, or because they were at death’s door?)

In practice, the program will be invoked using the actual follow-up time for
those patients who are censored, and the maximum potential follow-up for
those who have died. By the maximum potential follow-up we mean the
difference between enrollment date and the average last contact date; for
example, if patients are contacted every 3 months on average and the study
was closed six months ago this date would be 7.5 months ago. It may be true
that the (hypothetical) matched control for a case who died 30 years ago
would have little actual chance of such long follow-up, but this is not really
important. Almost all of the numerical difference between the Ederer and
Hakulinen estimates results from censoring those patients who most recently
entered the study. For these recent patients, presumably, enough is known
about the operation of the study to give a rational estimate of potential
follow-up.

The Hakulinen formula can be expressed in a product form

where pi(t,s) is the conditional probability of surviving from time t to time

t+s, which is . The formula is technically correct

only over time intervals (t, t+s) for which ci is constant for all i; that is,
censoring only at the ends of the interval.

, (26.3)Se t s+( ) Se t( )
pi t s,( )Si t( )ci t( )∑

Si t( )ci t( )∑
-----------------------------------------------×=

exp Λi t( ) Λi t s+( )–( )
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Cohort Expected Survival
The 
Conditional 
Method

The conditional estimate is advocated by Verheul (1993), and was also
suggested as a computation simplification of the exact method by Ederer and
Heise (1977). For this estimate the weight function wi(t) is defined to be 1
while the subject is alive and at risk and 0 otherwise. It is clearly related to
Hakulinen’s method, since E(wi(t)) = Si(t)ci(t). Most authors present the

estimator in the product-limit form , where d and n are
the numerator and denominator terms within the integral of equation (26.1).
One disadvantage of the product-limit form is that the value of the estimate
at time t depends on the number of intervals into which the time axis has
been divided, for this reason we use the integral form (equation (26.1))
directly.
One advantage of the conditional estimate, shared with Hakulinen’s method,
is that it remains consistent when the censoring pattern differs between age-
sex strata. A problem with the conditional estimator is that it has a much
larger variance than either the exact or Hakulinen estimate. In fact, the
variance of these latter two can usually be assumed to be zero, at least in
comparison to the variance of the Kaplan-Meier of the sample. Rate tables
are normally based on a very large sample size so the individual  are very

precise, and the censoring indicators ci are based on the study design rather
than on patient outcomes.  The conditional estimate Sc(t), however, depends
on the actual death times and wi is a random variable.

The main use of the conditional estimate is when making conditional
statements about survival. For example, in studies of surgical intervention
such as hip replacement, the observed and expected survival curves often
initially diverge due to surgical mortality, and then appear to become parallel.
It is tempting to say that survival beyond hospital discharge is equivalent to
expected. This is a conditional probability statement, and it should not be
made unless a conditional estimate is used.

A hypothetical example may make this clearer. For simplicity assume no
censoring. Suppose we have studies of two diseases, and that their age
distributions at entry are identical. Disease A kills 10% of the subjects in the
first month, independent of age or sex, and thereafter has no effect. Disease B
also kills 10% of its subjects in the first month, but predominately affects the
old. After the first month it exerts a continuing though much smaller force of
mortality, still biased toward the older ages. With proper choice of the age
effect, studies A and B will have almost identical survival curves; as the
patients in B are always younger, on average, than those in A. Two different
questions can be asked under the guise of “expected survival”:

Π 1 d t( ) n t( )⁄–[ ]

λ i
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26. Expected Survival
• What is the overall effect of the disease? In this sense both A and B
have the same effect, in that the 5 year survival probability for a
diseased group is x% below that of a matched population cohort.
The Hakulinen estimate would be preferred because of its lower
variance. It estimates the curve we “would have gotten” if the study
had included a control group.

• What is the ongoing effect of the disease? Detection of the
differential effects of A and B after the first month requires the
conditional estimator. We can look at the slopes of the curves to
judge if they have become parallel.

The actual curve generated by the conditional estimator remains difficult to
interpret, however. The difficulty lies in the fact that the control subject is
removed from the calculation whenever his/her matching case dies. In
general, Hakulinen’s cohort estimate is probably best. If there is a question
about delayed effects, as in the above example, there would be an apparent
flattening of the Kaplan-Meier curves after the first month. Then one can
plot a new curve using only those patients who survived at least one month.

26.3 APPROXIMATIONS
The Hakulinen cohort estimate (equation (26.3)) is “Kaplan-Meier like" in
that it is a product of conditional probabilities and that the time axis is
partitioned according to the observed death and censoring times. Both the
exact and conditional estimators can be written in this way as well. They are
unlike a KM calculation, however, in that the ingredients of each conditional
estimate are the n distinct individual survival probabilities at that time point
rather than just a count of the number at risk. For a large data set this
requirement for O(n) temporary variables can be a problem. An
approximation is to use longer intervals, and allow subjects to contribute
partial information to each interval. For instance, in equation (26.3) replace

the 0/1 weight ci(t) by , which is the proportion of time that

subject i was uncensored during the interval (t, t+s). If those with fractional
weights form a minority of those at risk during the interval the
approximation should be reliable. (More formally, if the sum of their weights
is a minority of the total sum of weights). By Jensen’s inequality the
approximation will always be biased upwards, but it is very small. For the
Stanford heart transplant data used in the examples an exact 5 year estimate
using the cohort method is 0.94728, an approximate cohort computation
using only the half year intervals yields 0.94841. The exact estimate is
unchanged under re-partitioning of the time axis.

ci u( ) u s⁄d
t

t s+

∫
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Testing
26.4 TESTING
All of the above discussion has been geared towards a plot of

 which attempts to capture the proportion of patients

who will have died by t. When comparing observed to expected survival for
testing purposes, an appropriate test is the one-sample log-rank test
(Harrington and Fleming (1982)) (O-E)2/E, where O is the observed
number of deaths and

is the expected number of deaths, given the observation time of each subject.
This follows Mantel’s concept of ‘exposure to death’ (Mantel (1966)), and is
the expected number of deaths during this exposure. Notice how this differs
from the expected number of deaths nSe(t) in the matched cohort at time t.
In particular, E can be greater than n. Equation (26.4) is referred to as the
person-years estimate of the expected number of deaths. The log-rank test is
usually more powerful than one based on comparing the observed survival at
time t to Se(t); the former is a comparison of the entire observed curve to the
expected, and the latter is a test for difference at one point in time.

Tests at a particular time point, though less powerful, will be appropriate if
some fixed time is of particular interest, such as 5 year survival. In this case
the test should be based on the cohort estimate.  The H0 of the test is “Is
survival different that what a control-group’s survival would have been?” A
pointwise test based on the exact estimate may well be invalid if there is
censoring. A pointwise test based on the conditional estimate has two
problems. The first is that an appropriate variance is difficult to construct.
The second, and more serious one, is that it is unclear exactly what
alternative is being tested against.

Hartz, Giefer and Hoffman (1983) argue strongly for the pointwise tests
based on a expected survival estimate equivalent to equation (26.3), and
claim that such a test is both more powerful and more logical than the
person-years approach. Subsequent letters to the editor (Hartz, Giefer, and
Hoffmann (1984, 1985)) challenged these views, and it appears that the
person-years method is preferred.

(26.4)

Se t( ) exp Λe t( )–( )=
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26. Expected Survival
Berry (1983) provides an excellent overview of the person-years method. Let
the ei be the expected number of events for each subject, treating them as an
n = 1 Poisson process. We have

where ti is the observed survival or censoring time for a subjects. This
quantity ei is the total amount of hazard that would have been experienced
by the population-matched referent subject, over the time interval that
subject i was actually under observation. If we treat ei as though it were the
follow-up time, this corrects for the background mortality by, in effect,
mapping each subject onto a time scale where the baseline hazard is 1.

Tests can now be based on a Poisson model, using  as the response variable

(1=dead, 0=censored), and ei as the time of observation (an offset of log
ei). The intercept term of the model estimates the overall difference in hazard
between the study subjects and the expected population. An intercept-only
model is equivalent to the one sample log-rank test. Covariates in the model
estimate the effect of a predictor on excess mortality, whereas an ordinary
Poisson or Cox model would estimate its effect on total mortality.

Andersen and Væth (1989) consider both multiplicative and additive models

for excess risk. Let  be the actual hazard function for the individual at risk

and  be, as before, that for his/her matched control from the population.

The multiplicative hazard model is

.

If  were constant, then

is an estimate of the standard mortality ratio or SMR, which is identical to
exp(intercept) in the Poisson model used by Berry (assuming a log link).
Their estimate over time is based on a modified Nelson hazard estimate

ei Yi s( )λi s( ) sd
0

∞
∫=

Λ i ti( )=

δ i

λ∗i
λ i

λ∗i t( ) β t( )λ i t( )=
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Computing Expected Survival Curves
,

which estimates the integral of . If the SMR is constant then a plot of

 versus t should be a straight line through the origin.

For the additive hazard model

the integral A(t) of  is estimated as log[SKM(t)/Sc(t)] , the difference
between the Kaplan-Meier and the conditional estimator, when plotted on

log scale. Under the hypothesis of a constant additive risk, a plot of 
versus t should approximate a line through the origin.

26.5 COMPUTING EXPECTED SURVIVAL CURVES
The function used to compute expected survival curves is survexp. Besides
taking the typical arguments of a model fitting function, survexp also takes
the following arguments:

times vector of follow-up times at which the resulting
survival curve is evaluated. If absent, the result will be
reported for each unique value of the vector of
follow-up times supplied in the formula.

cohort logical value: if FALSE, each subject is treated as a
subgroup of size 1. The default is TRUE.

conditional logical value: if TRUE, the follow-up times supplied in
the formula are death times and conditional expected
survival is computed. If FALSE, the follow-up times
are potential censoring times. If follow-up times are
missing in the formula, this argument is ignored.

ratetable table of event rates, such as survexp.uswhite, or a
fitted Cox model.

Table 26.1 summarizes the argument settings used to compute expected
survival curves by the various methods. The real-life examples of the
following section show the use of the various argument settings to obtain the
different estimates of expected survival.

B
ˆ ′ t( )
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26. Expected Survival
26.6 EXAMPLES
The examples of this section show how the methods discussed earlier in this
chapter are implemented in S-PLUS. In addition to computing various
expected survival curves an example of a closely related topic, person years of
follow-up, is provided. The person-years example uses a function called
pyears and the expected survival examples use the survexp function.
All of the examples use a data frame, hearta, computed from heart as
follows: 

> hearta <- by(heart, heart$id,
     function(x)x[x$stop == max(x$stop), ]) 
> hearta <- do.call("rbind",hearta) 

Because the transplanted patients are represented by two rows in the heart
data frame you first need to extract only those rows that correspond to death
or censoring. Do this by selecting all rows for which stop is a maximum for
each patient and then use rbind to put them back together into the data
frame called hearta. Once this is done, stop contains only the total follow-
up times for each patient. Note that this depends on each patient having a
start time of 0 (zero).

Computing 
Expected 
Survival from 
National 
Hazard Rate 
Tables

The computation of expected survival curves requires either a table of hazard
rates or a fitted Cox model to act as a hazard rate table. Several rate tables are
built into S-PLUS. There are tables for the U.S. population, Minnesota,
Florida, and Arizona. U.S. and state rate tables contain the expected hazard
rate for a subject, stratified by age, sex, calendar year, and optionally by race.

You can add new rate tables for other areas if you wish. Created rate tables
have no restrictions on the number or names of the stratification variables.
See the help file for survexp.us for details.

Table 26.1: Summary of arguments settings for invoking the various methods of
estimating expected survival

Method conditional = F cohort = T
Follow-up 
Times

Individual survival not used F yes

Cohort survival
    Ederer
    Hakulinen
    Conditional

F
F
T

T
T
T

no
yes
yes
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Warning When using a rate table, it is important that all time variables be in the same
units as were used for the table—for the U.S. tables this is hazard/day, so time
must be in days. (Year is an exception; see the examples below.) All time
variables must also have the same start date.

The following example computes the conditional expected survival curves for
the two surgery groups in the heart transplant study. A rate table array is not
provided (no ratetable argument is supplied), so the default table,
survexp.us, is used.

> expsurv <- survexp(stop ~ surgery +
                ratetable(age = (age + 48) * 365.25,
                sex = "male", year = year + 1967.75),
                data = hearta, conditional = T)

The formula contains follow-up times, stop, a grouping variable, surgery,
which causes the output to contain 2 curves, and a special function,
ratetable. The ratetable function matches the data frame’s variables to
the corresponding dimensions of the rate table. The order of the arguments
to the ratetable function is not important. The necessary key words age,
sex, and year are contained in the "dimid" attribute of the rate table
providing the hazard rates, survexp.us. The hearta data frame does not
contain a sex variable so sex is set, conservatively, to "male". Setting values
such as this must be done by providing an integer subscript or a match to one
of the "dimnames".

This example produces a cohort survival curve which is almost always plotted
along with the observed (Kaplan-Meier) survival of the data for visual
comparison. For this example, you can plot the survival curves together as
follows: 

> plot(survfit(Surv(stop, event) ~ surgery, data = hearta),
        lty = 2:3) 
> lines(expsurv, lty=2:3) 
> legend(750, .9, c("No Prior Surgery","Prior Surgery"),
        lty = 2:3) 

Figure 26.1displays the resulting plot.

There are 3 different methods for calculating the cohort curve, which are
discussed in more detail in section 26.2. They are the conditional method
shown above, which uses the actual death or censoring time, the method of
Hakulinen, which instead uses the potential follow-up time of each subject,
and the uncensored population method of Ederer, Axtel and Cutler, which
requires no response variable.
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Individual 
Expected 
Survival 
Probabilities

Formal tests of observed versus expected survival are usually based not on the
cohort curve directly but on the individual expected survival probabilities for
each subject. These probabilities are always based on the actual death/
censoring time: 

> surv.prob <- survexp(stop ~ ratetable(age = (age + 48) * 
+               365.25, sex = ’male’, year = year * 365.25), 
+               data = hearta, cohort = F) 
> # convert from survival to hazard 
> newtime <- -log(surv.prob) 
> summary(glm(stop ~ offset(log(newtime)), 
+             family=poisson, data = hearta)) 
Call: glm(formula = stop ~ offset(log(newtime)),
          family = poisson, data = hearta)
Deviance Residuals:
      Min       1Q     Median       3Q      Max
 -34.0455 -3.60184 -0.5740423 4.342719 39.94973

Figure 26.1:  Comparison of the heart transplant study population
stratified according to prior surgery to a matched cohort from a national
survival rate table.
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Coefficients:
               Value  Std. Error  t value
(Intercept) 10.77885 0.005593555 1927.013
        .
        .
        .

When cohort = F, the survexp function returns a vector of survival
probabilities, one per subject. The negative log of the survival probability can
be treated as an “adjusted time” for the subject for the purposes of modeling.
The one-sample log-rank test for equivalence of the observed survival to the
expected survival is the test for intercept equal to 0 (zero) in the Poisson
regression model shown. A test for treatment difference, adjusted for any age-
sex differences between the two arms, is obtained by adding a treatment
variable to the model.

Computing 
Person Years

Expected survival is closely related to a standard method in epidemiology
called person years, which consists of counting the total amount of follow-up
time contributed by the subjects within any of several strata. Person-years
analysis is accomplished in S-PLUS with the pyears function. The main
complication in computing person years is that a subject may contribute to
several different cells of the output array during his/her follow-up. For
example, if the desired output table were treatment group by age in years, a
subject with 4 years of observation would contribute to 5 different cells of the
table (4 cells if she entered the study exactly on her birthdate). This example
counts up years of observation for the Stanford heart patients by age group
and surgical status.

Using the hearta data frame computed above, the person-years table is
produced as follows: 
> pyears(stop/365.25 ~ tcut(age + 48, c(0,50,60,70,100)) +
+        surgery, data = hearta, scale = 1)
$call:
pyears(formula = stop/365.25 ~ tcut(age + 48, 
c(0,50,60,70,100)) + surgery, data = hearta, scale = 1) 

$pyears:
                      0         1
 0+ thru  50 44.9253936 18.960986
50+ thru  60 16.7501711  6.093087
60+ thru  70  0.7556468  0.000000
70+ thru 100  0.0000000  0.000000
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$n:
              0  1
 0+ thru  50 56 13
50+ thru  60 33  6
60+ thru  70  3  0
70+ thru 100  0  0

$offtable:
[1] 0

The scale argument is provided because pyears defaults to input times in
days and output times in years (scale = 365.25). A 48 is added to age to
relocate it back to its original scale. For surgery, a 0 (zero) corresponds to
no prior surgery and a 1 (one) corresponds to prior surgery. See the help file
for heart for more detail.

The tcut function has the same arguments as cut, but also indicates that
the category is time based. If you use cut in the formula above, the final
table would be based only on each subject’s age at entry. With tcut, a subject
who entered at age 58.5 and had 4 years of follow-up would contribute 1.5
years to the 50-60 category and 2.5 years to the 60-70 category. A
consequence of this is that the age and stop variables must be in the same
units for the calculation to proceed correctly. In this case both should be in
years given the cutpoints that were chosen. The surgery variable is treated as a
factor, exactly as it is treated by survfit.

The output of pyears is a list of arrays containing the total amount of time
contributed to each cell and the number of subjects who contributed some
fraction of time to each cell. The offtable component that is returned is
the number of person years of exposure in the cohort that is not part of any
cell in the pyears component. This is often useful as an error check. If there
is a mismatch of units between two variables, nearly all the person years may
be in offtable.

If the response variable is a "Surv" object, then the output also contains an
array with the observed number of events for each cell. If a rate table is
supplied, the output contains an array with the expected number of events in
each cell. These can be used to compute observed and expected rates, along
with confidence intervals.

Using a Cox 
Model as a 
Rate Table

Many times a study group will be compared to a historical control. If the
comparison is to be adjusted for differences in certain covariates, it is usually
based on a Cox model fit to the historical data. The methods used in this
example are parallel to the previous examples using national rate tables (for
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example, survexp.us), but in this example a prior Cox model acts as the
“rate table” for survexp.

Individual survival curves can be obtained using survfit, as described in
chapter 24, The Cox Proportional Hazards Model. Extending that example, 

> s1 <- survfit(ov.fit1, newdata = data.frame(age = 35)) 

gives the expected curve for a 35 year old subject, and 

> s2 <- survfit(ov.fit1, newdat = ovarian) 

gives a matrix of 26 survival curves, one for each subject in the ovarian data
set.

The Ederer estimate is the average of the 26 survival curves in s2 and can be
obtained as follows: 

> s3 <- survexp(~ ratetable(age = age), data = ovarian, 
ratetable = ov.fit1) 

In the Cox model literature the Ederer estimate had been called the direct
adjusted survival curve. Thomsen, Keiding, and Altman (1991) point out the
importance of the Ederer estimate and the difference between the Ederer
estimate, average survival, and the individual survival of a subject with the
average age.

The equivalent of Hakulinen’s estimate has been labeled as the Bonsel
estimator. For studies with a short accrual, it will usually not differ from the
Ederer method. Thomsen et al. (1991) also discuss the conditional estimator,
but conclude that the final curve is “hard to interpret”.
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QUALITY CONTROL CHARTS 27
S-PLUS provides several functions for doing quality control charts. Table 27.1
lists the type of charts available. Both Shewhart charts and cusum charts are
available for each chart type, except for the R chart for which a cusum chart
has not been implemented. Ryan (1989) provides a good discussion of the
use and utility of both Shewhart and cusum charts

27.1 CONTROL CHART OBJECTS
Quality control charts are produced in two steps:

1. Create a "qcc" object from process data known to be gathered when
the process was in a state of control.

2. Create a chart of new data using the "qcc" object of step 1 as the
reference data.

You can think of the "qcc" object as containing the data necessary to
calibrate the control chart. It contains information on the type of chart being
plotted and the process center and variability which are necessary to compute
the control limits.

The qcc function produces an object of class "qcc". Its only required
arguments are data (grouped appropriately) and the type of chart. A simple
example follows: 

Table 27.1: Types of quality control charts available in S-PLUS.

Type Statistic Charted Chart Description

xbar mean means of a continuous process variable

s standard deviation standard deviations of a continuous vari-
able

R range ranges of a continuous variable

np count number of nonconforming units

p proportion proportion of nonconforming units

c count number of nonconforming units

u count number of nonconforming units for 
variable unit sizes
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> set.seed(15) 
> qcdata <- matrix(10 + rnorm(100), ncol = 5) 
> qccobj <- qcc(qcdata, type = "xbar") 

A print method summarizes the "qcc" object. 

> qccobj 
xbar based on qcdata

Summary of Group Statistics:
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 9.163   9.655  10.14 10.09   10.51 11.31

 Group Sample Size:  5
 Number of Groups:  20
 Center of Group Statistics:  10.09016
 Standard Deviation:  1.022341

Each row in the matrix represents a group. If you have unequal group sizes
you have to put the data in a list with one component for each group.

The arguments to qcc are:

data the control data in the form of a vector, matrix, data
frame, or list. 

type a character string or function specifying group statistics
to compute.

std.dev a numeric vector or function for specifying the within-
group standard deviation(s).

sizes a numeric vector specifying the sample sizes associated
with each group.

labels a character vector of labels for each group.

You can pass functions to the type and std.dev arguments to extend the
built-in capabilities of qcc. The function that is used by default to compute
the group summary statistics and the center of the group summary statistics
is named stats.type, where type corresponds to the value of the type
argument. For example, the default summary statistics and center for an xbar
chart are computed by stats.xbar. Similarly, the default function that
computes the standard deviation for an xbar chart is sd.xbar. When type is
given as a function, std.dev must also be given (usually as a function as
well, though not necessarily).

An example of a function that computes the summary statistics and the
center as medians follows: 
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> stats.med 
function(data, sizes)
{
        if(is.list(data)) {
                statistics <- sapply(data, median)
                center <- median(unlist(data))
        }
        else {
                statistics <- apply(data, 1, median)
                center <- median(data)
        }
        list(statistics = statistics, center = center)
}

The stats.med function depends on data being given as a matrix or list.
The qcc function insures this by coercing a vector to a matrix. You can create
other functions for computing the summary statistics and center of the
process by using stats.xbar as a template as was done in creating
stats.med.

As example of a function that computes the standard deviation based upon
the median absolute deviation (mad) is sd.med. The sd.xbar function was
used as a template for sd.med. 

> sd.med
function(data, sizes)
{
  if(is.list(data))
    std.dev.within <- sapply(data, mad)
  else {
    std.dev.within <- apply(data, 1, mad)
    if(dim(data)[2] == 1)
      warning("MAD computation based on group sizes of 1")
  }
  if(length(sizes) == 1)
    sizes <- rep(sizes, length = length(std.dev.within))
  sum(sizes * std.dev.within)/sum(sizes)
}

You can now compute a "qcc" object with the center estimated as the
median and the standard deviation estimated from mad as follows: 

> qccobj.med <- qcc(qcdata, type = "med")
> qccobj.med
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med based on qcdata

Summary of Group Statistics:
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 8.782   9.599  10.06 9.989   10.52 11.16

 Group Sample Size:  5
 Number of Groups:  20
 Center of Group Statistics:  10.14026
 Standard Deviation:  0.8418576

If the functions are not named with the proper prefixes (stats. and sd.,
respectively), you have to pass the function names to the type and std.dev
arguments. For example if the two functions are named st.med and
sd.mad, respectively, you would have to type:

> qccobj.med <- qcc(qcdata,type=st.med,std.dev=sd.mad) 

To chart the control data and any ongoing process data, you can produce
Shewhart or cusum charts with the S-PLUS functions shewhart or cusum,
respectively. Typically, Shewhart charts are used for detecting large shifts in a
process (two to three sigma shifts), whereas cusum charts are used to detect
smaller shifts in a process (one-half to one sigma shifts).

27.2 SHEWHART CHARTS
You can produce a Shewhart chart of the data in qcdata which is preserved
as a "qcc" object in qccobj by using the shewhart function. For example: 

> shewhart(qccobj) 

Figure 27.1 displays the resulting chart. The text at the bottom of the chart
displays pertinent statistics. The target value is taken as the center of the
group summary statistics unless given as a separate argument. The
Number beyond limits indicates the number of points beyond the
control limits, and Number violating runs indicates how many points
violate the runs criterion which is, by default, 5 or more consecutive points
on one side of the center. You can change the run length by passing an
additional argument to the shewhart function. 

> shewhart(qccobj, run.length = 8) 

By default, the shewhart function computes the control limits based on the
center and std.dev components of qccobj. Both of these can be
overridden, however, by providing additional arguments in the call to
shewhart. The arguments to shewhart are as follows: 
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object an object of class "qcc" which provides information on
the type of group summary statistics to plot and the
within-group standard deviation necessary for comput-
ing the control limits.

newdata vector, matrix, data frame, or list to be charted.

type a character string or function specifying the group sum-
mary statistics to compute.

limits a numeric vector or matrix or a function specifying the
control limits.

Figure 27.1:  Shewhart chart of the data in qccobj.
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27. Quality Control Charts
target a numeric value specifying the center of the process if
other than the center component of object.

std.dev a numeric value specifying the overall within-group
standard deviation.

sizes vector of the number of observations or number of
units examined in each group of newdata.

labels character vector of labels for each group in newdata.

label.limits a character vector of length two with labels for the con-
trol limits.

confidence.levela numeric value between 0 and 1 specifying the confi-
dence level of the computed probability limits.

nsigmas a numeric value specifying one-half the width of the
control limits in the number of standard errors of the
group summary statistics. If given, confi-
dence.level is ignored.

add.stats a logical value indicating whether statistics should be
listed at the bottom of the chart.

chart.all a logical value indicating whether the statistics
component of object should be plotted along with the
new.statistics component of object if present
and the summary statistics of newdata if given.

ylim.min a numeric vector of values to be included in the compu-
tation of the approximate y-axis limits for the control
chart.

rules a function of rules to apply to the chart.

highlight a list of plotting parameters to be used for highlighting
the points violating rules.

... additional arguments to rules.

See the shewhart help file for more detailed descriptions of the arguments
listed above.

By default, the control limits produced by shewhart are probability limits
for all the charts except the u chart. Probability limits are centered in
probability about the estimate of the center of the distribution of the
summary statistics or the target value if provided. If you want sigma limits,
specify them through the nsigmas argument. In this case, the control limits
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are placed at the center plus or minus nsigmas times the standard errors of
the group summary statistics. For u charts only sigma limits are
implemented. If the sample sizes vary, the standard errors will vary, and a step
function will be plotted for each control limit.

The newdata function argument allows you to chart new data with a
reference "qcc" object provided as the object argument. As an example,
let’s add one-half to the last six rows of qcdata and call it newdata.

> newdata <- qcdata 
> newdata[15:20,] <- newdata[15:20,] + 1/2 

You produce the Shewhart chart of newdata as follows: 

> qccobj.shew <- shewhart(qccobj, newdata, 
+  labels=paste("Lot", 1:20, sep = "")) 

The labels argument is not necessary but is added to show the printing of
labels on the chart and for greater clarity in later paragraphs.

Printing the invisible return value of shewhart shows a summary of qccobj
as well as newdata. 
> qccobj.shew
xbar based on qcdata

Summary of Statistics in qcdata.
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 9.163   9.655  10.14 10.09   10.51 11.31

 Group Sample Size:  5
 Number of Groups:  20
 Center of Statistics:  10.09016
 Standard Deviation:  1.022341

Summary of New Data Statistics in newdata.
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 9.163   9.762  10.14 10.24   10.84 11.49

 Group Sample Size:  5
 Number of Groups:  20

 Target Value: 10.09016

 Control Limits:
      LCL     UCL

 8.585714 11.5946 
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27. Quality Control Charts
Figure 27.2 displays the chart for newdata. If you want to see newdata
displayed alongside the original calibration data ask shewhart to chart it all.
Having saved the "shewhart" object, qccobj.shew, you can chart it
directly. 

> shewhart(qccobj.shew, chart.all = T) 

Figure 27.3 shows the resulting Shewhart chart with both old and new data.
The vertical dashed line separates the in-control calibration data from the
ongoing process data.

To do an s chart of the same data, you would type: 

> shewhart(qcc(qcdata, "s"), newdata) 

The type argument allows you to specify a different kind of summary
statistic for newdata than what is in the reference data in object. For
example, qccobj.med computed in section 27.1 contains robust estimates

Figure 27.2:  Shewhart chart of newdata using qccobj as the reference
data plotting only the new data.
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of location and scale for the reference data qcdata. You wouldn’t, however,
typically want to estimate the location of the ongoing process robustly, since
extreme values are what you are looking for. In this case you can compute the
control limits based on the robust estimates and then compute the group
summary statistics of the ongoing process by specifying the usual type for
the data you are using. Thus you could chart newdata with control limits
based on the robust estimates of location and scale as follows: 

> shewhart(qccobj.med, newdata, type = "xbar") 

If you want to compute the summary statistics for newdata in the same way
you did for the reference data, you don’t have to specify type. Thus, 

> shewhart(qccobj.med, newdata, limits = limits.xbar) 

would continue to estimate the group summary statistics with stats.med,

Figure 27.3:  Shewhart chart of newdata using qccobj as the reference
data plotting new and old data.
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27. Quality Control Charts
that is, robustly. The limits argument must be provided when using a
summary statistics function, as specified by type, other than one of the
built-in ones, or a function must be available with name produced by
paste("limits.", type, sep = "").

Since limits.xbar simply uses the center and std.dev components of
object to compute the control limits based on having normally distributed
data, it is reasonable although not exactly correct to use limits.xbar here.
Ideally, you would write a limits.med function to compute the control
limits in this case. For more information on the way the control limits are
computed by shewhart, see the help file for "shewhart.limits". You can
use the limits.xbar as a template for writing your own limits function.

The shewhart function returns an object that contains all the information
necessary to redo the chart. It contains all the components of object, the
"qcc" object, plus the following additional components:

new.statistics a vector of group summary statistics for newdata.

new.sizes vector of group sample sizes for newdata.

target the target argument if specified.

cntrl.limits the control limits.

newdata.name a character string containing the name of the input data
passed as the argument to newdata.

When you are tracking a process, you can repeatedly capture the return value
from shewhart, passing it as the new object argument to a subsequent call
to shewhart, and providing even newer data as the newdata argument. The
shewhart function will incorporate the newest data into the
new.statistics component of object and chart all the new data. The
function calls might look something like the following: 

> qccobj.shew.1 <- shewhart(qccobj, newdata.1) 
> qccobj.shew.2 <- shewhart(qccobj.shew.1, newdata.2) 

Other arguments to shewhart, listed above, allow you to specify a target
value for the process, sample sizes, the confidence level of the probability
limits, and a rules function for applying to the chart. By specifying sample
sizes, you can supply a vector of group summary statistics instead of the
entire data matrix. In this case, however, you must also specify the within-
group standard deviations.

A rules function refers to a way of examining the plotted summary statistics
to see if there are patterns suggesting a shift in the process. For example, five
or more successive points on one side of the center may indicate a shift in the
process. The function runs.target is provided for checking for runs in a
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process and beyond.limits is provided for locating points beyond the
control limits. Look at the help files of these functions for more detail. By
default, shewhart applies both runs.target and beyond.limits,
through a wrapper function called shewhart.rules, to a chart by
highlighting violating points. The default is to highlight the points in the
same way, regardless of which rule is violated. If you want to highlight them
differently, give a list of lists of par parameters to the highlight argument.

> shewhart(qccobj.shew, highlight=list(list(pch=1,col=2), 
+ list(pch=2, col=3))) 

Any of the three rules functions provided can be applied directly to the return
object of the shewhart function to produce a list of violating points. For
example, 

> shewhart.rules(qccobj.shew) 
[[1]]:
  o  q
 15 17
attr([[1]], "label"):
[1] "beyond limits"

[[2]]:
  s  t
 19 20
attr([[2]], "label"):
[1] "violating runs"

The value returned is a list with a component for each rule containing the
indices of the violators appropriately labeled.

To add labeling information to a chart you can use the identify function.
There is an identify method for objects of class "shewhart". You proceed by
charting the object with no statistics and then applying identify to the
chart.

> shewhart(qccobj.shew, add.stats = F) 
> identify(qccobj.shew) 
[1] 19 

Figure 27.4 displays the resulting chart with the 19th observation labeled.

Applying rules such as runs.target usually makes a Shewhart chart more
sensitive to small shifts off the center. However, such rules are typically ad
hoc. A better way to detect small shifts is through the use of cusum charts. 
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27.3 CUSUM CHARTS
Cusum charts display how the group summary statistics deviate above or
below the process center or target value relative to the standard errors of the
summary statistics. In essence, a cusum chart accumulates z-scores of
deviations above (below) the center and charts them. Consequently, the
points plotted are not the original data but cumulative sums of deviations in
standard errors from the center.
For an xbar chart, the upper, SUi, and lower, SLi, cumulative sums are defined

Figure 27.4:  Shewhart chart of the new data in qccobj.shew with the
19th observation labeled.
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as follows:

where

is the z-score for the ith group centered about the center of the group

summary statistics denoted here as . The lower cumulative sums are
charted as -SLi. Cusum charting in S-PLUS follows a decision interval scheme
discussed in detail by Ryan (1989) and Wetherill and Brown (1991).

The k in equations 27.1 and 27.2 is called the reference value and corresponds
to the amount that the absolute z-score must exceed the target before the
either cumulative sum increases.

The cusum chart in S-PLUS is really a composite of two charts; a chart of the
upper cumulative sums and a chart of negative the lower cumulative sums.
The two sums, typically charted separately in standard quality control text
books, are plotted on the same graph by the cusum function  in S-PLUS.

For our simulated data sets you can do a cusum chart of the original data as
follows: 

> cusum(qccobj) 

To see the new data charted, request it in addition to specifying the reference
data in qccobj. You can also plot both old and new data by specifying
chart.all = T. For example:

> cusum(qccobj, newdata, chart.all = T) 

Figure 27.5 displays the cusum chart for both old and new data. Comparing
figure 27.5 with the Shewhart chart displayed in figure 27.2 reveals how
dramatically cusum charts signal a detectable shift in the process. In
newdata, the last six observations were shifted up one standard deviation of
the population which is about two standard errors of the summary statistics.

Various arguments to cusum control different aspects of the cusum chart. A
summary of the arguments to cusum are: 

object an object of class "qcc" which provides information on
the type of group summary statistics to compute and

(27.1)

(27.2)
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the within group standard deviation necessary for com-
puting the z-scores.

newdata vector, matrix, data frame, or list to be charted.

type a character string or function specifying group statistics
to compute.

z.scores optional function to be used to compute the z-scores.
This argument is required if type is not one of
"xbar", "s", "R", "p", "np", "u", or "c", or if there
does not exist a function with name produced by

Figure 27.5:  Cusum chart of newdata using qccobj as the reference
data plotting both old and new data.
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paste("zs.", type, sep = "").

decision.int a numeric value in number of standard errors of the
summary statistics at which the cumulative sum signals
out of control.

se.shift the amount of shift to detect in the process measured in
standard errors of the summary statistics.

target a numeric value specifying the center of the process if
other than the center component of object.

std.dev a numeric value specifying the overall within group
standard deviation.

sizes a numeric vector specifying the sample sizes associated
with each group of newdata.

labels character vector of labels to associate with each group of
newdata.

label.bounds a character vector of length two with labels for the deci-
sion interval boundaries.

headstart a numeric value in standard errors of the group sum-
mary statistics at which to start the cumulative sums
when reset = TRUE.

reset a logical value indicating whether the cumulative sums
should be reset after an out-of-control signal.

add.stats a logical value indicating whether statistics should be
listed at the bottom of the chart.

chart.all a logical value indicating whether the cusums of the
statistics component of object should be charted
along with the cusums of the new.statistics com-
ponent of object if present and the cusums of the
summary statistics of newdata if given.

ylim.min a numeric vector of values to be included in the compu-
tation of the approximate y-axis limits for the control
chart.

check.cl a logical value indicating whether the summary statis-
tics beyond the control limits of the Shewhart chart
should be highlighted on the chart in addition to the
decision boundary violations of the cumulative sums of
the summary statistics.
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highlight a list of plotting parameters to be used for highlighting
the points outside the decision boundaries or beyond
the Shewhart control limits.

The type argument is the same as that specified for the shewhart function.
If type is one of "xbar", "s", "R", "p", "np", "u", or "c" there are built
in functions for computing the group summary statistics and the z-scores. If
type is not one of these, then you either need to produce two functions with
names produced by paste("stats.", type, sep = "") and
paste("zs.", type, sep = "") or pass functions to the type and
z.scores arguments in the call to cusum.

The type and z.scores arguments are useful when charting is based on
non-standard summary statistics. Going back to the example where the
estimate of the center of the process is based on the median and the standard
deviation is based on the mad (median absolute deviation) estimator, you can
generate cusum charts in several different ways. If the type component of
qccobj.med is equal to "med", and you have defined the functions
stats.med and zs.med, you can simply type 

> cusum(qccobj.med, newdata) 

If you haven’t defined appropriately functions or if you want to use some
function other than the one that would be found automatically, you have to
specify their names explicitly in the call to cusum. For example, to do a
cusum chart of the group means of newdata with center and standard
deviation based on the median and mad, respectively, use the built in
functions by specifying type = "xbar". Not only will stats.xbar be
used to compute the summary statistics, but the z-score function associated
with xbar charts, zs.xbar, will be used as well. 

> cusum(qccobj.med, newdata, type = "xbar") 

The se.shift argument is twice the reference value, k, in equations 27.1
and 27.2. This corresponds roughly to the sensitivity of the cusum chart in
terms of detecting shifts in standard errors of the summary statistics. Setting
se.shift = 1 (the default) corresponds to a cusum chart being sensitive to
one standard error shifts and is equivalent to setting k = 1/2 in equations 27.1
and 27.2.

Usually when an out-of-control signal is generated by a large (in absolute
value) cumulative sum, a search is conducted and a cause is assigned and
removed if possible to correct the process. In this case, the cumulative sums
are reset and monitoring continues. By resetting the sums to something other
than zero (called a headstart), you can produce a fast initial response (FIR)
cusum. This is useful for quickly detecting a process that hasn’t been fully
corrected. When reset = TRUE the cusums will be reset to headstart
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each time a cumulative sum exceeds one of the decision boundaries.

One additional improvement to cusum charts results from checking for a
large deviation from the target value of a single group summary statistic. A
group summary statistic greater than 3 standard errors from the target is
equivalent to that summary statistic being outside 3-sigma Shewhart control
limits. When check.cl = TRUE, summary statistics violating Shewhart
control limits are flagged as well as large cumulative sums. If object is of
class "shewhart", it will have a cntrl.limits component which will be
used to check for violating summary statistics. Otherwise, 3-sigma Shewhart
control limits, centered about target, are computed to check for violating
summary statistics. 

27.4 PROCESS MONITORING
In many manufacturing situations processes are monitored in real time by
production engineers and product managers. You can use S-PLUS for real-
time monitoring with a few simple functions. Examples are presented below
of two functions, monitor and get.process, which you can use to
monitor a process data file and update a control chart as data comes in.
The basic idea is the following:

1. Create a file for accumulating the process data; call it Process.

2. Track the growth of Process with get.process and monitor,
updating the control chart only when new data has been added to
the file.

Suppose a typical line of the data file looks like the following:

Lot1 9.496215 8.718396 11.470395 9.671888 11.328800

Also, suppose you want to accumulate the data in a matrix. Then you could
write the data-reading function, get.process, as follows: 

> get.process
function(file, skip = 0)
{
  data <- scan(file, what = list(names = "",0,0,0,0,0), 
                 skip = skip)
  nm <- data$names
  data <- cbind(data[[2]],data[[3]],data[[4]],data[[5]], 
                 data[[6]])
  dimnames(data) <- list(nm, NULL)
  data
}

The configuration of the data fields are built into the get.process
function. The first field is a character label and the remaining 5 fields are
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numeric data. The skip argument is added so that previously read data can
be skipped when it is time to update the chart.

The monitor function keeps track of which data have already been read and
updates the chart. An example of what monitor might look like is the
following:

> monitor
function(file, qc.object, sleep.time = 5)
{
# define a subfunction
   file.length <- function(file)
   as.numeric(unix(paste("wc", 

file, "| awk '{print $1}'")))       
#
#
   old.length <- file.length(file)
   new.data <- get.process(file)   
#
# put up initial chart
#
   qcc.shew <- shewhart(qc.object, new.data, 

add.stats = F)
   cat("to quit type CNTRL-C\n")
   repeat {
      new.length <- file.length(file)
      if(new.length > old.length) {
#
# new data have come in, we need to update the plot
#
         new.data <- get.process(file, skip = old.length)
         old.length <- new.length
         qcc.shew <- shewhart(qcc.shew, new.data, 

add.stats = F)
      }
      unix(paste("sleep", sleep.time))
   }
}

The statistics on the bottom of the chart have been turned off so that a
number of charts can be efficiently placed within a single figure. The
monitor function makes use of the fact that shewhart updates its return
object so that all you need to scan each time is the data that has just been
added to the file.
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Suppose now that qcdata, defined in section 27.1, is coming in one row
(corresponding to one lot) at a time. Start the monitoring by putting the first
lot in the file Process and then running monitor as follows: 

> monitor("Process", qccobj) 
to quit type CNTRL-C 

S-PLUS now monitors Process for a change in size. When one is detected, the
new data is read in and the chart is updated. Figure 27.6 displays the results
of 19 updates.
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27. Quality Control Charts
Figure 27.6:  A series of Shewhart charts of the data resulting from running monitor on a
growing process data file.
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MATHEMATICAL COMPUTING IN S-PLUS 28
S-PLUS was designed for data analysis, so it is rich in quantitative methods.
Many of these methods, while designed for particular data analysis tasks,
have been implemented as general mathematical tools. These tools can be
applied to a wide variety of numerical applications. This chapter is a brief
survey of mathematical computing in S-PLUS.
In this chapter, we assume a basic familiarity with the operation of the
command line. For the most part, however, this chapter is self-contained and
can be read independently of the other chapters in this manual.

28.1 ARITHMETIC OPERATIONS
You perform basic arithmetic in S-PLUS as you would with a calculator, using
the operators +, -, *, and /:

> 2 + 2
[1] 4
> 9 - 3
[1] 6
> 3 * 8
[1] 24
> 17 / 4
[1] 4.25

Use the operator ^  for exponentiation, including root extraction: 

> 3 ^ 2
[1] 9
> 7 ^ (1 / 3)
[1] 1.912931

Operators have their usual precedence (powers, multiplication/division,
addition/subtraction), and parentheses can be used (as in the previous
example) to group calculations. Two other operators provide integer
quotients and remainders. The integer divide operator, %/%, returns the
integer quotient q and the modulo operator, %%, returns the remainder r of
two numbers y and x, so that y=qx + r:

> 24.5 %/% 3.2
[1] 7
> 24.5 %% 3.2
[1] 2.1
> 7 * 3.2 + 2.1
[1] 24.5
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28. Mathematical Computing in S-PLUS
The abs function returns the absolute value of a number: 

> abs(-4.5)
[1] 4.5 

The greatest-integer function   is obtained using floor: 

> floor(2.3)
[1] 2 

Similarly, the “next integer"  is obtained using ceiling: 

> ceiling(2.3)
[1] 3 

A vector in S-PLUS is an ordered set of values. Simple numeric vectors can be
created with the c function or the sequence operator (:):

> x <- c(3,1,7)
> x
[1] 3 1 7
> w <- 1:6
> w
[1] 1 2 3 4 5 6

A matrix, in S-PLUS, is simply a vector with a specified number of rows and
columns, that is, an ordered set of data in a rectangular array. You can create
matrices with the matrix command: 

> A <- matrix(c(19,8,11,2,18,17,15,19,10),nrow=3)
     [,1] [,2] [,3]
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10

You can also build matrices from existing vectors using rbind (which assigns
vectors to the rows of the matrix) or cbind (which assigns vectors to the
columns of the matrix): 

> m <- c(14,13,10)
> n <- c(10,11,15)
> o <- c(19,3,15)
> B <- cbind(m,n,o)
> B
      m  n  o
[1,] 14 10 19
[2,] 13 11  3
[3,] 10 15 15

Most calculations on vectors or matrices are carried out element by element, so

x

x
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Arithmetic Operations
for example, if X={xij }  and Y={yij }, we have X*Y={xijyij } . Multiplying A

times B with the standard * operator yields the following:

> A*B
     [,1] [,2] [,3]
[1,]  266   20  285
[2,]  104  198   57
[3,]  198  255  150

For matrices, these element by element operations require that the matrices
have the same dimension; that is, the same number of rows and the same
number of columns, so that the matrices are conformable for addition. For
vectors, if one vector is shorter than the other, the shorter vector is repeated
cyclically to match the length of the longer vector: 

> x + w
[1]  4  3 10  7  6 13

Mathematical operations on combinations of vectors and matrices are
permitted, but may have unexpected results. For example, suppose you define
the matrix E as follows: 

> E <- matrix(1:4,nrow=2) 

Dividing by the previously defined vectors x and w yields the following
results: 

> E/w
[1] 1.0000000 1.0000000 1.0000000 1.0000000 0.2000000
[6] 0.3333333
Warning messages:
  Length of longer object is not a multiple of the 
 length of the shorter object in: E/w
> E/x
          [,1]      [,2]
[1,] 0.3333333 0.4285714
[2,] 2.0000000 1.3333333
Warning messages:
  Length of longer object is not a multiple of the 
  length of the shorter object in: E/x

S-PLUS returns an object with the attributes of the longer object in the
calculation. Since length(E) < length(w), E/w returned an object
matching the attributes of w, namely a vector of length 6. On the other hand,
since length(E) > length(x), E/x returned an object matching the
attributes of E, namely, a matrix of length 4 with dim=c(2,2).
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28. Mathematical Computing in S-PLUS
To perform matrix multiplication, use the matrix multiplication operator  %*%

> A %*% B
     [,1] [,2] [,3]
[1,]  562  437  592
[2,]  688  563  491
[3,]  555  447  410

The two matrices must be conformable for multiplication, that is, the number
of columns of A must be the same as the number of rows of B.

Using the matrix multiplication operator on two equal length vectors yields
the vector dot product:

> z <- c(1,0,3,4,8)
> y <- c(2,9,3,2,7)
> z %*% y
     [,1]
[1,]   75

28.2 COMPLEX ARITHMETIC
In addition to the ordinary operators described in section 28.1, Arithmetic
Operations, five special operators are provided for manipulating complex
numbers.
Re and Im are used to extract the real and imaginary parts, respectively, from
a complex number. Mod and Arg return the modulus and argument for the
polar representation of the complex number. Conj returns the complex
conjugate of the complex number.

When you graph a vector of complex numbers with plot, the real parts are
graphed along the x-axis and the imaginary parts are graphed along the y-axis. 

28.3 ELEMENTARY FUNCTIONS
The elementary functions included in S-PLUS are listed in table 28.1.

Each function acts element-by-element on its argument: 

> J
     [,1] [,2] [,3] [,4]
[1,]   12   15    6   10
[2,]    2    9    2    7
[3,]   19   14   11   19
> sqrt(J)
         [,1]     [,2]     [,3]     [,4]
[1,] 3.464102 3.872983 2.449490 3.162278
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Vector and Matrix Computations
[2,] 1.414214 3.000000 1.414214 2.645751
[3,] 4.358899 3.741657 3.316625 4.358899
> tan(J)
           [,1]       [,2]         [,3]      [,4]
[1,] -0.6358599 -0.8559934   -0.2910062 0.6483608
[2,] -2.1850399 -0.4523157   -2.1850399 0.8714480
[3,]  0.1515895  7.2446066 -225.9508465 0.1515895

You can use log to compute logarithms of any base with the optional
argument base=. For example, to compute log27: 

> log(7,base=2)
[1] 2.807355 

28.4 VECTOR AND MATRIX COMPUTATIONS
The p-norm of a vector x of length n is defined as:

for . To obtain the p-norm of a vector in S-PLUS, use the vecnorm
function (by default, p=2): 

> vecnorm(1:2)
[1] 2.236068

Table 28.1: Elementary Functions in S-PLUS .

Name Operation

sqrt Square root

abs Absolute value

sin, cos, tan Trigonometric functions (radians)

asin, acos, atan Inverse trigonometric functions (radians)

sinh, cosh, tanh Hyperbolic trigonometric functions (radians)

asinh, acosh, 
atanh

Inverse hyperbolic trigonometric functions 
(radians)

exp, log Exponential and natural logarithm

log10 Common logarithm

gamma, lgamma Gamma function and its natural logarithm

x1
p x2

p … xn
p

+ + +[ ]
1 p⁄

p 1≥
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28. Mathematical Computing in S-PLUS
> ( sum( (1:2) ^ 2) ) ^ (1/2)
[1] 2.236068

The vecnorm function works with both real and complex vectors: 

> vecnorm(1+2i)
[1] 2.236068 

You can specify the type of norm desired with the p argument. Possible values
include real numbers greater than or equal to 1, Inf, and the character
strings "euclidean" or "maximum": 

> vecnorm(1:2, p = 1)
[1] 3
> vecnorm(1:2, p = "maximum")
[1] 2
> vecnorm(1:2, p = Inf)
[1] 2

To obtain the transpose of a matrix, use the t function: 

> J
     [,1] [,2] [,3] [,4]
[1,]   12   15    6   10
[2,]    2    9    2    7
[3,]   19   14   11   19
> t(J)
     [,1] [,2] [,3]
[1,]   12    2   19
[2,]   15    9   14
[3,]    6    2   11
[4,]   10    7   19

You can obtain the diagonal of a matrix with the diag function: 

> diag(J)
[1] 12 9 11 

You can also use diag to construct diagonal matrices: 

> x <- c(3,1,7)
> diag(x)
     [,1] [,2] [,3]
[1,]    3    0    0
[2,]    0    1    0
[3,]    0    0    7

To obtain the trace of a square matrix, use sum with diag, as follows: 

> sum(diag(A))
[1] 47 
762



Vector and Matrix Computations
For another approach to vector and matrix computations, see also
chapter 29, The Object-Oriented Matrix Library.

Identity 
Matrices

To generate identity matrices in S-PLUS, use diag with an integer argument
representing the rank n as follows: 

> diag(n) 

For example, the rank 4 identity matrix is created as follows: 

> diag(4)
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1

Determinants There is no built-in S-PLUS function to calculate determinants. However, the
following one-line function can be used to calculate determinants for real-
valued matrices: 

> det <- function(x) prod(eigen(x)$values)) 

 (The eigen function is discussed in section 28.6.)

Kronecker 
Products

A Kronecker product of two matrices Ap×q and Bm×n is the matrix

To calculate a Kronecker product in S-PLUS, use the kronecker function:

> N <- matrix(5:8,nrow=2)
> O <- matrix(4:1,nrow=2)
> kronecker(N,O)
     [,1] [,2] [,3] [,4]
[1,]   20   10   28   14
[2,]   15    5   21    7
[3,]   24   12   32   16
[4,]   18    6   24    8

You can generalize kronecker to other operations besides multiplication by
changing the operator with the fun argument:

> kronecker(N,O,fun="+")

a11B … a1qB

A A
ap1B … apqB
763



28. Mathematical Computing in S-PLUS
     [,1] [,2] [,3] [,4]
[1,]    9    7   11    9
[2,]    8    6   10    8
[3,]   10    8   12   10
[4,]    9    7   11    9

28.5 SOLVING SYSTEMS OF LINEAR EQUATIONS
S-PLUS provides several methods for solving systems of linear equations such
as the following:

This system of equations can be expressed as the matrix equation Ax=y,
where A is the matrix of coefficients, x is the (column) vector of unknowns
(a,b,c), and y is the column vector of known values (9,5,14). The solve
function takes the square matrix of coefficients and the vector of known
values as arguments and returns the solution vector:

> solve(A,c(9,5,14))
[1]  0.9914429  0.6161109 -0.7379758

You can also use solve to obtain the inverse of a matrix:

> solve(A)
            [,1]         [,2]        [,3]
[1,]  0.04219534 -0.069341989  0.06845677
[2,] -0.03806433 -0.007376807  0.07111242
[3,]  0.01829448  0.088816760 -0.09619357

If the matrix is singular, solve returns an error message:

> S <- matrix(c(9,3,3,3,1,1,2,4,7),ncol=3,byrow=T)
> solve(S)
Error in solve.qr(a): apparently singular matrix
Dumped

If the matrix of coefficients is upper triangular, you can use backsolve to
solve the system of equations:

> U
     [,1] [,2] [,3]
[1,]    3    1    4
[2,]    0    1    5
[3,]    0    0    9

19a 2b 15c+ + 9=

8a 18b 19c+ + 5=

11a 17b 10c+ + 14=
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Solving Systems of Linear Equations
> backsolve(U,c(9,5,14))
[1]  1.851852 -2.777778  1.555556

Sections on Choleski Decomposition, QR Decomposition, and The Singular
Value Decomposition follow. Information on using the Matrix library for
matrix decompositions can be found in section 29.3.

Choleski 
Decomposition

For symmetric, positive-definite matrices, the Choleski decomposition factors
the matrix X uniquely in the form X=RTR, where R is upper triangular. You
can use the Choleski decomposition to generate upper triangular matrices for
use with backsolve. S-PLUS now has two functions for performing
Choleski decomposition: chol and choleski. The chol function is most
useful for obtaining new matrices, since it returns simply the upper triangular
matrix R. The choleski function returns a list with the R matrix as one of
its components. 
For more information on the Choleski decomposition, see the chol help file
and chapter 8 of the LINPACK User’s Guide by Dongarra, et al.

QR 
Decomposition

The QR decomposition expresses an n × p matrix X as the product of an n × n
orthogonal matrix Q and an n × p upper triangular matrix R. The QR
decomposition is the foundation for solve and lsfit, the (non-robust)
least-squares fit function.
To obtain a representation of the QR decomposition, use the qr function.
The value returned by qr is a list representing the QR numerical
decomposition. The first component of the list is an n × p matrix in which
the upper triangle, including the diagonal, is the R matrix and the entries
under the diagonal contain most of a compact representation of Q. To obtain
R and Q explicitly from this numerical representation, use the functions
qr.R and qr.Q, respectively. Another function, qr.X, reconstructs the
original n × p matrix X from the numerical decomposition: 

> qr(A)
$qr:
           [,1]       [,2]       [,3]
[1,] -5.9160798 -4.9018947 -7.9444500
[2,]  0.5070926  2.2296701  3.6136032
[3,]  0.8451543  0.7681395 -0.9097177

$qraux:
[1] 1.169031 1.640282 0.000000

$rank:
[1] 3
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28. Mathematical Computing in S-PLUS
$pivot:
[1] 1 2 3
> qr.Q(qr(A))
           [,1]        [,2]       [,3]
[1,] -0.1690309  0.97387888 -0.1516196
[2,] -0.5070926 -0.21784133 -0.8339078
[3,] -0.8451543 -0.06407098  0.5306686
> qr.R(qr(A))
         [,1]      [,2]       [,3]
[1,] -5.91608 -4.901895 -7.9444500
[2,]  0.00000  2.229670  3.6136032
[3,]  0.00000  0.000000 -0.9097177
> qr.X(qr(A))
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    3    2    4
[3,]    5    4    6

The following functions use the return value from qr to perform additional
calculations:

qr.coef Returns the coefficients obtained by a least-squares fit of
response data y to the X matrix on which qr was used.

qr.fitted Returns the fitted values obtained by a least-squares fit of
response data y to the X matrix on which qr was used.

qr.resid Returns the residuals obtained by a least-squares fit of response
data y to the X matrix on which qr was used.

qr.qy Returns the results of the matrix multiplication Q %*% y, where
Q is the order-nrow(X) orthogonal transformation represented
by qr and y is the response data.

qr.qty Returns the results of the matrix multiplication t(Q) %*% y,
where Q is the order-nrow(X) orthogonal transformation
represented by qr and y is the response data.

For more details on the QR decomposition, see the help files for qr,
qr.coef, and qr.Q, and chapter 9 of the LINPACK User’s Guide by
Dongarra, et al.

The Singular 
Value 
Decomposition

The singular value decomposition takes an n × p matrix X and decomposes it
into two orthogonal matrices and a diagonal matrix. The elements of the
diagonal matrix are the singular values of X. The squares of the singular values

of X are the eigenvalues of XTX.
766



Eigenvalues and Eigenvectors
To obtain the singular value decomposition in S-PLUS, use the svd function,
which returns a list in which the first component is the vector of singular
values, the second component is the orthogonal matrix V, and the third
component is the orthogonal matrix U: 

> svd(A)
$d:
[1] 40.000114 14.687207  5.768609

$v:
           [,1]       [,2]       [,3]
[1,] -0.5280363  0.6449356  0.5524814
[2,] -0.5533835 -0.7547957  0.3522074
[3,] -0.6441618  0.1197558 -0.7554563

$u:
           [,1]       [,2]        [,3]
[1,] -0.5200456  0.8538399 -0.02258456
[2,] -0.6606048 -0.4188323 -0.62304157
[3,] -0.5414369 -0.3090905  0.78186261

The singular value decomposition can be used as a numerically stable way to
perform many operations that are used in multivariate statistics. One such
operation is estimating the rank  of a matrix X. 

For more information on the singular value decomposition, see the svd help
file and chapter 10 of the LINPACK User’s Guide  by Dongarra, et al.

28.6 EIGENVALUES AND EIGENVECTORS
If A is a square matrix and Ax = λx, where λ is a scalar and x is a vector, then
λ is an eigenvalue of A and x is an eigenvector of A. 
The S-PLUS function eigen returns both the eigenvalues and the
eigenvectors associated with them: 

> eigen(A)
$values:
[1]  39.581985  13.677784  -6.259769

$vectors:
          [,1]       [,2]       [,3]
[1,] 0.6224278  0.8664541  0.3124109
[2,] 0.8793762 -0.6095730  0.3450415
[3,] 0.7368032 -0.2261540 -0.5721007
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For more information on the eigen function, see the eigen help file. See
also the section The Eigen Decomposition, in chapter 29, The Object-
Oriented Matrix Library. 

28.7 INTEGRALS, DIFFERENCES, AND DERIVATIVES
Use the integrate function to compute the integral of a real-valued
function over a given interval. The integrate function returns a list, of
which the first two components are the integral and the absolute error:

> integrate(sin, 0, pi)[1:2]
$integral:
[1] 2

$abs.error:
[1] 2.220446e-14
>  (-cos(pi)) -  -cos(0)
[1] 2

Like many of the S-PLUS mathematical functions, integrate is most
commonly used inside other function definitions. The following “wrapper”
function provides a convenient command-line interface, and returns a single
numeric value:

> integral <- function(f, lower, upper, ...) {
+        results <- integrate(f, lower, upper, ...)
+        if(results$message != "normal termination")
+                results$message
+        else results$integral
+ }

Use the diff function to obtain the nth difference of lag k for a set of data x.
The default for both k and n is 1. The data may be in the form of a vector,
time series, or matrix: 

> y <- (1:10)^2
> diff(y)
[1]  3  5  7  9 11 13 15 17 19
> diff(corn.rain)
1891:  3.3 -3.0 -1.2 -1.9  5.7  0.5 -2.9  0.0  0.0  0.7 
1901: -3.0  8.4 -2.1 -3.5 -0.6  1.5  2.1 -1.5 -0.1 -2.7 
1911: -1.6  3.3 -4.1  2.6  7.0 -7.2  0.1 -0.7  0.8  2.1  
1921:  0.5 -4.1  2.7  3.2 -2.6  0.3 -1.2

Differences on matrices are performed on each column separately: 
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> K
     [,1] [,2]
[1,]   12   10
[2,]    2   16
[3,]   13    7
[4,]    5    1
> diff(K)
     [,1] [,2]
[1,]  -10    6
[2,]   11   -9
[3,]   -8   -6

You can use diff to write a function for approximating the derivative of a
data set: 

> numdiff <- function(y, x = seq(along = y))
+ diff(y)/diff(x)

To perform symbolic differentiation, use the D function. (AT&T suggests the
deriv function, but deriv is most useful for providing derivatives to other
S-PLUS functions. The D function is more useful for obtaining an isolated
derivative.) 

> D(expression(3*x^2),"x")
3 * (2 * x)
> D(expression(exp(x^2)),"x")
exp(x^2) * (2 * x)
> D(expression(log(y)),"y")
1/y

28.8 INTERPOLATION AND APPROXIMATION
S-PLUS has a variety of functions for interpolation and approximation, most
of them developed to aid in fitting curves and lines to data. However, they are
sufficiently general to have wide application in mathematical settings.

Linear 
Interpolation

To find interpolated values in S-PLUS, use the approx function. You provide
a vector of x values and a vector of associated y values, and (optionally) a
vector of x values at which you want interpolated values. S-PLUS returns a list
of x values and the associated y values: 

> approx(1:10,(1:10)^2,xout=c(2.5,3.5))
$x:
[1] 2.5 3.5

$y:
[1]  6.5 12.5
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A more specialized interpolation function, interp, can be used to generate
input for the three-dimensional plotting functions image, contour, and
persp. The interp function interpolates the value of the z variable onto an
evenly spaced grid of the x and y variables: 

> x <- cos(seq(-pi,pi,len=9))
> y <- sin(seq(-pi,pi,len=9))
> z <- x + y
> slanted.disk <- interp(x,y,z)
> persp(slanted.disk)

The resulting plot is shown in figure 28.1.

Convex Hull To obtain the convex hull of a planar set of points, use the chull function,
which returns the indices of the points belonging to the hull: 

> chull(corn.rain)
 [1]  1  2 13 26 35 37 38 33 24  5

The peel option allows you to peel off the convex hull, take the convex hull
of the remaining points, peel off that hull, and so on, until either all points
are assigned to a hull or a user-specified limit is reached: 

Figure 28.1:  A perspective plot created using interp.
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> chull(corn.rain,peel=T)
$depth:
 [1] 1 1 2 2 1 2 2 3 4 5 4 2 1 2 6 5 5 3 4 4 3 2 5 1 4 1 3 
[28] 4 2 3 3 2 1 3 1 2 1 1

$hull:
 [1]  1  2 13 26 35 37 38 33 24  5  4  3  6  7 14 32 36 29
[19] 22 12 21  8 18 31 34 30 27  9 11 19 20 28 25 10 17 23
[37] 16 15

$count:
[1] 10 10  7  6  4  1

The depth component specifies which hull each point belongs to; 1 is the
outermost hull. The hull component gives the indices of the points
belonging to each hull. The first count[1] points belong to the outermost
hull, the next count[2] points belong to the next hull, and so on.

Cubic Spline 
Approximation

Splines approximate a function with a set of polynomials defined on
subintervals. A cubic spline is a collection of polynomials of degree less than
or equal to 3 such that the second derivatives agree at the “knots;” that is, the
spline has a continuous second derivative. 
When interpolating a number of points, a spline can be a much better
solution than a polynomial interpolation, since the polynomial can oscillate
wildly in order to hit all of the points (polynomials fit the data globally while
splines fit the data locally). 

Use the spline function to obtain a cubic spline approximation:

> x <- 1:5
> y <- c(5,-5,0,-5,5)
> spline(x,y)
$x:
 [1] 1.000000 1.333333 1.666667 2.000000 2.333333 2.666667
 [7] 3.000000 3.333333 3.666667 4.000000 4.333333 4.666667

$y:
 [1]  5.0000000  0.1851852 -3.5185184 -5.0000000 -3.7037036
 [6] -1.2962964  0.0000000 -1.2962964 -3.7037036 -5.0000000
[11] -3.5185184  0.1851852

The spline function is primarily used for graphing, so by default it returns
approximately three times as many output points as input points. For more
details, see the spline help file.
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Step Functions The S-PLUS function stepfun creates a step function from either two
vectors or a list with components named x and y. You can specify whether the
step function is left or right continuous—the default is left.

> x <- seq(1,15,length=5)
> y <- x^2
> stepfun(x,y)
$x:
[1]  1.0  4.5  4.5  8.0  8.0 11.5 11.5 15.0 15.0

$y:
[1]   1.00   1.00  20.25  20.25  64.00  64.00 132.25 132.25
[9] 225.00
> plot(stepfun(x,y),type="l")

The resulting plot is shown in figure 28.2.

28.9 SIGNAL PROCESSING
S-PLUS has several functions useful for signal processing, including the fast
Fourier transform and its inverse and several types of filters: convolution,

Figure 28.2:  A (left-continuous) step function.
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Probability and Random Numbers
recursive, and low-pass. For a complete description of filters in S-PLUS, see
section 21.6, Linear Filters. 
The function fft calculates the unnormalized discrete Fourier transform of
the input data, which can be any numeric or complex vector or array,
including time series. The output is of mode complex.

> fft(1:10)
 [1]  55+ 0.000000i  -5+15.388418i  -5+ 6.881910i
 [4]  -5+ 3.632713i  -5+ 1.624598i  -5+ 0.000000i
 [7]  -5- 1.624598i  -5- 3.632713i  -5- 6.881910i
[10]  -5-15.388418i

If the input data is an array (for example, a matrix), fft returns the multi-
dimensional unnormalized discrete Fourier transform of the array—a
complex array with the same shape as the input data. Therefore, using fft
on a multivariate time series does not compute the time transform. 

> fft(A)
                 [,1]             [,2]             [,3]
[1,]  119.0+0.000000i  -2.5+ 6.062178i  -2.5- 6.062178i
[2,]   -5.5-6.062178i  23.0+20.784610i  11.0- 6.928203i
[3,]   -5.5+6.062178i  11.0+ 6.928203i  23.0-20.784610i

To compute the inverse transform, use fft with the argument
inverse=TRUE.

> cuberoot.1 <- (cos(2*pi/3) + sin(2*pi/3)*1i)^(0:2)
> cuberoot.1
[1]  1.0+0.0000000i -0.5+0.8660254i -0.5-0.8660254i
> fft(cuberoot.1,inverse=T)
[1] 0.000000e+00+3.330669e-16i 2.220446e-16+3.142072e-16i
[3] 3.000000e+00-6.472741e-16i

28.10 PROBABILITY AND RANDOM NUMBERS
S-PLUS has many functions for performing probability calculations,
including random number generation, in any of the most common
distributions. Each of these functions has a name beginning with one of the
following four one-letter codes indicating the type of function:

r Random number generator. Requires argument specifying
sample size, plus any required distribution parameters.

p Probability function. Requires a vector of quantiles, plus any
required distribution parameters.

d Density function. Requires a vector of quantiles, plus any
required distribution parameters.
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q Quantile function. Requires a vector of probabilities, plus any
required distribution parameters. 

The function code is concatenated with a code representing the desired
distribution to form the function name. For example, the probability that a
value from a standard normal distribution is less than x is calculated with the
expression pnorm(x). Table 28.2 lists the distributions currently supported
by S-PLUS, along with the codes used to identify them. 

For example, to compute the .95 quantile from a chi-square distribution with
5 degrees of freedom, use the following expression:

> qchisq(.95,5)
[1] 11.0705

The result says that 95% of numbers drawn from the given chi-square
distribution will be less than 11.0705. 

To generate 25 random numbers from a uniform distribution between -5 and
5, use runif as follows:

> runif(25,-5,5)
 [1] -1.03983 -0.11714 -2.41342  2.01498  0.48760
 [6]  1.55474 -3.83878 -4.04518 -2.39230 -0.47260
[11] -1.16530 -3.42732 -2.09373  2.24609  3.70265
[16]  3.67131  4.37430 -3.06433 -2.34121 -1.28586
[21] -0.91553  2.18947  2.12163 -2.04341 -2.87031

28.11 PRIMES AND FACTORS
S-PLUS can be useful in many number-theoretic computations, as we have
already seen with the %% and %/% operators. You can define simple functions
to list prime numbers and perform factorization; although they will not set
computational records, you may find them useful. 
The primes function returns all prime numbers less than or equal to a given
n, where by default n=100:

> primes <- function(n = 100) {
+        n <- as.integer(abs(n))
+        if(n < 2)
+                return(integer(0))
+        p <- 2:n
+        smallp <- integer(0)    # the sieve
+        repeat {
+                i <- p[1]
+                smallp <- c(smallp, i)
+                p <- p[p %% i != 0]
774



Primes and Factors
+                if(i > sqrt(n))
+                        break
+        }
+        c(smallp, p)
+ }

Table 28.2: Probability distributions in S-PLUS.

Code Distribution
Required 
Parameters

Optional 
Parameters

Defaults

beta beta shape1, 
shape2

binom binomial size, prob

cauchy Cauchy location, scale 0, 1

chisq chi-square df

exp exponential rate 1

f F df1, df2

gamma Gamma shape

geom geometric prob

hyper hypergeometric m, n, k

lnorm log-normal mean, sd exp(.5), exp(1)*(exp(1)-1)

logis logistic location, scale 0, 1

nbinom Negative binomial size, prob

norm normal mean, sd 0, 1

pois Poisson lambda

stab stable index skewness 0

t Student’s t df

unif uniform min,max 0,1

weibull Weibull shape

wilcox Wilcoxon rank sum m, n
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> primes(75)
 [1]  2  3  5  7 11 13 17 19 23 29 31 37 41 43 47 53 59 61
[19] 67 71 73

The factors function returns the prime factors of an integer n: 

> factors <- function(n) {
+        n <- as.integer(abs(n))
+        if(!exists(".Primes") || max(.Primes) < sqrt(n))
+                assign(".Primes", primes(as.integer(1.3 *
+                        sqrt(n))), where = 1)
+        pfactors <- integer(0)
+        while(n > 1) {
+                new.factors <- .Primes[n %% .Primes == 0]
+                if(length(new.factors) == 0)
+                        new.factors <- n
+                n <- as.integer(n/(prod(new.factors)))
+                pfactors <- c(pfactors, new.factors)
+        }
+        sort(pfactors)
+ }
> factors(3012)
[1]   2   2   3 251

28.12 INTERFACE TO MATHEMATICA

The S-PLUS interface to Mathematica allows you to use Mathematica as a
numerical coprocessor and symbolic calculator from S-PLUS. The S-PLUS

functions for the interface are in the library section mathematica. To make
the mathematica library available during an S-PLUS session, use the
following command:

> library(mathematica)

You send S-PLUS expressions to Mathematica with the Math function, which
takes as its required argument a character string containing a valid
Mathematica expression.

Note

The Mathematica interface is present in the Unix versions of S-PLUS only. It is not present in 
S-PLUS for Windows.
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As a simple example, here is Mathematica’s computation of the first 30 digits
of p:

> Math("N[Pi,30]")
[1] "3.14159265358979323846264338328"

As another example, here is the numerical integral of the function exp(x2)
from -10 to 10:

> Math("NIntegrate[Exp[-x^2],{x,-10,10}]")
[1] "1.772453850906074"

For complete details on the Mathematica interface, see AT&T Bell
Laboratories Statistical Research Report No. 97, “An Interface from S to
Mathematica,” by Javier F. Cabrera and Allan R. Wilks. When the library
section is attached to your search path, you can also find out more from the
following help files:

D               as.math         math.remove
Integral        all.objects     
Math            math.assign

28.13 A NOTE ON COMPUTATIONAL ACCURACY
S-PLUS performs its computations in double precision, unless specifically
written as integer or single precision. Computed values are accurate to
approximately 14 decimal places. However, computed values can provide no
more significant digits than the data they are computed from. 
The exact limits on computations in S-PLUS are determined by the
parameters of machine arithmetic stored in the S-PLUS object .Machine.
The object .Machine is a list with various numeric components whose
names are made up of the characters single. or double. followed by the
name of a particular parameter of machine arithmetic. For example,
single.digits is the number of base single.base digits in the floating
point representation of a single-precision number. In addition, the
component integer.max is the largest integer. 

See the .Machine help file for more information.
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The traditional algebraic view of matrices, with a host of 
matrix operations, is available in the MATRIX library.
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THE OBJECT-ORIENTED MATRIX 
LIBRARY 29

The Matrix library in S-PLUS provides a consistent, efficient, and fully
object-oriented set of matrix operations and functions that reflect the
traditional linear algebraic viewpoint. The functions are based on the
LAPACK library of numerical Fortran routines. See the LAPACK User’s
Guide (1994) for details. The library includes constructor functions for a new
Matrix class and numerous subclasses, and methods for many common
matrix computations, including basic matrix arithmetic, decompositions,
and solutions to systems of linear equations.

29.1 ATTACHING THE MATRIX LIBRARY
To use the Matrix library, you must first attach it using the library
function:

> library(Matrix) 

You can view the full list of Matrix functions with the following command: 

> objects(grep("Matrix", search()))
 [1] "%*%.Matrix"                 ".First.lib"                
 [3] ".laenv"                     "Arg.Identity"              
 [5] "Arg.Matrix"                 "ColOrthogonal.test"        
 [7] "ColOrthonormal.test"        "ColPermutation"            
 [9] "Diagonal"                   "Diagonal.test"             
[11] "Hermitian.test"             "Identity"                  
[13] "Identity.test"              "Im.Diagonal"               
[15] "Im.Identity"                "Im.Matrix"                 
[17] "LowerTriangular.test"       "Matrix"                    
 . . .

29.2 BASIC MATRIX OPERATIONS
Working with objects of the new Matrix class is, in most simple cases,
exactly like working with traditional S-PLUS matrices. However, throughout
the chapter, we will use the word Matrix, with its initial capital, whenever we
refer specifically to objects of this new class. A lower-case “m” indicates
traditional S-PLUS matrices.
To construct a Matrix, use the Matrix function (which has the same
arguments as the old matrix function):
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> Matrix(1:12, nrow=3, ncol=4)
     [,1] [,2] [,3] [,4] 
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
attr(, "class"):
[1] "Matrix"

By default, Matrices are filled in “by column.” To fill the Matrix by rows, use
the argument byrow=T:

> Matrix(1:12, nrow=3, ncol=4, byrow=T)
     [,1] [,2] [,3] [,4] 
[1,]    1    2    3    4
[2,]    5    6    7    8
[3,]    9   10   11   12
attr(, "class"):
[1] "Matrix"

You can add row and column names by providing a list with two components
(one of length nrow and one of length ncol) to the dimnames argument: 

> Matrix(1:12, nrow=3, ncol=4, dimnames=list(
+ c("Row 1", "Row 2", "Row 3"),  
+ c("Col 1", "Col 2", "Col 3", "Col 4")))

      Col 1 Col 2 Col 3 Col 4 
Row 1     1     4     7    10
Row 2     2     5     8    11
Row 3     3     6     9    12
attr(, "class"):
[1] "Matrix"

As with any S-PLUS expression, the returned value can be stored as an S-PLUS

object: 

> A <- Matrix(c(19,8,11,2,18,17,15,19,10), nrow=3) 
> B <- Matrix(c(14,13,10,10,11,15,19,3,15), nrow=3) 

Warning

If you create Matrices and other objects from linear algebra using the Matrix library, you must 
always attach the Matrix library before working with those objects. Otherwise, you may encoun-
ter potentially confusing error messages. Also, do not expect classed Matrices to be suitable inputs 
for all functions which expect matrix inputs.
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Matrix 
Arithmetic

Two Matrices with the same dimension—that is, the same number of rows
and the same number of columns—are said to be conformable for addition.
Such Matrices can be combined using the normal arithmetic operators +, -,
*, and /; these operators act element-by-element, so that for X = {xij} and
Y = {yij}, X*Y = {xijyij}. Thus, multiplying A times B with the standard *
operator yields the following: 

> A*B 
     [,1] [,2] [,3] 
[1,]  266   20  285
[2,]  104  198   57
[3,]  110  255  150
attr(, "class"):
[1] "Matrix"

If you attempt to add a vector to a Matrix, you may be surprised by the
results. In standard S-PLUS, if you operate on two objects with different
lengths, S-PLUS returns an object with the attributes of the longer object.
Thus, if you add a 3 3 3 matrix and a length 4 vector, you get a 3 3 3
matrix, and the length 4 vector is replicated to be the same length as the
matrix before the addition is performed: 

> matrix(1:9, ncol=3) + 1:4
     [,1] [,2] [,3] 
[1,]    2    8   10
[2,]    4    6   12
[3,]    6    8   10
Warning messages:
  Length of longer object is not a multiple of the length 
    of the shorter object in: matrix(1:9, ncol = 3) + 1:4

The same calculation is illegal with Matrices: 

> Matrix(1:9, ncol=3) + 1:4
Error in e1 + e2: Dimension attributes do not match
Dumped

However, if the vector you want to add is sweep-conformable with your
matrix—that is, if it is the same length as the number of rows or columns of
your matrix—the operation can proceed:

>  Matrix(1:9, ncol=3) + 1:3
     [,1] [,2] [,3] 
[1,]    2    5    8
[2,]    4    7   10
[3,]    6    9   12
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attr(, "class"):
[1] "Matrix"
>  Matrix(1:9, ncol=3) + t(1:3)
     [,1] [,2] [,3] 
[1,]    2    6   10
[2,]    3    7   11
[3,]    4    8   12
attr(, "class"):
[1] "Matrix"

The first example above shows a column sweep operation, in which the
column vector 1:3 is added to each column of the Matrix in turn. The
second example shows a row sweep operation, in which the row vector 1:3 is
added to each row of the Matrix in turn. 

You can obtain the same results using the sweep function, but the basic
operators are usually more convenient: 

> sweep(Matrix(1:9, ncol=3), 2, 1:3, "+")
     [,1] [,2] [,3] 
[1,]    2    6   10
[2,]    3    7   11
[3,]    4    8   12
attr(, "class"):
[1] "Matrix"
> sweep(Matrix(1:9, ncol=3),1, 1:3, "+")
     [,1] [,2] [,3] 
[1,]    2    5    8
[2,]    4    7   10
[3,]    6    9   12
attr(, "class"):
[1] "Matrix"

Matrix multiplication requires that two Matrices X and Y be conformable for
multiplication; that is, that the number of columns of X equal the number of
rows of Y. Thus, if X is an m3 n Matrix and Y is an n 3 p Matrix, the
Matrix product XY is defined, but the Matrix product YX is not: 

> X <- Matrix(rnorm(12), ncol=3)
> Y <- Matrix(rnorm(15), nrow=3)
> X %*% Y
           [,1]       [,2]       [,3]      [,4]       [,5] 
[1,] -2.2592886  0.7046133  0.4268365  2.783703 -1.2639460
[2,]  0.5056705 -0.4573891  1.6069626  2.997998 -0.6174152
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[3,]  0.4616003 -2.6992292 -2.6528110 -2.682271 -0.6169322
[4,] -2.5606158  2.2183770  0.4736680  1.556856 -0.3746409
attr(, "class"):
[1] "Matrix"
> Y %*% X
Error in "%*%.default"(x, y): Number of columns of x 
   should be the same as number of rows of y
Dumped

For square Matrices A and B of the same dimension, both products are
defined, but are not equal, in general:  

> A %*% B                  
     [,1] [,2] [,3] 
[1,]  442  437  592
[2,]  536  563  491
[3,]  475  447  410
attr(, "class"):
[1] "Matrix"
> B %*% A
     [,1] [,2] [,3] 
[1,]  555  531  590
[2,]  368  275  434
[3,]  475  545  585
attr(, "class"):
[1] "Matrix"

One significant difference between the Matrix library and standard S-PLUS is
in the behavior of matrix multiplication involving a vector. In standard
S-PLUS, we have the following behavior when multiplying a matrix by a
vector on the left: 

> 1:3 %*% matrix(rnorm(9), ncol=3)
         [,1]     [,2]      [,3] 
[1,] 10.88121 3.174175 -8.284594

The vector 1:3 is treated as a three-column row vector for purposes of the
multiplication, and so the multiplication proceeds.

If we try the same multiplication with a Matrix, we get an error: 

> 1:3 %*% Matrix(rnorm(9), ncol=3)

Error in "%*%.default"(1:3, Matrix(rnorm(9), ncol ..: 
        Number of columns of x should be the same 
        as number of rows of y
Dumped
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The error occurs because the Matrix library consistently treats S-PLUS vectors
as column vectors. To obtain a row vector, you must take the transpose of a
column vector. Thus, we can obtain the desired product as follows: 

> t(1:3) %*% Matrix(rnorm(9), ncol=3)
         [,1]     [,2]      [,3] 
[1,] 5.231949 0.546737 -8.637152
attr(, "class"):
[1] "Matrix"

Subscripting 
Matrices

For the most part, you subscript Matrices just as you would standard
matrices; use a subscript of the form [i, j], where i indexes the rows and j
indexes the columns: 

> A[1,2]
     [,1] 
[1,]    2
attr(, "class"):
[1] "Matrix"

The difference from standard matrix subscripting is obvious from the output;
the return value is a Matrix, even if the result could be simplified by dropping
the dim attribute.

> A[1,]
     [,1] [,2] [,3] 
[1,]   19    2   15
attr(, "class"):
[1] "Matrix"
> A[,2]
     [,1] 
[1,]    2
[2,]   18
[3,]   17
attr(, "class"):
[1] "Matrix"

In standard S-PLUS, each of these subscripting examples would, by default,
return a vector with no matrix character whatsoever. The matrix character
could be retained by using the drop=F argument. In Matrix subscripting,
drop=F is the default, and drop=T is not allowed: 

> A[,2, drop=T]
Error in "[.Matrix"(x, , 2, drop = drop): 
        drop = T not allowed
Dumped
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If both subscripts are omitted, the entire Matrix is returned: 

> A[]
     [,1] [,2] [,3] 
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10
attr(, "class"):
[1] "Matrix"

Standard S-PLUS matrix subscripting allows arbitrary numeric and complex
subscripts; fractional subscripts are truncated to integer, while complex
subscripts have their imaginary parts ignored and fractional real parts
truncated to integer. The Matrix library forbids such non-integer subscripts: 

> A[c(1.74, 2.26),]
Error in "[.Matrix"(A, c(1.74, 2.26),  ): 
        non-integer numeric row subscript
Dumped
> A[,c(1.74, 2.26)] 
Error in "[.Matrix"(A,  , c(1.74, 2.26)): 
        non-integer numeric column subscript
Dumped
> A[1+2.3i,]
Error in "[.Matrix"(A, 1+2.3i,  ): row subscript must have 
        numeric, logical or character mode
Dumped

Character string subscripts for Matrices work much the same as the standard
matrix operations: 

> dimnames(A) <- list(c("Sun","Mon","Tue"),
+ c("Apr","May", "Jun"))
> A[,"Apr"]
    Apr 
Sun  19
Mon   8
Tue  11
attr(, "class"):
[1] "Matrix"
> A["Mon",]
    Apr May Jun 
Mon   8  18  19
attr(, "class"):
[1] "Matrix"
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Logical subscripts must either be vectors of length nrow or ncol, selecting
rows or columns respectively, a matrix of the same dimension as the original
Matrix, or a vector with the same length as the original Matrix: 

> A[c(T,F,T),]      
    Apr May Jun 
Sun  19   2  15
Tue  11  17  10
attr(, "class"):
[1] "Matrix"
> A[c(T,F),]        
Error in "[.Matrix"(A, c(T, F),  ): logical row subscript 
        length must equal matrix row dimension
Dumped
> A[, c(F,T,T)]
    May Jun 
Sun   2  15
Mon  18  19
Tue  17  10
attr(, "class"):
[1] "Matrix"
> A[A > 10]
[1] 19 11 18 17 15 19
> A[sample(c(T,F), size=9, replace=T)]
[1]  8 11  2 18 17 19 10

Standard S-PLUS matrix subscripting permits short logical subscripts, which
are then replicated to the appropriate length. This replication is often
confusing, and in algebraic applications usually not desired. The Matrix
library expressly forbids such short subscripts, as the second row subscript
example above demonstrates.

The Matrix library does support the irregular subscripting performed by a
two column matrix, in which each row represents the row and column of a
value to be extracted. In standard S-PLUS, the extraction matrix must consist
of numeric values, but for Matrices, a character matrix using the dimnames
of the Matrix is acceptable: 

> nummat <- Matrix(c(1,1,2,2,3,3), ncol=2, byrow=T)
> A[nummat]
[1] 19 18 10
> submat <- Matrix(c("Sun", "Apr", "Mon", "May", 
+ "Tue", "Jun"), ncol=2, byrow=T)
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> A[submat]
[1] 19 18 10
> statemat <- Matrix(c("California", "Murder", 
+ "Wyoming", "Frost"), ncol=2, byrow=T)
> state.x77[statemat]
 California Wyoming Murder Frost 
         NA      NA     NA    NA
> as.Matrix(state.x77)[statemat]
[1]  10.3 173.0

Creating 
Specialized 
Matrices

In addition to the general "Matrix" class, the Matrix library supports a
variety of subclasses for Matrices with specialized structures, such as identity
and diagonal Matrices, upper and lower triangular Matrices, and Hermitian
and orthogonal Matrices. Constructor functions exist for identity and
diagonal Matrices, but in most cases you build these specialized Matrices in
two steps—first, construct the Matrix using the Matrix function, then
assign its class using the Matrix.class function. Matrix.class performs
a variety of tests on the Matrix to determine its specialized structure, and
returns an appropriate vector of subclasses.

Creating Identity 
Matrices

Make an identity Matrix of any (square) dimension with the Identity
function. Identity matrices formed in this way are stored as a single number,
the length of the diagonal: 

> Id.4 <- Identity(4)
> Id.4 
[1] 4
attr(, "class"):
[1] "Identity" "Matrix"

Use the unpack function to display the Matrix in “natural” form: 

> unpack(Id.4)
     [,1] [,2] [,3] [,4] 
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1
attr(, "class"):
[1] "UnitLowerTriangular" "UnitUpperTriangular" 
[3] "Lower Triangular"    "Upper Triangular"    
[5] "Hermitian"           "Orthonormal"        
[7] "Matrix"             

Note that the “unpacked” form of the identity Matrix no longer inherits from
class "Identity", although it belongs to several other subclasses.
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Creating Diagonal 
Matrices

Diagonal Matrices can be created and stored as the vector of diagonal values
using the Diagonal function:

> D4 <- Diagonal(1:4)       
> D4
[1] 1 2 3 4
attr(, "class"):
[1] "Diagonal" "Matrix"
> unpack(D4)
     [,1] [,2] [,3] [,4] 
[1,]    1    0    0    0
[2,]    0    2    0    0
[3,]    0    0    3    0
[4,]    0    0    0    4
attr(, "class"):
[1] "LowerTriangular" "UpperTriangular" "Hermitian"
[4] "RowOrthogonal"   "ColOrthogonal"   "Matrix"

As with identity Matrices, unpacking a diagonal Matrix causes the Matrix to
lose its inheritance from the "Diagonal" class, but gain inheritance from
several other classes.

You can also create rectangular diagonal Matrices by specifying the
dimensions desired. One of these dimensions must match the length of the
vector of values: 

> D5 <- Diagonal(1:4, c(5,4))
> unpack(D5)                 
     [,1] [,2] [,3] [,4] 
[1,]    1    0    0    0
[2,]    0    2    0    0
[3,]    0    0    3    0
[4,]    0    0    0    4
[5,]    0    0    0    0
attr(, "class"):
[1] "RowOrthogonal" "ColOrthogonal" "Matrix"       
> D6 <- Diagonal(1:4, c(4,6))
> unpack(D6)                 
     [,1] [,2] [,3] [,4] [,5] [,6] 
[1,]    1    0    0    0    0    0
[2,]    0    2    0    0    0    0
[3,]    0    0    3    0    0    0
[4,]    0    0    0    4    0    0
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attr(, "class"):
[1] "RowOrthogonal" "ColOrthogonal" "Matrix"

You can, of course, use Identity and Diagonal matrices without unpacking
them: 

> xx <- Matrix(1:16, nrow=4)
> xx %*% D4      
     [,1] [,2] [,3] [,4] 
[1,]    1   10   27   52
[2,]    2   12   30   56
[3,]    3   14   33   60
[4,]    4   16   36   64
attr(, "class"):
[1] "Matrix"

Creating 
Symmetric and 
Hermitian 
Matrices

A matrix is Hermitian if and only if each element aij  is equal to the complex
conjugate of the element aji ; that is, if the Matrix is equal to its conjugate
transpose. 

> my.Herm<-Matrix( c(1, 2+3i, 3-4i, 2-3i, 3,
+ 4-2i, 3+4i, 4+2i, 2), nrow=3)
> my.Herm
     [,1] [,2] [,3] 
[1,] 1+0i 2-3i 3+4i
[2,] 2+3i 3+0i 4+2i
[3,] 3-4i 4-2i 2+0i
attr(, "class"):
[1] "Matrix"

There is no constructor function for Hermitian matrices. Instead, use the
function Matrix.class to assign the appropriate subclasses to a Matrix.
Matrix.class tests its argument and returns a vector of subclasses to which
the Matrix belongs: 

> Matrix.class(my.Herm)
[1] "Hermitian" "Matrix"   
> class(my.Herm) <- Matrix.class(my.Herm)

All symmetric real matrices are Hermitian: 

> Sym <- Matrix( c(4, -3, 5, -3, 2, 1, 5, 1, -6), nrow=3)  
> class(Sym) <- Matrix.class(Sym)
> Sym
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     [,1] [,2] [,3] 
[1,]    4   -3    5
[2,]   -3    2    1
[3,]    5    1   -6
attr(, "class"):
[1] "Hermitian" "Matrix"

In the rest of this chapter, we will use the term “Hermitian” whenever we
mean a complex Hermitian or real symmetric matrix.

Creating 
Orthonormal 
Matrices

An orthonormal Matrix is a Matrix that has the following two properties:

1. the transpose of the Matrix is equal to its inverse.

2. all rows and columns are unit vectors (have norm 1 for vector 2-
norm).

Orthonormal Matrices are easy to generate in S-PLUS using the qr function,
which performs the QR decomposition of a matrix into an orthonormal
matrix Q and an upper triangular (or trapezoidal) matrix R. See page 810,
The QR Decomposition, for complete details.

Creating 
Triangular 
Matrices

A triangular Matrix is one in which all entries are zero either below (upper
triangular) or above (lower triangular) the diagonal. You can easily convert
any S-PLUS Matrix into a triangular Matrix, simply by “zeroing out” the
appropriate entries. For example, to convert our Matrix A into lower
triangular form, we can replace the upper diagonal entries with 0’s as follows: 

> A.tri <- A
> A.tri[row(A.tri)< col(A.tri)] <- 0
> class(A.tri) <- Matrix.class(A.tri)
> A.tri
    Apr May Jun 
Sun  19   0   0
Mon   8  18   0
Tue  11  17  10
attr(, "class"):
[1] "LowerTriangular" "Matrix"         

Further, once you’ve created a lower (upper) triangular Matrix, its transpose is
an upper (lower) triangular Matrix.

Creating 
Permutation 
Matrices

A permutation Matrix is an identity Matrix with one or more rows or
columns permuted. For example, the following Matrix is an identity Matrix
with the first and third rows permuted: 
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     [,1] [,2] [,3] [,4] 
[1,]    0    0    1    0
[2,]    0    1    0    0
[3,]    1    0    0    0
[4,]    0    0    0    1
attr(, "class"):
[1] "Orthonormal" "Matrix"     

The Matrix library contains two functions for generating permutation
Matrices: RowPermutation generates row permutations, while
ColPermutation generates column permutations. Both functions take a
single argument, a permutation of the integers 1 to n. Thus, the Matrix above
can be generated using either of the two functions as follows: 

> unpack(RowPermutation(c(3,2,1,4)))
     [,1] [,2] [,3] [,4] 
[1,]    0    0    1    0
[2,]    0    1    0    0
[3,]    1    0    0    0
[4,]    0    0    0    1
attr(, "class"):
[1] "Orthonormal" "Matrix"     
> unpack(ColPermutation(c(3,2,1,4)))
     [,1] [,2] [,3] [,4] 
[1,]    0    0    1    0
[2,]    0    1    0    0
[3,]    1    0    0    0
[4,]    0    0    0    1

attr(, "class"):
[1] "Orthonormal" "Matrix"     

The compact form returned by the two functions does differ, however: 

> RowPermutation(c(3,2,1,4))        
[1] 3 2 1 4
attr(, "class"):
[1] "RowPermutation" "Matrix"        
> ColPermutation(c(3,2,1,4))        
[1] 3 2 1 4
attr(, "class"):
[1] "ColPermutation" "Matrix"        
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Matrix Norms A Matrix norm is a measure of the size of a Matrix (or, more accurately, a
measure of distance in the space of Matrices). There are several commonly
used Matrix norms:

•  Frobenius norm:

•  p-norms:

where |x|p is the vector p-norm. Three p-norms (1, 2, and ) are widely

used, and can be computed in S-PLUS. They can be characterized as fol-
lows: 

� p = 1: The maximum sum of magnitudes of elements in each col-
umn of the Matrix.

� p = : The maximum sum of magnitudes of elements in each
row/ of the Matrix.

� p = 1: The largest singular value of the Matrix

•  Maximum-modulus norm:.

You calculate Matrix norms using the Matrix library’s norm function. For the
1-norm, -norm, Frobenius norm, and maximum-modulus norm, you call
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norm by specifying the Matrix and the type of norm (maximum-modulus is
the default): 

> norm(A)
[1] 19
> norm(A, type="Frobenius")
[1] 43
> norm(A, type="1")
[1] 44
> norm(A, type="Inf")    
[1] 45

Only the first letter of the type string is needed (or used): 

> norm(A, "F")
[1] 43

To compute the 2-norm, you must first compute the singular value
decomposition (SVD) or the eigen decomposition (for Hermitian matrices): 

> norm(svd(A, vectors=F))
[1] 40.00011

See page 799, The Singular Value Decomposition, for details on the SVD
and the svd function; see page 807, The Eigen Decomposition, for details
on the eigen decomposition and the eigen function. 

Condition 
Estimates

For a square Matrix A, the condition number k(A) is defined as follows:

For singular A, k(A) = . The exact value of the condition number is norm-
dependent. The condition number can be thought of as a measure of the
closeness of a square Matrix to singularity. It falls in the range [1, ), where

the value  implies singularity. Matrices with large condition numbers are
said to be ill-conditioned. Because the reciprocal of the condition number is a
bounded quantity, falling in the interval [0,1], S-PLUS computes the
reciprocal, rather than the condition number itself. In most cases, the
computed result is an estimate of the reciprocal condition number rather
than a direct computation; the estimate is in any case at least as large as the
actual condition number.

To obtain the reciprocal condition estimate for a Matrix, use the rcond
function. By default, rcond gives the one-norm condition estimate, although
the infinity norm is also available: 

κ A( ) A A 1–=

∞

∞
∞
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> rcond(A)
[1] 0.1125994
> rcond(A, one.norm=F)
[1] 0.0707946

As with Matrix norms, 2-norm condition numbers can be obtained by first
taking the singular value decomposition of the Matrix (or the eigenvalue
decomposition of a Hermitian Matrix): 

> rcond(svd(A))
[1] 0.1442148

For a rectangular matrix, the notion of condition number can be defined by
replacing the inverse of the matrix in the original definition with the pseudo-
inverse, which is the unique minimal (in Frobenius norm) solution to the
following problem:

For rectangular matrices, the reciprocal condition estimate is based on the
QR decomposition (see page 810, The Eigen Decomposition, for a complete
description of the QR decomposition): 

> rect.Mat <- Matrix(sample(-9:9, size=12, replace=T), 
+ nrow=4, ncol=3) 
> rect.Mat
     [,1] [,2] [,3] 
[1,]    2   -2    2
[2,]    3    6    0
[3,]    3   -5    5
[4,]   -6   -4    5
attr(, "class"):
[1] "Matrix"
> rcond(rect.Mat)
[1] 0.2722501
> rcond(rect.Mat, one.norm=F)
[1] 0.2123998

Determinants The determinant of a 1 3 1 Matrix A = (a11) is simply a11. For an n 3 n
Matrix, the determinant is defined in terms of the determinants of (n -
1) 3 (n - 1) Matrices, as follows. If A [ Rn3 n,

min
X R

n m×∈
AX Im– F
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where A1j is the (n - 1) 3 (n - 1) Matrix obtained by deleting the first row
and jth column of A. See Golub and Van Loan (1989) for further details.

Determinants in S-PLUS are computed using the det function, which returns
the determinant as a list containing by default the logarithm of the modulus
of the determinant and the sign of the determinant. The argument
logarithm=F tells S-PLUS to return the modulus of the determinant instead
of its logarithm: 

> det(A)
$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T

$sign:
[1] -1
> det(A, log=F)
$modulus:
[1] 3389
attr($modulus, "logarithm"):
[1] F

$sign:
[1] -1

Special methods for various types of Matrices, such as QR and SVD
decompositions, take advantage of computational efficiencies. In some cases,
however, sign information is lost: 

> det(svd(A))
$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T
$sign:
[1] NA

det A( ) 1–( )j 1+
a1jdet A1j( )

j 1=

n

∑=
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> det(eigen(A))
$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T

$sign:
[1] -1
> det(qr(A))
$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T

$sign:
[1] NA

The following function, numdet, always returns a number (numeric or
complex): 

> numdet
function(det){
        if(attributes(det$modulus)$logarithm)
                val <- exp(det$modulus)
        else val <- det$modulus
        if(!is.na(det$sign))
                val <- val * det$sign
        else warning("Sign information not available")
        val

29.3 MATRIX DECOMPOSITIONS
Standard S-PLUS has long had a variety of matrix decomposition functions;
these are used internally by the various S-PLUS regression functions, and have
wide applicability. The Matrix library includes additional decomposition
functions, with many specific methods designed to take advantage of
specialized Matrix structures. The following decompositions are available in
the Matrix library: 

• Singular value decomposition.

• LU decomposition, and the closely related symmetric indefinite
decomposition.

• Eigen decomposition.
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• QR decomposition.

• Schur decomposition.

The Choleski decomposition is available in standard S-PLUS, but is not part of
the Matrix library. However, for Matrices which satisfy the requirements for
the Choleski decomposition, the symmetric indefinite decomposition
provides all the components necessary to compute the Choleski
decomposition explicitly. See page 803, The Hermitian Indefinite
Decomposition, for details.

This section describes the available decompositions and the functions for
computing them in the Matrix library.

The Singular 
Value 
Decomposition

For any real m3 n matrix A, there exist orthogonal matrices U and V and a
diagonal matrix S so that

UTAV = S.

The p = min(m,n) diagonal elements s1 $ s1 $ … $ sp $ 0 are called the
singular values of A. The both the 2-norm and the Frobenius norm can be
characterized readily in terms of the singular values:

To obtain the singular value decomposition, use the svd function: 

> svd(A)
$values:
[1] 40.000114 14.687207  5.768609

$vectors:
$vectors$left:
           [,1]       [,2]        [,3] 
[1,] -0.5200456  0.8538399 -0.02258456
[2,] -0.6606048 -0.4188323 -0.62304157
[3,] -0.5414369 -0.3090905  0.78186261
attr($vectors$left, "class"):
[1] "Orthonormal" "Matrix"     

$vectors$right:
           [,1]       [,2]       [,3] 
[1,] -0.5280363  0.6449356  0.5524814
[2,] -0.5533835 -0.7547957  0.3522074
[3,] -0.6441618  0.1197558 -0.7554563

A F σ i
2

i 1=

p

∑= A 2 σ1=
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attr($vectors$right, "class"):
[1] "Orthonormal" "Matrix"     

attr(, "class"):
[1] "svd.Matrix" "decomp"    

other attributes:
[1] "call"       "complex"    "dimensions" 
[4] "dimlabels"  "workspace"

The svd function returns a list with two components, values and
vectors; the vectors component is also a list with two components, left
containing the orthogonal Matrix U, right containing the orthogonal
Matrix V. You can verify the decomposition as follows: 

> A.svd <- svd(A)
> round(t(A.svd$vectors$left) %*% A %*% 
+ A.svd$vectors$right, digits=3)
     [,1]   [,2]   [,3] 
[1,]   40  0.000  0.000
[2,]    0 14.687  0.000
[3,]    0  0.000  5.769
attr(, "class"):
[1] "Matrix"
> round(A.svd$values, digits=3)
[1] 40.000 14.687  5.769

Once you obtain the SVD, you can easily obtain the 2-norm and the 2-norm
reciprocal condition number for the original Matrix.  

> norm(A.svd)
[1] 40.00011
> rcond(A.svd)
[1] 0.1442148

The SVD also provides for efficient calculation of the determinant, although
sign information is lost: 

> det(A.svd)
$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T

$sign:
[1] NA
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The number of positive singular values also gives a useful measure of the rank
of the Matrix: 

> Matrix.rank <- function(Matrix){
+ length(svd(Matrix)$values)}
> Matrix.rank(A)
[1] 3
> Matrix.rank(rect.Mat)
[1] 3

The LU 
Decomposition

If X is a square matrix, then there is a row permutation P, a lower triangular
matrix L with 1’s on its diagonal, and an upper triangular matrix U such that

PX = LU

For rectangular matrices, a similar decomposition exists, except that either L
or U is trapezoidal, depending on whether the matrix has more or less rows
than columns. This decomposition is called the LU decomposition.

To obtain the LU decomposition, use the lu function:  

> lu(A)
$factors:
           Apr        May       Jun 
Sun 19.0000000  2.0000000  15.00000
Mon  0.4210526 17.1578947  12.68421
Tue  0.5789474  0.9233129 -10.39571

$pivot:
[1] 1 2 3

attr(, "class"):
[1] "lu.Matrix" "decomp"   

other attributes:
[1] "call"      "dimlabels" "norm"     

The lu function returns a list with two components, factors and pivot.
The factors component is a compact representation of both L and U,
taking advantage of the fact that L is known to have 1’s along its diagonal.
The pivot component is the row permutation P, expressed as a numeric
vector.

To obtain L, U, and P explicitly, use the expand function: 
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> expand(lu(A))
$l:
          Apr       May Jun 
Sun 1.0000000 0.0000000   0
Mon 0.4210526 1.0000000   0
Tue 0.5789474 0.9233129   1
attr($l, "class"):
[1] "UnitLowerTriangular" "LowerTriangular"     "Matrix"             

$u:
    Apr      May       Jun 
Sun  19  2.00000  15.00000
Mon   0 17.15789  12.68421
Tue   0  0.00000 -10.39571
attr($u, "class"):
[1] "UpperTriangular" "Matrix"         

$permutation:
[1] 3
attr($permutation, "class"):
[1] "Identity" "Matrix"  

attr(, "class"):
[1] "expand.lu.Matrix"

If you want to multiply one of the factors by some other Matrix, but don’t
need the remainder of the decomposition, use the facmul function to
perform the multiplication. For example, to multiply the factor "L" by the
original Matrix A, use facmul as follows: 

> facmul(lu(A), "L", y=A)
        [,1]     [,2]     [,3] 
[1,] 19.0000  2.00000 15.00000
[2,] 16.0000 18.84211 25.31579
[3,] 29.3865 34.77753 36.22716
attr(, "class"):
[1] "Matrix"

Using facmul without the y argument gives a convenient method for
extracting a single factor: 

> facmul(lu(A), "L")
          Apr       May Jun 
Sun 1.0000000 0.0000000   0
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Mon 0.4210526 1.0000000   0
Tue 0.5789474 0.9233129   1
attr(, "class"):
[1] "UnitLowerTriangular" "LowerTriangular"     "Matrix"             
> facmul(lu(A), "U")
    Apr      May       Jun 
Sun  19  2.00000  15.00000
Mon   0 17.15789  12.68421
Tue   0  0.00000 -10.39571
attr(, "class"):
[1] "UpperTriangular" "Matrix"         
> facmul(lu(A), "P")
[1] 3
attr(, "class"):
[1] "Identity" "Matrix"  

By default, lu computes the 1-norm and -norm of the Matrix, and stores
these as attributes: 

> attributes(lu(A))$norm
 one infinity 
  44       45

These norms should be computed if solve will eventually be applied to the
factorization with condition estimation. The infinity norm is needed for
solves involving the underlying matrix, and the one norm is needed for solves
involving its transpose. One or both of the norms can be omitted from the
computation by specifying appropriate logical values in the norm.comp
argument to lu:  

> lu.A <-  lu(A, norm.comp=c(F,T))
> attributes(lu.A)$norm
 infinity 
       45

The Hermitian 
Indefinite 
Decomposition

If X is a Hermitian matrix, then there is a permutation P, a triangular matrix
T with diagonal elements all equal to one, and a Hermitian block diagonal
matrix B with either 1 3 1 or 2 3 2 blocks, such that

PXPT = TBTH 

This is called the Hermitian Indefinite Decomposition. If X is positive
(semi-) definite, the blocks are 1 3 1, real, and positive (non-negative), in
which case the decomposition reduces essentially to the Choleski
decomposition.

∞
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To obtain the Hermitian Indefinite Decomposition, use the lu function: 

> lu(my.Herm, lower=F)
$factors:
            [,1]                 [,2]                  [,3] 
[1,] 4.130435+0i 0.6956522-0.6956522i -0.4347826+0.6521739i
[2,] 2.000000+3i 1.0000000+0.0000000i  3.0000000+4.0000000i
[3,] 3.000000-4i 4.0000000-2.0000000i  2.0000000+0.0000000i
attr($factors, "uplo"):
[1] "U"

$pivot:
[1]  1 -1 -1

attr(, "class"):
[1] "lu.Hermitian" "decomp"      

other attributes:
[1] "call"      "norm"      "workspace"

You can obtain the explicit matrices P, T, and B using expand or facmul as
before for L and U:  

> expand(lu(my.Herm, lower=F))
$triangular:
     [,1]                 [,2]                  [,3] 
[1,] 1+0i 0.6956522-0.6956522i -0.4347826+0.6521739i
[2,] 0+0i 1.0000000+0.0000000i  0.0000000+0.0000000i
[3,] 0+0i 0.0000000+0.0000000i  1.0000000+0.0000000i
attr($triangular, "class"):
[1] "UnitUpperTriangular" "UpperTriangular"     "Matrix"             

other attributes:
[1] "uplo"

$block.diagonal:
            [,1] [,2] [,3] 
[1,] 4.130435+0i 0+0i 0+0i
[2,] 0.000000+0i 1+0i 3+4i
[3,] 0.000000+0i 3-4i 2+0i
attr($block.diagonal, "class"):
[1] "Hermitian" "Matrix"   
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other attributes:
[1] "uplo"

$permutation:
[1] 2 1 3
attr($permutation, "class"):
[1] "RowPermutation" "Matrix"        

attr(, "class"):
[1] "expand.lu.Hermitian"
> facmul(lu(my.Herm), "P")
[1] 2 1 3
attr(, "class"):
[1] "RowPermutation" "Matrix"        
> facmul(lu(my.Herm), "T")
                     [,1]                  [,2] [,3] 
[1,] 1.0000000+0.0000000i  0.0000000+0.0000000i 0+0i
[2,] 0.0000000+0.0000000i  1.0000000+0.0000000i 0+0i
[3,] 0.6956522-0.6956522i -0.4347826+0.6521739i 1+0i
attr(, "class"):
[1] "UnitLowerTriangular" "LowerTriangular"     "Matrix"             

other attributes:
[1] "uplo"
> facmul(lu(my.Herm), "B")
     [,1] [,2]        [,3] 
[1,] 1+0i 3+4i 0.000000+0i
[2,] 3-4i 2+0i 0.000000+0i
[3,] 0+0i 0+0i 4.130435+0i
attr(, "class"):
[1] "Hermitian" "Matrix"   

other attributes:
[1] "uplo"

In the positive definite case, B is diagonal, P is the identity matrix, and the
indefinite Hermitian decomposition reduces (via the transformation

G = T ) to the Choleski decomposition, which decomposes X into the
product of an upper triangular matrix G and its conjugate transpose

X = GGH: 

B
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> posdef  <- Matrix(sample(-1:1, size=9, replace=T),
+ nrow=3, ncol=3)            
> posdef <- posdef %*% t(posdef)
> class(posdef) <- Matrix.class(posdef)
> posdef
    [,1] [,2] [,3] 
[1,]    3    2    0
[2,]    2    2    1
[3,]    0    1    2
attr(, "class"):
[1] "Hermitian" "Matrix"   
> posdef.g <- facmul(lu(posdef), "T") %*% 
+ sqrt(facmul(lu(posdef), "B")) 
> posdef.g %*% t(posdef.g)
     [,1] [,2] [,3] 
[1,]    3    2    0
[2,]    2    2    1
[3,]    0    1    2
attr(, "class"):
[1] "Matrix"

You can use lu and facmul to define a Choleski function to take the
Choleski decomposition directly: 

> Choleski
function(x)
{
        if(!inherits(x, "Matrix"))
                x <- as.Matrix(x)
        class(x) <- Matrix.class(x)
        if(!inherits(x, "Hermitian"))
                stop("x must be a Hermitian matrix")
        val <- facmul(lu(x, lower=F), "T") %*% 
                      sqrt(facmul(lu(x, lower=F), "B"))
        class(val) <- Matrix.class(val)
        val
}

We can try it out on our simple positive definite matrix: 
> posdef
     [,1] [,2] [,3] 
[1,]    3    2    0
[2,]    2    2    1
[3,]    0    1    2
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attr(, "class"):
[1] "Hermitian" "Matrix"   
> Choleski(posdef) %*% t(Choleski(posdef))
     [,1] [,2] [,3] 
[1,]    3    2    0
[2,]    2    2    1
[3,]    0    1    2
attr(, "class"):
[1] "Matrix"

The Eigen 
Decomposition

For any n 3 n Matrix X, there are scalar values li and vectors vi and ui,
i = 1, …, n, for which  

The li are called the eigenvalues of X, while the vectors vi and ui are called,
respectively, the right and left eigenvectors of X. To compute eigenvalues and
eigenvectors in S-PLUS, use the eigen function:  

> eigen(A)
$values:
[1]  39.581985  13.677784  -6.259769

$vectors:
$vectors$left:
          [,1]        [,2]       [,3] 
[1,] 0.5499003  0.78919610 -0.1781937
[2,] 0.5476794 -0.61095405 -0.5547945
[3,] 0.6306005  0.06248726  0.8126808
attr($vectors$left, "class"):
[1] "Matrix"

$vectors$right:
          [,1]       [,2]       [,3] 
[1,] 0.4768760  0.7998527 -0.4235897
[2,] 0.6737382 -0.5627172 -0.4678325
[3,] 0.5645052 -0.2087703  0.7756961
attr($vectors$right, "class"):
[1] "Matrix"

attr(, "class"):
[1] "eigen.Matrix" "decomp"      

Xvi λ i viu
H
i X λ iu

H
i==
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 other attributes:
[1] "call"      "dimlabels" "one.norm"  "workspace"

If X has any complex eigenvalues, some of its eigenvectors come in conjugate
pairs; in this case the vectors component contains the real and imaginary
parts of the eigenvectors. To extract the true eigenvectors, you need to use the
expand function:  
> eigen(B)
$values:
[1] 36.755743+0.00000i  1.622129+6.49027i  1.622129-6.49027i

$vectors:
$vectors$left:
           [,1]       [,2]       [,3] 
[1,] -0.5805813 -0.4189235 -0.3008385
[2,] -0.5661857 -0.2525614  0.4955897
[3,] -0.5851146  0.6516156  0.0000000
attr($vectors$left, "class"):
[1] "Matrix"

$vectors$right:
           [,1]       [,2]       [,3] 
[1,] -0.6836358 -0.4208512  0.4218487
[2,] -0.4149883  0.6514816  0.0000000
[3,] -0.6003556 -0.2128151 -0.4185803
attr($vectors$right, "class"):
[1] "Matrix"

attr(, "class"):
[1] "eigen.Matrix" "decomp"      

other attributes:
[1] "call"      "one.norm"  "workspace"

> expand(eigen(B))
$values:
[1] 36.755743+0.00000i  1.622129+6.49027i  1.622129-6.49027i

$vectors:
$vectors$left:
              [,1]                  [,2]                  [,3] 
[1,] -0.5805813+0i -0.4189235-0.3008385i -0.4189235+0.3008385i
[2,] -0.5661857+0i -0.2525614+0.4955897i -0.2525614-0.4955897i
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[3,] -0.5851146+0i  0.6516156+0.0000000i  0.6516156+0.0000000i
attr($vectors$left, "class"):
[1] "Matrix"

$vectors$right:
              [,1]                  [,2]                  [,3] 
[1,] -0.6836358+0i -0.4208512+0.4218487i -0.4208512-0.4218487i
[2,] -0.4149883+0i  0.6514816+0.0000000i  0.6514816+0.0000000i
[3,] -0.6003556+0i -0.2128151-0.4185803i -0.2128151+0.4185803i
attr($vectors$right, "class"):
[1] "Matrix"

attr(, "class"):
[1] "expand.eigen.Matrix" "decomp"             

other attributes:
[1] "call"      "one.norm"  "workspace"

When X is Hermitian, the left and right eigenvectors are the same, and can be
written as the columns of a unitary matrix Z. Taking L = diag(l1, …, ln), we

have X = ZLZH. 

> eigen(my.Herm)
$values:
[1] -5.550724  1.745483  9.805241

$vectors:
                       [,1]                  [,2]                 [,3] 
[1,]  0.1678486+0.60792927i -0.3575879+0.4547576i 0.4516168+0.2522251i
[2,]  0.4638801-0.05615832i  0.1054296-0.6459414i 0.3834491+0.4541725i
[3,] -0.6196050+0.00000000i  0.4867964+0.0000000i 0.6157263+0.0000000i
attr($vectors, "class"):
[1] "Orthonormal" "Matrix"     

attr(, "class"):
[1] "eigen.Hermitian" "decomp"         

other attributes:
[1] "call"      "uplo"      "workspace"

The eigen decomposition can sometimes be simplified by balancing the
Matrix before computing the decomposition. There are two operations that
may be performed during balancing: row and column permutations to make
the Matrix more nearly upper triangular, and diagonal scaling to make the
rows and columns more nearly equal in norm. You can specify neither, one,
or both of the balancing operations, using the balance argument to eigen.
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The default is no balancing; the following call to eigen uses permutation
balancing: 

> eigen(A, balance=c(T,F))

See Golub and Van Loan (1989) and the LAPACK User’s Manual (1994) for
further details on balancing.

The QR 
Decomposition

If X is an m3 n matrix, then there is an m3 m unitary matrix Q and an
upper triangular matrix R such that

This is called the QR decomposition.

To obtain the QR decomposition in S-PLUS, use the qr function: 

> qr(rect.Mat)
$factors:
$factors[[1]]:

           [,1]       [,2]       [,3] 
[1,] -7.6157731 -3.0200480  1.4443708
[2,]  0.3119874 -8.4781667  5.2650452
[3,]  0.3119874 -0.3755841 -4.9186474
[4,] -0.6239748 -0.2375377  0.5264209

$factors[[2]]:
[1] 1.262613 1.670164 1.566025

$pivot:
NULL

attr(, "class"):
[1] "qr.Matrix" "decomp"   

other attributes:
[1] "call"      "workspace"

As with the LU decomposition, the explicit factors Q and R can be computed
using the expand and facmul functions: 

X Q R S

0 0
=
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> expand(qr(rect.Mat))
$q:
           [,1]       [,2]       [,3]        [,4] 
[1,] -0.2626129  0.3294466 -0.1310846  0.89739413
[2,] -0.3939193 -0.5673803 -0.7230135 -0.01259501
[3,] -0.3939193  0.7300700 -0.3507293 -0.43452768
[4,]  0.7878386  0.1911604 -0.5805663  0.07557003
attr($q, "class"):
[1] "Matrix"
$r:
          [,1]      [,2]      [,3] 
[1,] -7.615773 -3.020048  1.444371
[2,]  0.000000 -8.478167  5.265045
[3,]  0.000000  0.000000 -4.918647
[4,]  0.000000  0.000000  0.000000
attr($r, "class"):
[1] "Matrix"

$permutation:
[1] 3
attr($permutation, "class"):
[1] "Identity" "Matrix"  

attr(, "class"):
[1] "expand.qr.Matrix"
> facmul(qr(rect.Mat), "R")
          [,1]      [,2]      [,3] 
[1,] -7.615773 -3.020048  1.444371
[2,]  0.000000 -8.478167  5.265045
[3,]  0.000000  0.000000 -4.918647
[4,]  0.000000  0.000000  0.000000
attr(, "class"):
[1] "Matrix"
> facmul(qr(rect.Mat), "Q")
           [,1]       [,2]       [,3]        [,4] 
[1,] -0.2626129  0.3294466 -0.1310846  0.89739413
[2,] -0.3939193 -0.5673803 -0.7230135 -0.01259501
[3,] -0.3939193  0.7300700 -0.3507293 -0.43452768
[4,]  0.7878386  0.1911604 -0.5805663  0.07557003
attr(, "class"):
[1] "Matrix"
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The QR decomposition is a useful source of both orthonormal and lower
triangular Matrices. For example, here we obtain both an orthonormal
Matrix A.q and an upper triangular Matrix A.u from the expansion of the
QR decomposition of A: 

> A.qr <- qr(A)
> A.q <- expand(A.qr)$q
> A.u <- expand(A.qr)$r
> A.q
           [,1]       [,2]       [,3] 
[1,] -0.8131249  0.5653998 -0.1383870
[2,] -0.3423684 -0.6568151 -0.6718465
[3,] -0.4707565 -0.4989158  0.7276478
attr(, "class"):
[1] "Matrix"
> A.u
          [,1]      [,2]       [,3] 
[1,] -23.36664 -15.79174 -23.409439
[2,]   0.00000 -19.17344  -8.987649
[3,]   0.00000   0.00000  -7.564412
attr(, "class"):
[1] "UpperTriangular" "Matrix"         

The Schur 
Decomposition

If X is a square matrix, then there is a unitary matrix Z and a matrix S such
that

X = ZSZH

If X is real, S is upper quasi-triangular—nearly upper triangular with either
1 3 1 or 2 3 2 blocks on the diagonal. If X is complex, S is upper triangular.
The eigenvalues of X appear on the diagonal of S; the 2 3 2 diagonal blocks
in the real case correspond to the complex conjugate eigenvalues. This
decomposition is called the Schur decomposition. An important property of
the Schur decomposition is that Z can be chosen so that the eigenvalues of X
appear in any order on the diagonal of S.

To obtain the Schur decomposition, use the schur function: 

> schur(A)
$form:
         Apr       May       Jun 
Sun 39.58198  3.013294  4.541067
Mon  0.00000 13.677784  5.128232
Tue  0.00000  0.000000 -6.259769
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attr($form, "class"):
[1] "UpperTriangular" "Matrix"         

$vectors:
          [,1]       [,2]       [,3] 
[1,] 0.4768760  0.8607185 -0.1781937
[2,] 0.6737382 -0.4881393 -0.5547945
[3,] 0.5645052 -0.1445122  0.8126808
attr($vectors, "class"):
[1] "Orthonormal" "Matrix"     

attr(, "class"):
[1] "schur.Matrix" "decomp"      

other attributes:
[1] "call"        "dimlabels"   "eigenvalues" "workspace"  
> eigen(A)$values
[1]  39.581985  13.677784  -6.259769

One useful application of the Schur decomposition is in the definition of
Matrix functions. If f(z) is a scalar function defined on the eigenvalues of a
Matrix A, then you can informally define a Matrix function f(A) by
substituting “A” for “z” in the formula defining f, making suitable allowances

between scalar operations and Matrix operations. For example, if f(z) = z2, we
can meaningfully define f(A) as follows: 

f(A) = A2 

where A2 = A 3 A, with “3” taken to be Matrix multiplication.
Unfortunately, such definitions don’t take you very far computationally.

However, if A = QTQH is the Schur decomposition of A, then

f(A) = Qf(T)QH

Thus, we only need to be able to calculate Matrix functions for triangular
Matrices. The following S-PLUS function, Matrix.fun, implements an
algorithm from Golub and Van Loan (1989) for doing precisely that—
computing a Matrix function F = f(T), where T is upper triangular. (A further
requirement of the algorithm is that T have distinct eigenvalues; this
implementation does not check for this.)  

> Matrix.fun <- function(Tmat, FUN)
+ {
+   Fmat <- Tmat
+   diag(Fmat) <- diag(FUN(Tmat))
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+   for(p in 1:(nrow(Tmat) - 1))
+       for(i in 1:(nrow(Tmat) - p)) {
+           j <- i + p
+           s <- Tmat[i, j] * (Fmat[j, j] - Fmat[i, i])
+           if((j - 1) >= (i + 1)) {
+               k <- (i + 1):(j - 1)
+               s <- s + Tmat[i, k] %*% Fmat[k, j] - 
+                        Fmat[i, k] %*% Tmat[k, j]
+               }
+           Fmat[i, j] <- s/(Tmat[j, j] - Tmat[i, i])
+       }
+   Fmat
+ }

As a simple example, compare the Matrix function f(A) = A^2 to
simple matrix multiplication: 
> small <- Matrix(c(1,0,1,2), ncol=2)
> small %*% small
     [,1] [,2] 
[1,]    1    3
[2,]    0    4
attr(, "class"):
[1] "Matrix"
> Matrix.fun(small, function(x)x^2)
     [,1] [,2] 
[1,]    1    3
[2,]    0    4
attr(, "class"):
[1] "Matrix"

For more complicated functions, or for matrices with eigenvalues that are
nearly equal, the computations of matrix functions become more
complicated. See Golub and Van Loan (1989) for a fuller description. 

29.4 SOLVING SYSTEMS OF LINEAR EQUATIONS
One of the most widespread applications of linear algebra is in solving
systems of equations of the form 

AX = B

A related problem is finding the inverse (or pseudo-inverse) of a Matrix A.
Both problems are solved in S-PLUS using the function solve, which now
has a variety of methods which take advantage of specific Matrix structures.
Most of these methods require A to be of full rank, although some (singular
value and eigen) work with rank-deficient matrices.
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Solving Square 
Linear Systems

Consider the following system of linear equations:

This is the familiar case of n equations in n unknowns, and can easily be
solved by elementary linear algebra. The basic Matrix method for solve uses
the LU decomposition to solve the system and estimate the condition
number: 

> A.solve(A, c(9,5,14)) 
          [,1] 
Apr  0.9914429
May  0.6161109
Jun -0.7379758
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call" 
> attr(A.solv, "rcond")
[1] 0.09639891

If the coefficient Matrix is upper or lower triangular, special solve methods
exploit this structure: 

> my.Upper <- Matrix(c(2,0,0,3,5,0,1,4,6),ncol=3)
> class(my.Upper) <- Matrix.class(my.Upper)
> my.Upper 
     [,1] [,2] [,3] 
[1,]    2    3    1
[2,]    0    5    4
[3,]    0    0    6
attr(, "class"):
[1] "UpperTriangular" "Matrix"         
> solve(my.Upper, c(9,5,14))
           [,1] 
[1,]  4.6333333
[2,] -0.8666667
[3,]  2.3333333
attr(, "class"):
[1] "Matrix"

19a 2b 15c+ + 9=

8a 18b 19c+ + 5=

11a 17b 10c+ + 14=
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other attributes:
[1] "rcond" "call" 
> my.Lower <- t(my.Upper)
> solve(my.Lower, c(9,5,14))
          [,1] 
[1,]  4.500000
[2,] -1.700000
[3,]  2.716667
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call" 

Similarly, if the Matrix is symmetric or Hermitian, another solve method
exploits that structure: 

> my.sym3
            [,1]       [,2]        [,3] 
[1,] -1.32119473  0.7576395  0.06296236
[2,]  0.75763953 -0.4710585  0.52317150
[3,]  0.06296236  0.5231715 -0.62392715
attr(, "class"):
[1] "Hermitian" "Matrix"   
> solve(my.sym3, c(9,5,14))       
         [,1] 
[1,] 22.63464
[2,] 49.57063
[3,] 21.41127
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond"     "workspace" "call"     

In some cases, you may find it convenient to work with a matrix in factored
form. You can solve square systems of full rank using either the LU or QR
decomposition: 

> A.lu <- lu(A)
> solve(A.lu, c(9,5,14))              
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          [,1] 
Apr  0.9914429
May  0.6161109
Jun -0.7379758
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond" "call" 

> A.qr <- qr(A)
> solve(A.qr, c(9,5,14))
          [,1] 
Apr  0.9914429
May  0.6161109
Jun -0.7379758
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond"     "workspace" "call"     

In the Hermitian case, lu yields the Hermitian indefinite decomposition,
which can also be used explicitly in solve: 

> my.sym3.lu <- lu(my.sym3)
> solve(my.sym3.lu, c(9,5,14))
         [,1] 
[1,] 22.63464
[2,] 49.57063
[3,] 21.41127
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call" 

Solving Over-
determined 
Systems

In many applications, particularly data acquisition and control systems, there
may be many more observations (equations) than unknowns. Such a system
yields an overdetermined linear system. For example, consider the following
five equations in three unknowns:
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Such a system has a unique least-squares solution. The solve.Matrix
function computes this solution using the QR decomposition: 

> Aug <- Matrix(c(19,8,11,12,9,2,18,17,9,14,15,19,10,13,20),
+               ncol=3)
> Aug
     [,1] [,2] [,3] 
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10
[4,]   12    9   13
[5,]    9   14   20
attr(, "class"):
[1] "Matrix"
> solve(Aug, c(9,5,14,11,8))
           [,1] 
[1,]  0.8430639
[2,]  0.5332060
[3,] -0.4558612
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "workspace" "rcond"     "call"     
> attr(.Last.value, "rcond")                                         
[1] 0.1270667

If you are working with the QR form already, a special solve method takes
advantage of the decomposition:  

> Aug.qr <- qr(Aug)
> solve(Aug.qr, c(9,5,14,11,8))
           [,1] 
[1,]  0.8430639
[2,]  0.5332060
[3,] -0.4558612

19a 2b 15c+ + 9=

8a 18b 19c+ + 5=

11a 17b 10c+ + 14=

12a 9b 13c+ + 11=

9a 14b 20c+ + 8=
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attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond"     "workspace" "call"     

Solving Under-
determined 
Systems

There may be cases where you have many more variables than equations;
such a system is called underdetermined. An underdetermined system has an
infinite number of solutions; solve.Matrix finds the unique solution with
minimum l2 norm. For example, consider the following Matrix wide.A:  

> wide.A <-Matrix(c(19,8,11,12,9,2,18,17,9,14,15,
+ 19,10,13,20), ncol=5)
> wide.A
     [,1] [,2] [,3] [,4] [,5] 
[1,]   19   12   18   14   10
[2,]    8    9   17   15   13
[3,]   11    2    9   19   20
attr(, "class"):
[1] "Matrix"
> solve(wide.A, c(9,5,14))
           [,1] 
[1,]  0.5638695
[2,] -0.2266716
[3,] -0.3116442
[4,]  0.2418549
[5,]  0.3230167
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "workspace" "rcond"     "call"     

If you are working with the QR decomposition, the solve method does not
compute the minimum l2 solution; it does, however, compute one basic
solution: 

> wide.A.qr <- qr(wide.A)
> solve(wide.A.qr, c(9, 5, 14))
           [,1] 
[1,]  0.8356868
[2,] -2.0616175
[3,]  0.9922978
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[4,]  0.0000000
[5,]  0.0000000
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond"     "workspace" "call"     
Warning messages:
  Imaginary parts of complex data ignored in: 
      as.double(if(rows <= k) b else
        rbind(b, matrix(0i, rows - k, l)))

That this is indeed a solution to the original problem can be verified as
follows: 

> wide.A %*% .Last.value - c(9,5,14)
              [,1] 
[1,] -7.105427e-15
[2,] -1.776357e-15
[3,]  0.000000e+00
attr(, "class"):
[1] "Matrix"

Solving Rank-
Deficient 
Systems

All of the methods described so far in this chapter have applied to full-rank
systems; that is, systems in which the coefficient Matrix is non-singular.
What about systems in which the coefficient Matrix is singular or nearly so?
The Matrix library includes two solve methods for rank-deficient systems,
both requiring decomposition of the original Matrix. 

The first method uses the singular value decomposition:  

> S <- Matrix(c(9,3,3,3,1,1,2,4,7),ncol=3,byrow=T)
> y <- c(9,5,14)
> solve(S, y)
Error in solve.Matrix(S, y): the matrix 
      is exactly singular
Dumped
> x <- solve(svd(S), y, tol=1e-10)
Warning messages:
 singular solve in: solve(svd(S), y, tol=1e-10)
> x
          [,1]
[1,] 0.3140426
[2,] 0.8110638
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[3,] 1.4468085
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond" "rank"  "call"       

We can see how well this solves the original equation by computing ST(Sx-y);
it should come close to vanishing.

> t(S) %*% (S %*% x - y)
              [,1]
[1,] -2.842171e-14
[2,] -2.131628e-14
[3,] -3.197442e-14
attr(, "class"):
[1] "Matrix"

If the coefficient Matrix is Hermitian, then the eigenvalue decomposition can
be used as an alternative to the singular value decomposition to compute a
least-squares solution.

> u <- 1:3
> v <- c(8,4,4)
> A <- u %*% t(u) + v %*% t(v)
> class(A) <- Matrix.class(A)
> class(A) 
[1] "Hermitian"  "Matrix"
> solve(A, tol=.Machine$double.eps)
Error in solve.Hermitian(A, tol = .Machine$double...: 
      prescribed tolerance exceeds reciprocal 
      condition estimate 3.68233175663402e-18
Dumped
> y <- c(9,5,14)
> x <- solve(eigen(A), y, tol=.Machine$double.eps)
Warning messages:
  singular solve in: solve(eigen(A), y, 
      tol = .Machine$double.eps)

We can see how well this solves the original equation by computing

AT(Ax-y); it should come close to vanishing.
> t(A) %*% (A %*% x - y)
              [,1]
[1,] -1.605827e-12
[2,] -9.237056e-13
[3,] -9.876544e-13
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attr(, "class"):
[1] "Matrix"        

In both the singular value and Hermitian eigen solves, the computed solution
is the minimum l2 norm solution relative to tol.

Finding Matrix 
Inverses and 
Pseudo-
Inverses

For most of the solve methods described in this section, you can obtain a
calculation of the inverse of the coefficient Matrix simply by omitting the
right hand side vector or Matrix. For example, the inverse of the full-rank
Matrix A can be obtained as follows:

> solve(A) # uses solve.Matrix
            Sun          Mon         Tue 
Apr  0.04219534 -0.069341989  0.06845677
May -0.03806433 -0.007376807  0.07111242
Jun  0.01829448  0.088816760 -0.09619357
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "workspace" "rcond"     "call"     
> solve(A) %*% A
    Apr           May Jun 
Apr   1  4.440892e-16   0
May   0  1.000000e+00   0
Jun   0 -2.220446e-16   1
attr(, "class"):
[1] "Matrix"

The inverses of specialized Matrices are found using the specific methods for
those classes: 
> solve(my.Herm) # uses solve.Hermitian
                       [,1]                  [,2]                   [,3] 
[1,]  0.14736842+0.0000000i -0.1684211-0.1684211i -0.05263158+0.2105263i
[2,] -0.16842105+0.1684211i  0.2421053+0.0000000i  0.10526316-0.1578947i
[3,] -0.05263158-0.2105263i  0.1052632+0.1578947i  0.10526316+0.0000000i
attr(, "class"):
[1] "Hermitian" "Matrix"   

other attributes:
[1] "rcond"     "workspace" "call"     
> solve(A.u) # uses solve.UpperTriangular
            [,1]        [,2]        [,3] 
[1,] -0.04279605  0.03524793  0.09056031
[2,]  0.00000000 -0.05215548  0.06196848
[3,]  0.00000000  0.00000000 -0.13219799
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attr(, "class"):
[1] "UpperTriangular" "Matrix"         

other attributes:
[1] "rcond" "call" 

For rectangular Matrices, solve with no right hand side produces a pseudo-
inverse, the unique F-norm solution to the problem 

> solve(rect.Mat)
            [,1]       [,2]        [,3]        [,4] 
[1,]  0.04838342 0.01686479  0.08183540 -0.10118876
[2,] -0.02230793 0.15820783 -0.04182985  0.05075302
[3,]  0.02665054 0.14699438  0.07130605  0.11803373
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "workspace" "rcond"     "call"     

29.5 CONTROLLING THE COMPUTATIONS
LAPACK has six machine- and problem-dependent parameters that you can
adjust within S-PLUS to affect the performance of some functions:

NB optimal block size

NBMIN minimum block size for the block routine

NX crossover point for switching from unblocked to block rou-
tine

NS number of shifts for unsymmetric eigenvalues.

.min
X R

n m×∈
AX Im–
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NXSVD used to decide whether to apply QR factorization before 
computing singular values

MAXB crossover point for unsymmetric eigenvalues

The LAPACK names are retained for the parameters for consistency with the
LAPACK User’s Guide (1994). See chapter 3 of that reference, Performance of
LAPACK, for a general discussion of performance issues in LAPACK, and
chapter 6, Installing LAPACK Routines, for a discussion of the tuning
parameters. The NB, NBMIN, and NX parameters apply only to machines
that allow parallel processing, and affect block size for distributed memory
processing. The other parameters, which may affect performance on
sequential machines as well as parallel, occur in singular-value, Schur, and
non-Hermitian eigenvalue computations. You can adjust all the LAPACK
tuning parameters using the la.env function; to see the current settings, call
la.env with no arguments: 

> la.env()
$NB:
[1] 1

$NBMIN:
[1] -1

$NX:
[1] -1

$NS:
[1] 2

$NXSVD:
[1] 16

$MAXB:
[1] 50

The la.env function initializes a Fortran common block for use within
LAPACK. Each method that calls LAPACK calls la.env automatically, and
has an argument tune that allows you to pass different tuning parameters.
For example, in calculating a singular value decomposition, you might want
to modify the NXSVD parameter: 

> longmat <- Matrix(rnorm(1600), nrow=200)
> unix.time(svd(longmat))
[1] 0.5166664 0.3666668 3.0000000 0.0000000 0.0000000
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> unix.time(svd(longmat, tune=list(NXSVD=30)))
[1] 0.45000076 0.04999924 0.00000000 0.00000000
[5] 0.00000000

29.6 REFERENCES
Anderson, E. Bai, Z. and Bischof, C. and Demmel, J. and Dongarra, J. and
Du Croz, J. and Greenbaum, A. and Hammarling, S. and McKenney, A. and
Ostrouchov, S. and Sorensen, D. (1994). LAPACK User's Guide, 2nd edition.
SIAM, Philadelphia.
Golub, Gene H. and Van Loan, Charles F. (1989). Matrix Computations, 2nd
edition. Johns Hopkins University Press, Baltimore. 

Note

unix.time works only in Unix versions of S-PLUS. Often a change in tuning parameters implies 
a change in the amount of workspace needed for an LAPACK function to meet that specification. 
To accommodate this, a workspace parameter is provided in the relevant S-PLUS functions. 
LAPACK does not always provide a direct mapping between tuning parameter settings and the 
optimal workspace, but rather gives only the minimum workspace necessary to obtain the result 
of that function. The functions usually return the optimal workspace on completion and that 
information is included in the attributes of the S-PLUS functions that call them.
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RESAMPLING TECHNIQUES: BOOTSTRAP 
AND JACKKNIFE 30

In statistical analysis, the researcher is usually interested in obtaining not only
a point estimate of a statistic but also an estimate of the variation in this point
estimate, and a confidence interval for the true value of the parameter. For
example, a researcher may calculate not only a sample mean but also the
standard error of the mean and a confidence interval for the mean.
Traditionally, researchers have relied on the central limit theorem and normal
approximations to obtain standard errors and confidence intervals. These
techniques are valid only if the statistic, or some known transformation of it,
is asymptotically normally distributed. Hence, if the normality assumption
does not hold, then the traditional methods should not be used to obtain
confidence intervals.

A major motivation for the traditional reliance on normal-theory methods
has been computational tractability. Now, with the availability of modern
computing power, researchers need no longer rely on asymptotic theory to
estimate the distribution of a statistic. Instead, they may use resampling
methods which return inferential results for either normal or non-normal
distributions.

Resampling techniques such as the bootstrap and jackknife provide estimates
of the standard error, confidence intervals, and distributions for any statistic.
In the bootstrap, for example, B new samples, each of the same size as the
observed data, are drawn with replacement from the observed data. The
statistic is calculated for each new set of data, yielding a bootstrap
distribution for the statistic. The fundamental assumption of bootstrapping
is that the observed data are representative of the underlying population. By
resampling observations from the observed data, the process of sampling
observations from the population is mimicked. For more detailed
descriptions of bootstrapping, see Efron and Tibshirani (1993), and Shao
and Tu (1995).

S-PLUS 4.0 includes a suite of functions for bootstrapping and jackknifing
with the following basic capabilities:

• Given a vector, matrix, or data frame, create bootstrap or jackknife
resamples of observations, and use these to calculate resampling
replicates of a specified statistic. The statistic may be a scalar, vector,
or matrix, and may be specified as an S-PLUS function or call.
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• Produce informative summaries and plots for a resample object
(resamp) produced by bootstrapping or jackknifing.

• Calculate empirical percentile and BCa confidence limits for a
bootstrap object, and empirical percentiles for a jackknife object.

• Use jackknife after bootstrap to examine the influence of
observations, and to estimate the standard error of a functional of
the bootstrap distribution for a statistic.

A list of the bootstrapping and jackknifing functions is presented in table
30.1.

Table 30.1: S-PLUS bootstrapping and jackknifing functions.

Function Description

bootstrap Main bootstrap function

jackknife Main jackknife function

summary.bootstrap Summary method for bootstrap objects

print.resamp, plot.resamp, 
qqnorm.resamp,summary.resamp

Methods for resamp objects

limits.emp, limits.bca Calculate empirical and BCa percentiles

jack.after.bootstrap Perform jackknife after bootstrap

print.jack.after.bootstrap, 
plot.jack.after.bootstrap

Methods for jackknife after bootstrap object

update.bootstrap Add more replicates to a boot object

bootstats, jackstats Called by bootstrap and jackknife to calculate 
resampling statistics

samp.boot.mc, samp.boot.bal,  
samp.permute

Functions to generate resampling indices
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Creating a Resample Object
30.1 CREATING A RESAMPLE OBJECT
There are two types of resample objects: bootstrap objects and jackknife
objects. The main functions for generating these objects are bootstrap and
jackknife. These functions call the more primitive functions bootstats
and jackstats, which use the replicated parameter values and other
information to calculate the bootstrap or jackknife statistics, and return an
object of the appropriate class.

The Bootstrap In bootstrap resampling, B new samples, each of the same size as the observed
data, are drawn with replacement from the observed data. The statistic is first
calculated using the observed data, and then re-calculated using each of the
new samples, yielding a bootstrap distribution. The resulting replicates are
used to calculate the bootstrap estimates of bias, mean, and standard error for
the statistic.

Main Arguments The main arguments in bootstrapping are the data (a vector, matrix, or data
frame) and a statistic (returning a scalar, vector, or matrix). This statistic
may be an S-PLUS function or an unevaluated call (that is, any expression
that one might type at the command line). Additional arguments to
statistic may be passed as a list through args.stat.  
The user may specify the number B of resamples to draw. The default is
1000, which is the recommended minimum for estimating percentiles.
Although a smaller B may be specified, 250 is recommended as a minimum
for estimating standard errors.

Optional 
Arguments

• seed: sets the random number seed. It may be a legal random
number seed, or an integer between 0 and 1000.

• group: specifies a stratifying variable. If specified, then resampling is
performed independently within each stratum. This argument can
be used to bootstrap a two-sample or multiple-sample statistic. Note
that the bootstrap estimates are not adjusted based on stratifying.

• sampler: generates resampling indices. The default function
samp.boot.mc performs standard Monte Carlo bootstrapping of
observations. The samp.boot.bal function performs balanced
bootstrapping. In some cases, the bootstrap function may be used
to perform a permutation test by using samp.permute with an
appropriately defined statistic.
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pli-
• block.size: controls computational details of the bootstrapping.
By default, this is set to min(B, 100) and the bootstrapping is
performed using one large lapply. If the sample size n and number
B of resamples are large, then this default may be slower than the
alternative of performing a for loop over smaller blocks of
observations. The block.size argument specifies the size of each
block over which a for is applied. For example, if n=1000 and
B=1000, then it may be preferable to do 10 loops with

block.size=100 rather than a single lapply.1

• block.size: controls computational details of the bootstrapping.
For efficiency, the samples are drawn in blocks of size block.size
and lapply is used over each block to evaluate the statistic. The
drawing of blocks is embedded within a for loop to draw a total of
B samples. When n is small it is most efficient to perform a single
lapply so that block.size=B. When n is large it is more efficient
to use a smaller block.size. For example, if n=1000 and B=1000,
then it may be preferable to do 10 loops with block.size=100
rather than a single lapply. By default the block.size is set to
min(100, B).

• assign.frame1: logical flag indicating whether the resampled data
should be assigned to frame 1 before evaluating the statistic. This
may be necessary if the statistic is reevaluating the call of a model
object. If all bootstrap estimates are identical, try setting
assign.frame1=T. Note that this will slow down the algorithm.

• trace: logical flag indicating whether to print a message indicating
which set of replicates is currently being drawn.

• save.indices: logical flag indicating whether to save the matrix of
resampling indices. By default, the value of the random number seed
used is saved, and the sampler used is specified in the call, which is
enough information to reproduce the resampling indices in later
analyses. The matrix of resampling indices may be saved as part of
the object by setting save.indices=T. This matrix has dimension
n × B.

Additional arguments are described in the help file.

1. Pressing ESC during the looping interrupts the process and saves the re
cates computed so far.
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Other Functions The bootstrap function calls the bootstats function to calculate
bootstrap statistics. If the user specifies the required information, then
bootstats may be called directly to produce a bootstrap object. The main
caveat is that limits.bca and jack.after.bootstrap will look at the
call component of the object, so the function calling bootstats should
pass along an appropriate call if these functions are to be used on the
resulting object.

Components of 
the Object

A bootstrap object has components call, observed, replicates,
estimate, B, n, dim.obs, group, seed.start, and seed.end. The
observed component contains the observed parameter values calculated
using the original data. The estimate data frame contains bootstrap
estimates of bias, mean, and standard error. The replicates are the
bootstrap replicates of the parameters. The call component, starting
random number seed seed.start, ending random number seed
seed.end, and group are stored for future reference, as are the number B of
replicates and the sample size n. If statistic returns a matrix, then its
dimension is stored as dim.obs for use in the layout of plots. In many cases,
dim.obs and group will be NULL.

The Jackknife In jackknife resampling, a statistic is calculated for the n possible samples of
size n-1, each with one observation left out. The default sample size is n-1,
but more than one observation may be removed using the group.size
argument (see below). Jackknife estimates of bias, mean, and standard error
are available and are calculated differently than the equivalent bootstrap
statistics.

Arguments The jackknife function takes the arguments data, statistic,
args.stat, and assign.frame1, which have the same meanings as for
bootstrap.
The seed argument may be used to specify a seed for randomization done by
the statistic, and for random assignment of observations to groups if
group.size is not equal to one. It may be a legal random number seed, or
an integer between 0 and 1000.

The group.size argument may be used to specify the removal of more than
one point in each sample. This argument is useful in partial jackknifing for
calculating the acceleration when forming BCa percentiles. It forms
floor(n/group.size) replicates, each missing group.size observations.
These replicates are treated as a jackknife sample of size floor(n/
group.size).

Other Functions The jackstats function calculates the jackknife statistics.
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30.2 METHODS FOR RESAMPLE OBJECTS

Print The print method for a resample object prints out the call; the number of
resamples used; and a table giving the values of the statistic for the original
data and resampling estimates of bias, mean, and standard error for the
statistic.

Summary The summary method for a resample object prints out the same information
as print.resamp, followed by the empirical percentiles of the replicates.
The summary of a bootstrap object also calculates BCa percentiles. If the
statistic is vector-valued, then a correlation matrix for the components of the
vector is also printed.  The optional probs argument specifies probabilities
at which the empirical quantiles are calculated.
Additional arguments useful in limits.bca may be specified with
summary.bootstrap. These arguments include z0, acceleration, and
group.size.  By default, a group.size of floor(n/20) is used in
limits.bca for reasons of speed. To do a full jackknifing when estimating
acceleration, specify group.size=1.

Plot The plot method for a resample object produces plots of the distributions of
the statistics.  For each statistic, a histogram of the replicates is displayed with
an overlaid smooth density estimate. A solid vertical line is plotted at the
observed parameter value, and a dashed vertical line at the mean of the
replicates.
The distance between the dotted line and the solid line is the estimated bias.
The shape of the distribution may be examined to assess issues such as
skewness of the distribution of the statistic.

The user may specify plot with a bandwidth.func argument to calculate
the bandwidth of the density estimate. By default, the normal reference
density estimate is used. In addition, the user may specify plot with a
nclass.func argument to calculate the number of classes in the histogram.
By default, the Freedman and Diaconis rule is used. Arguments may also be
passed to histogram through the ellipsis (...).

Plots are displayed in a grid (grid=T)  by default. Use nrow to specify the
number of rows in the grid. If the statistic is a matrix, then by default the
plots will be arranged in the same order as the terms appear in the matrix.

Normal Quantile-
Quantile Plots

The qqnorm method for a resample object produces a plot with the same
layout as in plot.resamp, but with each plot containing a normal quantile-
quantile plot for the relevant statistic. If the argument lines=T, as is the
default, then a qqline is also added to each plot.
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This plot is used to assess the normality of the distribution of each statistic.
If the points fall on a straight line, then the empirical distribution of the
replicates is similar to that of a normal random variate.

30.3 PERCENTILE ESTIMATES
Two types of percentile estimates are supported:  empirical percentiles, and
bias-corrected and adjusted (BCa) percentiles. These are calculated by
limits.emp and limits.bca, respectively. The empirical percentiles are
available for bootstrap and jackknife objects, while BCa percentiles are
available only for bootstrap objects. The empirical percentiles are easy to
calculate, but may not be very accurate unless the sample size is very large.
The BCa percentiles require more computation but are more accurate. For
either type of percentile, using at least 1000 replications is recommended for
accurate estimation.

The probs argument specifies which percentiles are computed.

Empirical 
Percentiles

The empirical percentiles are simply the percentiles of the empirical
distribution of the replicates. Linear interpolation is used if necessary to
obtain the specified percentiles.

BCa Percentiles The BCa method transforms the specified prob values to determine which
percentiles of the empirical distribution most accurately estimate the
percentiles of interest. The percentiles of the empirical distribution
corresponding to these values are then returned.
To estimate the BCa percentiles, the bias correction (denoted z0) and the
acceleration must be calculated. If these values are not specified (and they
usually are not), then the bias correction will be obtained from the replicates,
and the acceleration will be obtained using jackknifing. Note that rather than
doing a complete delete-1 jackknife, the data are broken into groups of size
group.size, and the groups are jackknifed. If group.size is not specified,
then it is calculated as floor(n/20), which will yield roughly 20 jackknife
replicates, depending on the magnitude of n.

To return the values of z0, acceleration, and the empirical percentile level
for each BCa percentile, set detail=T.

30.4 JACKKNIFE AFTER BOOTSTRAP
Jackknife after bootstrap is a technique for obtaining estimates of the
variation in functionals of a bootstrap distribution, such as the bias or
standard error of a statistic, without performing a second level of
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bootstrapping. It also provides information on the influence of each
observation on the functionals. See Efron and Tibshirani (pp. 275-280) for
details on this procedure.

Simulation studies have shown that, in general, jackknife after bootstrap
standard error estimates tend to be too large. A technique called weighted
jackknife after bootstrap may resolve some of these difficulties. This
technique is currently under investigation and has not yet been implemented.

The Jackknife 
After Bootstrap 
Object

The jackknife after bootstrap object has components call, functional,
rel.influence, large.rel.influence, values.functional,
dim.obs, and threshold.  The value of the functional for the bootstrapped
parameter replicates, and for the jackknife after bootstrap estimates of
standard errors, is given as the functional data frame. The value of the
functional over the samples with each point removed is given in
values.functional. Normalized versions of these values are given in
rel.influence.  The list large.rel.influence gives the relative
influence values for points with absolute relative influences in excess of
tolerance. The call is the call to jack.after.bootstrap. The
dim.obs is the corresponding component of the bootstrap object.  The
jackknife after bootstrap object is of class jack.after.bootstrap.

Print Method The print method for a jack.after.bootstrap object displays the
call, the description of the functional under consideration, the data frame
of functional values and standard errors, and the list of large relative
influences.

Plot Method The plot method for a jack.after.bootstrap object produces a plot for
each parameter, indicating the relative influence of each observation. Values
greater than a specified tolerance (default = 2) are flagged as being
particularly influential.

30.5 EXAMPLES
This section describes three examples. The first is a bootstrap of a variance,
and discusses the output and basic plots associated with the bootstrap object.
The second example resamples a correlation coefficient, and details the
application of bootstrap, jackknife after bootstrap, and jackknife tools. The
third example shows how to test linear regression coefficients using the
bootstrap and jackknife after bootstrap.

Resampling 
the Variance

This example uses data from the swiss.x matrix, which contains
socioeconomic indicators for the provinces of Switzerland in 1888. More
particularly, this example resamples the variance of the Education variable,
the percent of the population whose education is beyond primary school.
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Examples
First, Education is separated from the swiss.x matrix.

> Education <- swiss.x[,3]
> Education
 [1] 12  9  5  7 15  7  7  8  7 13  6 12  7 12  5  2  8 28 20
[20]  9 10  3 12  6  1  8  3 10 19  8  2  6  2  6  3  9  3 13
[39] 12 11 13 32  7  7 53 29 29

The bootstrap function is used to draw resamples and construct a

bootstrap object.1

> boot.obj1 <- bootstrap(Education, var, B=1000, seed=0)
Forming replications  1  to  100 
Forming replications  101  to  200 
Forming replications  201  to  300 
Forming replications  301  to  400 
Forming replications  401  to  500 
Forming replications  501  to  600 
Forming replications  601  to  700 
Forming replications  701  to  800 
Forming replications  801  to  900 
Forming replications  901  to  1000

(To prevent the preceding messages from being displayed, set trace=F.)

Printing the object displays the call used to construct it, the number of
replications used, and summary statistics for the parameter.  The summary
statistics are the observed value of the parameter, the mean of the parameter
estimate replicates, and bootstrap estimates of bias and standard error.
> boot.obj1
Call:
bootstrap(data = Education, statistic = var, B = 1000,
seed = 0)

Number of Replications: 1000 

Summary Statistics:
    Observed   Bias  Mean    SE 
var    92.46 -3.362 89.09 38.67

1. All examples use B = 1000, the number of resamples recommended for
accurate estimation of percentiles. Users who want to replicate the exam-
ples might use a lower number of resamples (say, B = 250) to speed up es-
timation. Note, however, that results will differ slightly from those shown
here.
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A more complete summary of the bootstrap object, obtained via the
summary function, includes empirical and BCa percentiles for the statistic.
The BCa percentiles, for example, show that the 95% confidence interval for
the Education variance has endpoints 45.34 and 221.2.

> summary(boot.obj1)

Call:
bootstrap(data = Education, statistic = var, B = 1000,
seed = 0)

Number of Replications: 1000 

Summary Statistics:
    Observed   Bias  Mean    SE 
var    92.46 -3.362 89.09 38.67

Empirical Percentiles:
    2.5%    5%   95% 97.5% 
var 32.9 36.17 163.9 177.1
BCa Percentiles:
     2.5%    5%   95% 97.5% 
var 45.34 51.44 211.6 221.2

Empirical and BCa percentiles may also be obtained separately using the
limits.emp and limits.bca functions, respectively.

> limits.emp(boot.obj1)

        2.5%       5%      95%    97.5% 
var 32.89544 36.16716 163.8941 177.1408

> limits.bca(boot.obj1)

        2.5%      5%      95%    97.5%
var 45.33665 51.4373 211.6284 221.1731

Plotting the bootstrap object provides a histogram of the replicated variances
along with a smooth density estimate (figure 30.1). The solid line indicates
the observed parameter value, and the dotted line indicates the mean of the
replicates. The difference between these two values is the bootstrap estimate
of bias.
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> plot(boot.obj1)

The histogram in figure 30.1 shows that the distribution of replicated
variances is highly skewed. A normal quantile-quantile plot can be used to
further assess deviation from the normal distribution. Figure 30.2 suggests
that both tails of the distribution of replicated variances deviate from the
normal distribution. Thus there is evidence that bootstrapping is a better
approach than normal-based methods.
> qqnorm(boot.obj1)

Resampling 
the Correlation 
Coefficient

This example uses the law school data from Efron and Tibshirani (p.19).
Starting with 82 American law schools participating in a study of admission
practices, they constructed a random sample of 15 schools. Efron and
Tibshirani then examined the correlation between LSAT score and GPA for
the 1973 entering classes at these schools (p. 49).
Traditionally, Fisher’s transformation would be used to transform the
correlation coefficient into a normally distributed variable on which normal-
based inference would be used. This example uses resampling to obtain
inferential quantities instead of employing Fisher’s transformation.

First, the data are entered into S-PLUS and stored as a data frame.

Figure 30.1:  Histogram of replicated variances.
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30. Resampling Techniques: Bootstrap and Jackknife
> school <- 1:15
> lsat <- c(576,635,558,578,666,580,555,661,651,605,653,
+ 575,545,572,594)
> gpa <- c(3.39,3.30,2.81,3.03,3.44,3.07,3.00,3.43,3.36,
+ 3.13,3.12,2.74,2.76,2.88,2.96)
> law.data <- data.frame(School=school,LSAT=lsat,GPA=gpa)

Next, the bootstrap function is used, and the summary of the resulting
object displayed.

> boot.obj2 <- bootstrap(law.data, cor(LSAT,GPA),
+ B=1000, seed=0, trace=F)
> summary(boot.obj2)
Call:
bootstrap(data = law.data, statistic = cor(LSAT, GPA),
B = 1000, seed = 0, trace = F)

Number of Replications: 1000 

Summary Statistics:
      Observed      Bias   Mean     SE 
Param   0.7764 -0.008768 0.7676 0.1322

Figure 30.2:  Normal Q-Q plot of replicated variances.
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Examples
Empirical Percentiles:
        2.5%    5%    95%  97.5% 
Param 0.4673 0.523 0.9432 0.9593

BCa Percentiles:
        2.5%    5%    95%  97.5% 
Param 0.3443 0.453 0.9255 0.9384

The bootstrap object is plotted to obtain a histogram of the replicated
correlation values along with a smooth density estimate (figure 30.2). The
distribution is clearly skewed.

> plot(boot.obj2)

Another tool available for exploring the bootstrap object is the jackknife after
bootstrap (Efron and Tibshirani, p. 275). This technique provides standard
error estimates for functionals of the bootstrap distribution, and influence
measures for each observation. By default, the functional is the mean of the
distribution. In this case, the standard error of the functional is the standard
error of the mean, and the influence indicates the influence of each
observation on the mean. Jackknife after bootstrap is commonly used to get
standard error estimates for the bootstrap estimate of standard error.

Figure 30.3:  Histogram of replicated correlations.
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30. Resampling Techniques: Bootstrap and Jackknife
> jab.obj2 <- jack.after.bootstrap(boot.obj2)
> jab.obj2

Call:
jack.after.bootstrap(boot.obj = boot.obj2, functional = 
mean)

Functional Under Consideration:
mean

Functional of Bootstrap Distribution of Parameters:
        Func SE.Func 
Param 0.7676  0.1432

Observations with Large Influence on Functional:
$Param:
   Param 
1 -3.025

Plotting the jack.after.bootstrap object provides an influence plot
similar to a Cook’s distance plot (figure 30.4). Observations with absolute
relative influence greater than 2 are considered particularly influential.

> plot(jab.obj2)

The jackknife after bootstrap identifies observation 1 as being particularly
influential. A plot of LSAT versus GPA with this observation plotted as a
circle shows that this point is indeed an outlying observation (figure 30.5).

> plot(lsat[-1], gpa[-1], xlab="LSAT", ylab="GPA")
> points(lsat[1], gpa[1], pch=2)

Jackknife summary statistics for the correlation may be obtained also.

> jackknife(law.data,cor(LSAT,GPA))

Call:
jackknife(data = law.data, statistic = cor(LSAT, GPA))

Number of Replications: 15 

Summary Statistics:
      Observed      Bias   Mean     SE 
Param   0.7764 -0.006473 0.7759 0.1425
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Examples
Figure 30.4:  Influence plot for correlation.

Figure 30.5:  LSAT versus GPA.
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30. Resampling Techniques: Bootstrap and Jackknife
Resampling 
Regression 
Coefficients

The last example shows how to test linear regression coefficients, and uses the
bootstrap to obtain standard error estimates and confidence intervals.
The data are from operation of a plant for the oxidation of ammonia to nitric
acid, measured on 21 consecutive days. See the S-PLUS help file for stack
for details.

First, the stack.loss vector and stack.x matrix are combined into a data
frame.

> stack <- data.frame(stack.loss, stack.x)
> names(stack)
[1] "stack.loss" "Air.Flow"   "Water.Temp" "Acid.Conc."

The bootstrap function resamples the vector of linear regression
coefficients from the model of stack.loss regressed on Air.Flow,
Water.Temp, and Acid.Conc..

> boot.obj3 <- bootstrap(stack,
+ coef(lm(stack.loss~Air.Flow+Water.Temp+Acid.Conc.,
+ stack)), B=1000, seed=0, trace=F)
> boot.obj3
Call:
bootstrap(data = stack, statistic = coef(lm(stack.loss ~ 
Air.Flow + Water.Temp + Acid.Conc., stack)), B = 1000,
seed = 0, trace = F)

Number of Replications: 1000 

Summary Statistics:
            Observed      Bias     Mean     SE 
(Intercept) -39.9197  0.829215 -39.0905 8.8239
   Air.Flow   0.7156  0.004886   0.7205 0.1749
 Water.Temp   1.2953 -0.031415   1.2639 0.4753
 Acid.Conc.  -0.1521 -0.005164  -0.1573 0.1180

The summary for a vector statistic includes the correlation matrix for the
replicate values. Based on the 95% confidence limits, for either the empirical
or the BCa percentiles, all coefficients except the Acid.Conc. coefficient are
significantly different from zero.

> summary(boot.obj3)
Call:
bootstrap(data = stack, statistic = coef(lm(stack.loss ~
Air.Flow + Water.Temp + Acid.Conc., stack)), B = 1000,
seed = 0, trace = F)
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Examples
Number of Replications: 1000 

Summary Statistics:
            Observed      Bias     Mean     SE 
(Intercept) -39.9197  0.829215 -39.0905 8.8239
   Air.Flow   0.7156  0.004886   0.7205 0.1749
 Water.Temp   1.2953 -0.031415   1.2639 0.4753
 Acid.Conc.  -0.1521 -0.005164  -0.1573 0.1180

Empirical Percentiles:
                2.5%       5%      95%     97.5% 
(Intercept) -55.4846 -52.7583 -23.4913 -17.84522
   Air.Flow   0.3844   0.4454   1.0136   1.05255
 Water.Temp   0.3913   0.4768   2.0544   2.23920
 Acid.Conc.  -0.4181  -0.3604   0.0209   0.06103

BCa Percentiles:
                2.5%       5%        95%     97.5% 
(Intercept) -58.8427 -54.3320 -25.385390 -21.48317
   Air.Flow   0.3197   0.3897   0.987308   1.01691
 Water.Temp   0.4977   0.5811   2.278439   2.46017
 Acid.Conc.  -0.4250  -0.3743   0.008729   0.04447

Correlation of Replicates:
            (Intercept) Air.Flow Water.Temp Acid.Conc. 
(Intercept)     1.00000  -0.1376    0.03551    -0.7848
   Air.Flow    -0.13760   1.0000   -0.79387    -0.1096
 Water.Temp     0.03551  -0.7939    1.00000    -0.2007
 Acid.Conc.    -0.78483  -0.1096   -0.20067     1.0000

The plot function provides histograms of the replicated regression
coefficients (figure 30.6). Skewness is particularly evident in the
Acid.Conc. coefficients.
> plot(boot.obj3)

Next, the jackknife after bootstrap is used to assess the accuracy of the
standard error estimates, and the influence of each observation on these
estimates.

> jab.obj3 <- jack.after.bootstrap(boot.obj3,"SE")
> jab.obj3
Call:
jack.after.bootstrap(boot.obj = boot.obj3, functional = "SE")
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30. Resampling Techniques: Bootstrap and Jackknife
Functional Under Consideration:
[1] "SE"

Functional of Bootstrap Distribution of Parameters:
              Func SE.Func 
(Intercept) 8.8239 3.67775
   Air.Flow 0.1749 0.06149
 Water.Temp 0.4753 0.17850
 Acid.Conc. 0.1180 0.05395

Observations with Large Influence on Functional:

$"(Intercept)":
   (Intercept) 
21       2.863

$Air.Flow:
   Air.Flow 
21    3.672

Figure 30.6:  Histograms of replicated regression coefficients.
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References
$Water.Temp:
   Water.Temp 
21      3.214

$Acid.Conc.:
   Acid.Conc. 
14     -2.184
21      2.589

The jackknife after bootstrap and the corresponding influence plot
(figure 30.7) suggest that points 14 and 21 are particularly influential.

> plot(jab.obj3)

30.6 REFERENCES
Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap.
Chapman & Hall: San Francisco.

Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer-Verlag:
New York.

Figure 30.7:  Influence plots for regression coefficients.
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INDEX 31
- operator
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"ts" objects 561
%in% operator

formula 29
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arithmetic 757
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formulas 398, 407

+ operator
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. operator
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.Machine list 777
/ operator
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: operator
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^ operator
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   Numerics
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details of ANOVA 414
diagnostic plots 411, 412
EDA 405
estimating effects 407, 409, 410
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   A
abs function 758, 760
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ace

algorithm 173
compared to avas 177
example 174

ace function 175
ace goodness-of-fit measure 173
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acf see Autocorrelation function
acf.plot function 569
acf.plot function 579
acm.ave function 615, 621
acm.filt function 615, 621
acm.smo function 615
acm.smo function 622
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acosh function 760
add1 function

linear models 135
add1 function 36
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Agglomerative methods 510
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algorithm 583
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air data set 124, 134
airline model 594
Akaike’s Information Criterion

see AIC
Algorithms

cluster analysis 506
factor analysis 487
generalized additive models 11
generalized linear models 10
hazard function 637
L1 regression 151
least squares regression 147
least trimmed squares regression 147
linear models 9
local regression models 11
survival curves 637, 640, 641
survival function 637
Tukey’s one degree of freedom 392

algorithms
ace 173
AIC 583, 593
ANOVA 425
AR process 580
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cubic smoothing splines 165
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logit link function 214
low-pass filter transfer function 613
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Yule-Walker equations 581
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see ace
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Analysis of deviance tables, see ANOVA tables

218
Analysis of variance see ANOVA
animals data 538
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data type of predictors 10
diagnostic plots 380, 388, 398, 412
EDA 378, 385, 396, 405
effects table 382
estimating effects 407, 409, 410
factorial effects 428
fitting functions 8
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interaction 387
one-way layout 380–383
parameterization 420
rank sum tests 438
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robust methods 438
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anova function
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anova function
chi-squared test 198

anova function 198, 334
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ANOVA, see also MANOVA
aov function
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arguments 380
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extracting output 407
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filtered values 596
forecasting 595
fractionally differenced 598
identifying the model 590
missing values 592, 593
multiplicative 592
predicted values 596
seasonal 589
trading days 597

ARIMA process
simulating 596

arima.diag function 595
arima.filt function 596
arima.forecast function 595
arima.mle function 594
arima.sim function 596
arima.td function 597
Arithmetic 757–760

complex 760–??
vectors and matrices 758

ARMA process 588, 591
asin function 760
asinh function 760
assign.frame1 argument 833
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assign.frame1 function 832
asymmetric binary variables 514
atan function 760
atanh function 760
attaching the cluster library 510
auto.stats data set 13
autocorrelation

partial 583
Autocorrelation function

lag 571
plot 569
values 572

autocorrelation function
acf function 579
algorithm 575
identifying ARIMA models 590
lag 577
multivariate 577
partial 590
plot 46, 65
residuals of ARIMA models 594

autocovariance
mean squared error 577
multivariate 578
positive semi-definiteness of 577
univariate 575, 577

autocovariance function
acf function 579
algorithm 575
multivariate 577

autocovariance sequence 601
autoregressive filters 609, 610
autoregressive integrated moving averages

see ARIMA models
autoregressive moving-average process

see ARMA process
autoregressive process

see AR process
autoregressive spectrum estimation 607

avas
algorithm 177
algorithm for population version 181
backfitting algorithm 177
compared to ace 177
example 177
key properties 180

avas function 178
average weighted link 505

   B
B component 833
Backfitting 182
backshift operator 588
backsolve function 764, 765
banner 520
Beta distribution 774
between-cluster dissimilarity 519
bias

minimizing 615
bicoal.tons data set 621
binom.test function 90
Binomial distribution 774
binomial distribution 89
Binomial family 214, 215
biplot function 482, 496
Biplots 482, 483

factor analysis 496
bladder 678
block.size function 832
Blocking variable 384
bootstats functions 831
bootstrap function 831
bootstrap resampling 831
bounded-influence autoregression estimates

see generalized M-estimates
Box-Cox maximum-likelihood procedure 180
Boxplot 196
Boxplots 378, 387, 396
boxplots 45
Box-Tidwell procedure 180
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Breakdown point 149
browser function 269
browser function 272
B-splines 201
B-splines 165
Burg’s algorithm 587
burl.tree function 273, 274

   C
C function 34
c function 758
call function 833
cancer study data 101
Canonical links 215
catalyst data set 10
catalyst data set 428
categorical data

cross-classification 107
Categorical data see also Factors
Categorical response 215
Categorical variables 26

interactions 28
Cattell’s criterion for selecting principal compo-

nents 477, 478
Cauchy distribution 774
cbind function 758
CDF, see cumulative distribution functions
cdf.compare function 75, 77
ceiling function 758
Censoring 637, 638
centroid method 505
charts

see plots
see plots, quality control charts

chisq.gof function
cut.points argument 79
distribution argument 79
n.classes argument 79

chisq.gof function 75, 78
chisq.test function 96
Chi-square distribution 774

chi-square goodness of fit test 75
compared to KS 81
continuous variables 80
described 77
distributions 79
partition of sample 79

chi-squared test 96, 99, 108, 198, 211
chol function 765
Choleski decomposition 592, 765, 806
Choleski function

defined 806
choleski function 765
chull function 770
claims data set 107
clara function 510, 517, 523
classification tree

pruning 264
Classification trees

manipulating 509
plotting 509

classification trees
browsing nodes 269, 272
classification rules 253
determining splits 273
editing 276
example 256
nodes 270
pruning 264
removing subtrees 269
selecting subtrees 268, 270
shrinking 265
summarizing 260
see also tree-based models

Classification trees see also Cluster analysis
Classification trees see also Tree-based models
clorder function 509
cluster 679
Cluster analysis

algorthms 506
approximate weight of evidence (AWE)
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507, 508
criteria 507
distance matrices 509
functions listed 504
hierarchical agglomeration algorithm 505,
509
iterative relocation algorithm 505, 509
k-means algorithm 505
overview 503
robust methods 508
sum of squares method 505
trace method 505
Ward’s method 505

Cluster analysis see also Classification trees
clustering methods

calling the functions 524
input structures 510
summary of functions 526

clustering tree 520
CO2 data 317, 318–320, 320–327
co2 data set 606
coag.df data frame

created 377
Coagulation data 376
coef function 285
coef function 8, 21, 407
Coefficients

estimated 407
extracting 8

coefficients
converting to treatment effects 425

coefficients function
abbreviated coef 8

cognitive style study 456
ColPermutation function 793
comp.plot function

defined 393
comparative study 59
Comparison values 391
complete link method 505
complete linkage method 520

complex demodulation 612
Complex numbers 760–??

complex conjugate 760
plotting 760
p-norm of vectors 762

Components of the Object function 833
Computational accuracy 777
condition estimates 795

reciprocal 795
condition number 795
condition numbers

obtaining from SVD 800
conditioning 591, 593
Conditioning plots 7, 8

analyzing 233
conditioning panels 232
conditioning values 233
constructing 233
local regression models 243
residuals as response variable 239

Conditioning values 233
Confidence intervals

pointwise 144
simultaneous 144

confidence intervals 43, 96, 371, 451
binomial distribution 91
confidence level 47, 91
correlation coefficient 70
error rate 47
two-sample 93

confint.lm function
defined 145

Conj function 760
contamination process 615
contingency tables 89, 96, 98

choosing suitable data 111
continuous data 114
creating 107
reading 107
subsetting data 116

Continuous data 4
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continuous data
converting to factors 114
cross-tabulating 114

continuous ordinal variables 512
Continuous response variable 376
Continuous variables

interactions 28
contr.helmert function 33
contr.poly function 33
contr.sum function 33
contr.treatment function 33
contrast matrix 420
Contrasts

creating contrast functions 34
Helmert 33
polynomial 33
specifying 34, 35
sum 33
treatment 33

contrasts
adding to factors 423
ANOVA tables 424

contrasts function 35
contrasts function 423
control charts

see quality control charts
Convex hull 770
coplot function 7, 8
Coplots

see Conditioning plots
cor function 69

cor.confint function
created 70

cor.test function 66, 68
corelation

serial 43
Correlation

plotting 568
correlation

example 63
see also autocorrelation
serial 45
shown by scatterplots 43

correlation coefficient 42
algorithm 64
Kendall’s t measure 68
Pearson product-moment 68
p-values

p-values 66
rank-based measure 68, 69
Spearman’s r measure 68, 69

Correlation matrix 475
cos function 760
cosh function 760
cost-complexity measure

tree models 264
counting process

using 671
counts 89
courserev data set 140
covariance

see also autocovariance
Covariance matrix 475, 491
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Cox model
adjusted variable plots 663
algorithm 653
deviance residuals 663
estimated relative risk 658
functional form for predictor 663
grouped jackknife estimate of variance 686
improvement in fit 658
influential points 663
jackknife estimate of variance 686
likelihood ratio test 656, 659
log likelihood 659
martingale residuals 663
modified sandwich variance estimator 688
null model 659
plotting 670
poorly predicted subjects 663
proportional hazards assumption 664
relative risk 656
robust estimate of variance 686
robust variance estimation 689
sandwich estimate of variance 686
sandwich variance estimator 687
Schoenfeld residuals 664
Wald test 656
zero iterations 663

Cox models
complex 674

Cox proportional hazards model
see Cox model

Cp statistic 132, 137
Cp statistic 198
cross-classification 107
crosscorrelation 577
crosscovariance 577
crosscovariance function 578
cross-spectrum 604
crosstabs function

arguments 107, 116
return object 107

crosstabs function 107, 119

cross-validation
algorithm 161

cts function 559
cu.summary data set 273
cubic smoothing splines 165, 201

algorithm 165
Cubic splines 771
cumulative distribution functions 75
Cumulative hazard 637
cusum charts 744

fast initial response 748
new data 745
sensitivity 748
types of charts 748
xbar charts 744

cusum function
arguments listed 745

cusum function 745
cut function 114
cutoff frequency 613
cutree function 509
cycle function 564

   D
D function 769
D function 360
daisy function 511, 514, 523
Daniell windows 603
Data

categorical 4
continuous 4
organizing see Data frames
summaries 5

data argument 833
Data frames

design data frame 384, 395, 405
data frames

attaching to search list 129
data function 831
data taper 602
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dates objects
Julian dates 558

dates objects 557
Decomposing matrices

Choleski 765
QR 765
singular value 766

decompositions
see matrix decompositions

degrees of freedom 53, 169
nonparametric 170
parametric 170
smoothing splines 166

de-meaning 602
demod function 612
dendogram 505
Density function 773
density plot 45
Density see also Probability density
deriv function

used with nlme 320
deriv function 320
deriv function 360
Derivatives

approximating 769
finding 769

derivatives 357
Design data frames 384, 395, 405
Designed experiments

one factor 376–383
randomized blocks 384
replicated 394
two-way layout 383

det function 797
Determinants 763
determinants 796

modulus 797
sign 797

detrending 602
devel.design data frame

created 405

devel.df data frame
created 405

deviance
algorithm 169

Deviance residuals 219
d-fold differencing operator 589
diag function 762
Diagnostic plots

ANOVA 388
local regression models 228
outliers 381

diagnostic plots
linear regression 126
multiple regression 131

Diagonal function 790
Diagonal matrices 762
diagonal matrices

creating 790
diana function 510, 520, 523, 533
diff function 568, 768
diff.hs data set 65
difference equation 580
differenced series 588
Differences 768
differencing operators 589, 596
digital filters

see filters
dim.obs component 833
discontinuous intervals of risk 673
discrete ordinal variables 513
dissimilarities 511
dissimilarity matrix 511
dist function 509
Distributions see Probability distributions
Division 757
Divisive methods 510
Dot products 760
drop1 function

linear models 131
drop1 function 36
drug data set 97
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drug.fac data set 99
drug.mult data set 435
dummy.coef function 426
Dunn’s partition coefficient 518
Dunnett’s intervals 450

   E
EDA

see exploratory data analysis
EDA functions

interaction.plot 387
plot.design 378, 385, 396
plot.factor 378, 386

eda.shape
defined 45

eda.ts function 46
edit.tree function 276
eigen function 767
eigen function 807
Eigenvalues 767
eigenvalues 807
Eigenvectors 767
eigenvectors 807
end function 556
entropy 587
Error covariance matrix 487
estimate component 833
ethanol data set 155
Euclidean norm 149
euro data 536
European Countries data 536
Event history analysis 627
Example functions

comp.plot 393
confint.lm 145
factors 776
primes 774
tukey.1 393

example functions
Choleski 806
cor.confint function 70
eda.shape 45
eda.ts 46
stats.med 734

Examples
2k design of pilot plant data 409
2k design of product development data 403
ANOVA of coagulation data 376
ANOVA of penicillin yield data 383
ANOVA of poison data 394
coplot of ethanol data 233
developing a model of auto data 12
factor analysis of test scores data 488
perspective plot of fitted data 242
principal components analysis of exam
scores 468
principal components analysis of states data
472
weighted regression of course revenue data
139

examples
ace example with artificial data set 174
ANOVA of gun data 425
ANOVA table of wafer data 423
avas with artificial data set 177
binomial model of Salk vaccine trial data 91
binomial test with roulette 90
bladder cancer study 678
chi-squared test on propranolol drug data
100
chi-squared test on Salk vaccine data 100
classification tree from kyphosis data 256
complex Cox models 674
correlation of phone and housing starts data
63
Fisher’s exact test on propranolol drug data
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100
hypothesis testing of lung cancer data 95
linear model of air pollution data 124
lung cancer study 664
MANOVA of wafer data 432
Mantel-Haenszel test on cancer study data
101
McNemar chi-squared test on cancer study
data 102
multiple regression with ammonia loss data
129
one-sample speed of light data 49
ovarian cancer study 655
paired samples of shoe wear data 59
parameterization of scores data 419
Poisson regression of solder data 208
proportions test with roulette 91
quasi-likelihood estimation of solder data
218
repeated-measure design ANOVA of drug
data 435
spectral analysis of sunspots 605
split-plot design ANOVA of rubber plant
data 433
Stanford heart transplant study 674
two-sample weight gain data 54
variance components model of pigment
data 440

Examples, logistic regression model of kyphosis
data 195

Examples, predicting the additive model of ky-
phosis 221

exp function 760
expand function 801, 804, 808, 810
explanatory variables 590
Exploratory data analysis

interaction 387
plots 5

exploratory data analysis 44
four plot function 45
phone and housing starts data 65
serial correlation 46
shoe wear data 60
speed of light data 50
time series function 46
weight gain data 55

Exponential distribution 774
Exponential function 760
Exponents 757

   F
F distribution 774
fac.design function 384, 405
facmul function 802, 804, 810
factanal function

choosing rotation 494, 496
maximum likelihood 490
return object 488
valid rotation arguments 496

factanal function 488
Factor analysis

algorithm 487
communalities 488, 490
compared with principal components anal-
ysis 487
correlation matrix 491
covariance matrix 491
estimating the model 488
loadings 487, 490
maximum likelihood estimate 488, 490
plotting 496
prediction 496
rotations 494
scores 496
simple structure 494
summary of return object 489
uniquenesses 488, 490

Factor covariance matrix 487
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Factor loadings 487, 490
plotting 496
rotated 494

factorial effects 428
Factors 4

levels 4
parametrization 32
plotting 387
setting contrasts 35

factors
adding contrasts 423
creating from continuous data 114

Failure time data
analysis of 627

families, logistic regression models 195
family 207
family argument, binomial 195
fanny function 510, 517, 523, 527
Fast Fourier transform 773
fast Fourier transform 603
FFT

see fast Fourier transform
fft function 773
filters 616

autoregressive 609, 610
causal filter 609
cleaners 616
convolution 609, 610
Gaussian 610
linear time-invariant 609
low-pass 612, 613
moving average 609
non-causal 610
recursive 609, 610
robust 615, 616

finite-impulse response filters
see moving average filters

first derivatives 358
first-difference operator 589
fisher.test function 96
Fisher’s exact test 96, 100
fitted function 8, 381, 390, 399, 412
Fitted values

ANOVA models 390, 399, 401, 412
extracting 8

fitted values
lm models 126

fitted.values function
abbreviated fitted 381

Fitting methods
formulas 31
functions, listed 8
missing data filter functions 37
optional arguments to functions 37
specifiying data frame 37
subsetting rows of data frames 37
weights 37

fitting models 362
Fleming-Harrington survival curve estimate

algorithm 641
floor function 758
For 217
forecasting 595

confidence intervals 595
forecast means 595

formula function 27
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Formulas 25–37
categorical variables 26, 28, 29
changing terms 36
conditioning plots 233
continuous variables 26, 28, 29
contrasts 32
expressions 26
fitting procedures 31
generating function 27
interactions 27, 28, 29
intercept term 26
matrix terms 26
nesting 28, 29, 30
operators 25, 27, 28, 29, 30
specifying interactions 398, 407, 410
syntax 27, 30
updating 36, 37
variables 25, 26

formulas 355
automatically generating 131
implications 356
linear models 124
polynomial elements 156
simplifying 356

Fourier series 600
Fourier transform

discrete 603
discrete time 601
fast 603, 773
fast (FFT) algorithm 603
inverse 602, 773

frequency domain 575
Friedman rank sum test 438
friedman.test function 438
F-statistic

linear models 126
F-statistics 218
F-test

local regression models 248
fuel consumption problem 459
fuel.frame data 447

Functions
mathematical, listed 760

fuzzy analysis 517

   G
gain.high data set 55
gain.low data set 55
gam function

returned object 170
gam function

binomial family 201
families available 215
family argument 195
Poisson family 207

gam function 195
gam function 8, 21
Gamma distribution 774
gamma function 760
Gaussian errors 575
Gaussian maximum likelihood 591, 592, 593,

594
Generalized additive models

algorithm 11
fitting function 8

generalized additive models 216
algorithm 167, 217
analysis of deviance table 202
ANOVA tables 172
degrees of freedom 170
link functions 215
logistic regression 201
plotting 203
residual deviance 169
smoothing functions 217
summary of fit 202

Generalized additive models, marginal fits 222
Generalized additive models, predicted values

220
Generalized additive models, residuals 219
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Generalized linear models 213
algorithm 10
fitting function 8

generalized linear models 195
algorithm 214
link functions 214
logistic regression 207
plotting 199, 212
Poisson regression 207
summary of fit 197

generalized linear models, adding terms 198
generalized linear models, logistic regression

195
Generalized linear models, predicted values 220
Generalized linear models, residuals 219
generalized M-estimates 617, 618
Geometric distribution 774
geostatistical data 545
glm function

families available 215
family argument 195
Poisson family 207

glm function 195
glm function 8
glm function, binomial family 196
GM estimates

see generalized M-estimates
GOF

seeGoodness of fit tests
goodness of fit tests

chi-square 75, 77–80
composite 83
Kolmogorov-Smirnov 75, 80
one-sample case 75, 77–80, 81
two-sample case 75, 85

goodness-of-fit measure
algorithm 173

goodness-of-split criterion (tree models) 273
gradient attribute 358
Greatest-integer function 758
group average method 520

group component 833
group.size argument 833
guayule data set 111, 433
gun data set 425, 429

   H
Half-normal QQ-plots 411
Hazard function

algorithm 637
cumulative 637

Hazard rate 637
hclust function 509
Helmert contrasts 33
Hermitian matrices 791
hessian attribute 359
hexagonal binning 545–549
hexbin function 545–??
hexbin function 545
hexbin function ??–548
hierarchical algorithms 510
hierarchical methods 532
hist function 5, 381, 388, 398
hist.tree function 274
Histograms 5, 381, 388, 398
histograms 45
horshft argument 340
Hotelling-Lawley trace test 433
Huber psi-function 619
Hyperbolic trigonometric functions 760
Hypergeometric distribution 774
hypothesis testing 43, 47

goodness of fit 75
one sample proportions 90
p-values 66
three sample proportions 95
two sample proportions 92

   I
identify function

offset argument 548
tree models 272
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identify function 17
identify function 548, 743
Identifying plotted points 17
identifying plotted points 743
Identity function 789
identity matrices 789
Identity matrix 763
Im function 760
Imaginary numbers 760
Importance

in ppreg 188
infinite-impulse response filters

see autoregressive filters
infinitesimal jackknife 689
initial estimate 329
innovations process 588, 591
Integer divide 757
integrate function 768
Integration 768
interaction.plot function 387, 396, 397
Interactions 184

checking for 387, 397
specifying 27, 398, 407
specifying order 410

Intercept 26
Intercept-only model 136
interp function 770
Interpolation

cubic splines 771
linear 769

interval-scaled variables 511, 512
inverse Fourier transform 602
Inverse hyperbolic trigonometric functions 760
Inverse trigonometric functions 760
invertibility 593
is.random function 439
Iteratively reweighted least squares 215
its function 560

   J
jack.after.boot function 833
jackknife function 831
jackstats function 831
Julian dates 558

   K
Kaiser’s criterion for selecting principal compo-

nents 478, 480
Kalman filter 592, 593, 595
Kaplan-Meier survival curve

algorithm 637
Kendall’s t measure 68
kernel functions 163
kernel-type smoother

algorithm 162
kmeans function 509
Kolmogorov-Smirnov goodness of fit test 75

compared to chi-squared 81
described 80
distributions 81

kronecker function 763
Kronecker products 763
kruskal.test function 438
Kruskal-Wallis rank sum test 438
KS test

see  Kolmogorov-Smirnov goodness of fit
test 80

ks.gof function
distribution argument 81
one-sample case 81
two-sample case 81

ks.gof function 75, 80
ksmooth function

kernels available 163
ksmooth function 163
kyphosis data set 256
kyphosis data set 5
kyphosis data set 114
kyphosis data set, described 195
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   L
L1 regression 151

algorithm 151
l1fit function 151
labclust function 509
Lag 768
lag function 566
lag k 575
lag.plot function 570
LAPACK

tuning parameters 823
lapply function 832
leakage of power 602, 608
Least absolute deviation regression see L1 regres-

sion
Least squares regression

algorithm 147
least squares regression 124
least squares regression, mathematical represen-

tation 155
Least trimmed squares regression 147

algorithm 147
breakdown point 149

leave-one-out residuals 162
level of significance 47
Levels

experimental factor 376
Levinson-Durbin recursion 582

vector form 585
lgamma function 760
Libraries

mathematica 776
libraries

attaching 781
library function 781
likelihood 591
likelihood models 354
limits.bca function 833
Linear combinations

standardized 467
linear dependency, see correlation

Linear equations
Choleski decomposition 765
eigenvalues 767
inverting 764
QR decomposition 765–766
singular value decomposition 766
solving 764–768
triangular systems 764

linear equations
solving overdetermined systems 817
solving rank-deficient systems 820
solving square linear systems 815
solving underdetermined systems 819

Linear Interpolation 769
linear mixed-effects model 283

Pixel data 288
Linear models

adding terms 135
algorithm 9
confidence intervals 144
diagnostic plots 134
dropping terms 131
fitting function 8
intercept-only model 136
modifying 131, 139
pointwise confidence intervals 144
predicted values 142
selecting 131, 137
simultaneous confidence intervals 144
stepwise selection 137
summary of fitted model 125
updating 139

linear models
diagnostic plots 126, 127, 131
fitting function 124
polynomial regression 155

Linear models see also Generalized linear models
linear prediction modeling

see AR models
Linear predictor 221
linear regression 123
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link functions 214
link functions, algorithms 215
list of the bootstrapping and jackknifing func-

tions 830
lm function

arguments 131
multiple regression 129
polynomial regression 156
subset argument 18
weights argument 142

lm function 8, 16, 124
lm function 124
lme class 290
lme function

coefficients method 299
fitted method 299
optional arguments 305
predict method 299
print method 301

lme function 283, 290
lme function 283, 290–308
lme.re.factor function 302–304
lme.re.param function 302–304
lo function 201, 217
lo function 168
loadings function 471, 472, 490
Loadings see Factor loadings
Loadings see Principal component loadings
local maxima and minima 341
Local regression models 11, 227

algorithm 11
diagnostic plots 228, 237
dropping terms 245
fitting function 8
improving the model 245
multiple predictors 236
one predictor 227
parametric terms 245
plotting 242
predicted values 242
returned values 228

Local regression smoothing 217
local regression smoothing 201
Locally weighted regression smoothing 227
locally weighted regression smoothing 159

algorithm 159
loess 159

scatterplot smoother 159
scatterplot smoothing 160

loess function 8, 228, 243
Loess models see Local regression models
loess smoother function 168
loess.smooth function 160
log function 760, 761
log likelihood 590

conditional approximation 591
penalized measure 590, 593

Log link function
algorithm 215

Log rank test 647
log10 function 760
Logarithms 760, 761
Logistic distribution 774
logistic regression 195, 207, 214, 217

additive models 201
analysis of deviance tables 198
linear model 205
link function 214
smoothing 201
t-tests 197

logistic regression, Cp statistic 198
logistic regression, fitting functions 195, 196
Logit link function

algorithm 214
Log-normal distribution 774
lprob function 356, 358
ltsreg function 147
LU

see matrix decompositions
LU decomposition

lu function 801, 804
lung cancer study 94, 664
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lynx data set 609, 610

   M
MA process

see moving average process
Main Arguments function 831
MANOVA 432

repeated-measures designs 437
test types available 432

manova function 432
Mantel-Haenszel test 97, 101
map function 548
maps library 548
margin.fit function 222
Marginal fits 222
Markov process 580
Math function 776
Mathematica interface 776
Mathematics

elementary functions 760
Matrices

arithmetic 758
creating 758
determinants 763
diagonal 762
differences on 768
distance 509
identity 763
Kronecker products 763
multiplication 760
trace 762
transpose 762

matrices (classed)
adding vectors 783
arithmetic 783
assigning subclasses 791
compared with standard S-Plus matrices

785
creating 781, 782
determinants 796
diagonal matrices 790
Hermitian Matrices 791
inverses and pseudo-inverses 822
matrix decompositions 798, 814
Matrix library needed 782
matrix norms 794
matrix products 784, 785
multiplying a factor by a Matrix 802
orthonormal matrices 792
reciprocal condition estimate 795
row and colulmn names 782
row and column sweeps 784
specialized matrices 789
subscripting 786
systems of linear equations 814
triangular matrices 792
tuning parameters 823, 825
unpacking 789
vectors treated as column vectors 786

Matrices see also Linear equation
matrix decompositions

Choleski 806
eigen decomposition 807
expanding LU decomposition 801
Hermitian indefinite 803
LU decomposition 801
QR decomposition 810
Schur decomposition 812
singular value decomposition 799
types available in Matrix library 798

Matrix function
byrow argument 782
dimnames<Default ParaA Font>
argument 782

Matrix function 781
Matrix library

attaching 781
based on LAPACK 781
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Matrix library 798
matrix multiplication 784
matrix norms

2-norm 795
Frobenius norm 794
maximum-modulus norm 794
p-norms 794

Matrix.class function 791
Maximum likelihood estimate

factor analysis 488, 490
maximum likelihood estimate

for variance components models 440
mclass function 509
mclust function 508
mclust function 508, 509
McNemar chi-squared test 97, 102
mcnemar.test function 102
mean 41
median 45
medoids 515
M-estimates of regression 152

fitting function 153
methods

lme function 290–299
mich data set

created 50
Michaelis-Menten relationship 353
Michelson speed-of-light data 49
minimum sum 339
minimum sum function 345
minimum sum-of-squares 339
minimum-sum algorithm 354
Missing data

filters 37
missing data

tree models 262
Missing values

effect on computations 633
global action 633
report of action 633
warning 633

mixed-effects model 283
Mod function 760
model

linear mixed-effects 283, 288
mixed-effects 283
nonlinear mixed-effects 309

Model data frame 384, 396, 405
model.tables function 382
model.tables function 426
Models 25–37

data format 4
data type of variables 9
development steps 3
example 12
extracting information 8
fitting functions 8
iterative process 12
missing data 37
modifying 9
nesting formulas 28, 29
paradigm for creating 8
parameterization 29
plotting 8
prediction 9
specifying all terms 28
specifying interactions 27
types available in S-PLUS 4

models
assumptions 575

Models see also Fitting methods
modified sandwich estimator 688
Modulo operator 757
Modulus

complex numbers 760
mona function 510, 522, 523, 538
moving average coefficients 588
moving average filters 609
moving average process 576, 588, 594

roots 587
moving averages

equal weight 610
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mreloc function 509
ms function

arguments to 363
ms function 339, 345
multicomp

Lmat argument 458
multicomp function

alpha argument 453
comparisons argument 451
control argument 451
est.check argument 462
focus argument 451
simsize argument 453
valid.check option 453

multicomp function 448
multiple comparisons 447

with a control (MCC) 450
multiple events 672
multiple regression 129

diagnostic plots 131
multiple R-squared

linear models 126
Multiplication 757
multivariate analysis of variance

see MANOVA

   N
n component 833
na.action function 262
na.tree.replace function 262
namevec argument 362
nearest crisp clustering 519
Negative binomial distribution 774
Nelson’s cumulative hazard estimate

algorithm 640
Nesting formulas 28, 29
nlimb function 342
nlme class 309

nlme function
fixed argument 319
object argument 318
passing derivatives to 320
plot method 326
predict method 326–327
print method 320
random argument 319
summary method 325

nlme function 318
nlme function 309, 318–320, 329–334
nlminb function 344
nlregb function 349
nls function

arguments to 363
nls function 339, 348, 349
nlsList function 311
nlsList function 329–334
nnls.fit 347
nnls.fit function 346
nominal variables 513
nonlinear least-squares algorithm 355
nonlinear models 339
nonnegative least squares problem 346
nonparametric methods 43
nonparametric regression

ace 173
non-stationary process 580, 588
norm function

2-norm 795
specifying type 794

Normal distribution 774
norms

see matrix norms
nregb function 347
null hypothesis 47

completely specified probabilities 92, 93
equal-probabilities 92

Null model 136
Null model, GLM models 198
868



Index
   O
Observation weights

in ppreg 190
observed component 833
offset argument 548
one-step predicted values 596
one-step prediction residuals 594
One-way layout 376, 380

classical model 380
overall mean plus effects form 382

one-way layout
robust methods 438

Operators
artithmetic 757
dot product 760
formula 25, 27, 28, 29, 30, 398, 407,
410
integer divide 757
modulo operator 757
precedence hierarchy 757
sequence 758
vectors and matrices 759, 760

optimise function 341
optimization functions 339
Optional Arguments function 831
options function 35
Orthodont data 283–287, 290–299
orthonormal matrices

creating 792
Other 215
Outliers

checking for 381, 387
identifying 17
sensitivity to 385

outliers 41, 615
additive (AO) 615
general replacement (RO) 615

ovarian cancer study 655
Ovary data 289–290, 305–308
Over-dispersion 219
Over-dispersion, regression models 218

overparameterized models 460
ozone data 548

   P
padding 603
paired comparisons 60
paired t-test 63
pairs function

linear models 134
pairs function 5, 231
pairs function 129
Pairwise scatter plots

see Scatterplot matrices
pairwise scatter plots

see scatterplot matrices
pam function 510, 515, 523, 526
par function 548
par function 548
param function 357
parameter function 357
parametrized data frames 356
partial autocorrelation function 583, 590

acf function 579
standard error 583

partial correlation coefficients 587
partitioning algorithms 510
partitioning around medoids 515
partitioning methods 526
path.tree function 272
pclust function 509
peaks function 341
Pearson product-moment correlation 68
Pearson residuals 220
pen.design data frame

converted to model data frame 385
created 384

pen.df data frame
created 384

Penicillin yield data 383, 384
periodogram 602, 603

smoothing 603
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permutation matrices
creating 792

Perspective plots 232
local regression models 242, 243

Perspective plots, creating grid 242
phase 604
phone increase data 63
phone.gain data set 65
pigment data 440
pigment data set 440
Pillai-Bartlett trace test 433
Pilot plant data 409
pilot.design data frame

created 410
pilot.df data frame

created 410
pilot.yield vector 410
ping-pong example 350, 358, 360, 367
Pixel data 287–289, 300–302, 302–304
plot function

plot selection menu 201
preserving scale 203

plot function 5, 8
plot function 259, 295, 326
plot of hexbin object 546
plot styles

hexbin objects 547
plot.design function 378, 385, 396, 405
plot.factor function 196
plot.factor function 378, 386, 396, 407
plot.gam function 199, 212
plot.hexbin function 547
plot.hexbin function 547

Plots
autocorrelation plot 571
biplots 482, 483, 496
boxplots 378, 396
conditioning plots 7, 8, 232
diagnostic 228
diagnostic for ANOVA 380, 398, 412
exploratory data analysis 5
histograms 5, 381, 388, 398
interactively select points 17
normal probability plot 8
perspective 232
quantile-quantile plots 5, 381, 388, 398,
411, 412
scatter plot 569, 570
scatterplot matrices 5, 231
screeplots 477, 478

plots
autocorrelation plot 65
boxplots 45
cusum charts 744
density plot 45
density plots 45
exploratory data analysis 45
histograms 45
identifying points 743
qq-plots 45
quantile-quantile plot 45
shewhart charts 736

Plots, boxplot 196
Plots, boxplots 387
Plots, surface plots 222
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Plotting
autocorrelation function 571
design data frames 385
factor loadings 496
factors 387
fitted models 8
local regression models 228, 243
principal components 482, 483
principal components loadings 472
time series 568, 569, 570, 571

plotting
factors 208
generalized additive models 203
generalized linear models 199, 212
linear models 127
residuals in linear models 127

Plotting, factors 196
plotting, selecting plots 201
p-norm of vectors 761
point estimates 69
Pointwise confidence intervals

linear models 144, 145
pointwise function 145
Poison data 394, 395
poisons.design data set

created 395
poisons.df data frame

created 396
Poisson distribution 215, 774
Poisson family 215
Poisson regression 207, 213, 217

log link function 215
Polar representation

complex number 760
poly function 156
poly.transform function 157
Polynomial contrasts 33
polynomial regression 156
polynomials 587

formula elements 156
orthogonal form transformed to simple

form 157
polyroot function 587
polyroot function 339
portmanteau test statistic 595
Power law 402
power spectrum 603
ppreg

backward stepwise procedure 188
forward stepwise procedure 186
model selection strategy 188
multivariate response 189

ppreg function
examples 185

ppreg function 183
Precedence hierarchy

arithmetic 757
Precision

arithmetic operations 777
predict function

factor analysis 496
linear models 142, 145
principal components 481
returned value 143
tree models 261, 262

predict function 326
predict function 9, 21
predict function 326–327
predict.gam function 221, 223
predict.glm function 221
Predicted response 9
Predicted values 242
predicted values

tree models 261
Prediction 21

linear models 142
prediction error decomposition 590
prediction errors 591, 592
prediction variance 583
Prediction, composite terms 223
Prediction, generalized models 220
Prediction, generalized models END 224
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Prediction, safe 223
Prediction, safe END 224
Predictor variable 5
Prime numbers 774
Principal component loadings 467, 471

plotting 472
Principal components

calculating 468
summary 470

Principal components analysis
90% selection criterion 478
Cattell’s selection criterion 477
compared with factor analysis 487
correlation matrix 472, 475
covariance matrix 475
ellipsoid covariance estimate 477
excluding components 477
interpreting 471, 472
Kaiser’s selection criterion 478, 480
loadings 467
plots 478, 482, 483
prediction 481
scaling data 472
scores 480
selection criteria 477
standardized linear combinations 467
transformations 467
weighted covariance estimation 477

Principal factor estimate 488
princomp function

return object 470
scaled data 472

princomp function 468
print function 292
probability density curves 45
Probability density see Density plot, Density

function
Probability distributions 773–774

listed 774
Poisson 215

probability distributions
binomial 89
normal (Gaussian) 41
skewed 51

Probability functions 773
Product development data 403, 404
profile function 370
profile projections 369
profile slices 369
profile t function 370
profiles for ms 370
profiles for nls 370
Profiling 369
Projection pursuit regression

algorithm 183, 184
prop.test function 91, 92
proportions 89

confidence intervals 91, 93
one sample 90
three or more samples 94
two samples 91

propranolol data 97
prune.tree function 264
pruning trees 264
purely random process 576
Puromycin experiment 353
p-values 47, 48

   Q
qcc function

arguments listed 734
qcc function 733
qcc objects 733
qqnorm function

linear models 128
qqnorm function 5, 8, 381, 388, 398, 411
qq-plots

see quantile-quantile plots
QR Decomposition 810
QR decomposition 765–766
qr function 765–766
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qr function 810
quakes.bay data 545
quakes.bay data frame 545
quality control charts 733

control data 734
cusum charts 744
group statistics 734
Shewhart charts 736
types listed 733
within-group standard deviation 734

Quantile functions 774
Quantile-quantile plots 5

full 412
half-normal 411
residuals 381, 388, 398, 412

quantile-quantile plots 45
quartiles 45
Quasi-likelihood estimation 215, 217, 219
Quasi-likelihood estimation, F-statistics 218
quasi-Newton optimizer 593

   R
Random numbers 773
random walk

discrete time 580
Randomized blocks 384
rat growth-hormone study 450, 461
ratio-scaled variables 513
rayplot function 548
rbind function 758
rcond function 795
Re function 760
reciprocal condition estimate 795
recursion 580
recursive partitioning 253
reference value (cusum charts) 745
reflection coefficients 583

Regression
least absolute deviation 151
least trimmed squares 147
linear models 8, 9
M-estimates 152
robust techniques 146
stepwise model selection 137
updating models 139
weighted 139

regression
diagnostic plots 126
least squares 124
multiple predictors 129
one variable 124
overview 123
Poisson 207
polynomial terms 155
simple 124

Regression line
confidence intervals 144

regression line 127
regression splines 159
regression trees

browsing nodes 269, 272
determining splits 273
editing 276
examples 254
nodes 270
pruning 264
regression rules 253
removing subtrees 269
selecting subtrees 268, 270
shrinking 265
summarizing trees 259
see also tree-based models

Regression trees see also Tree-based models
regression variables 590
Regression, dispersion parameter 218
relative risk 656, 658
Reliability

percentiles 709
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Reliability analysis 627
repeated-measures data 283, 287–290
repeated-measures designs 435
Replicated factorial experiments 394
replicates component 833
Republican Votes data 532
resample objects 831
Resampling techniques 829
resid function 220
resid function 8, 381, 390, 399, 412
residual deviance 169, 259
residual plot

Orthodont data 295
Residuals

ANOVA models 381, 388, 398, 401, 412
extracting 8

residuals 220
definition 124
lm models 126
local regression models 228
normal plots 128
plotting in linear models 127
tree models 261

residuals function
abbreviated resid 8, 381

residuals method 299
Residuals, algorithms 219, 220
Residuals, computing functions 220
Residuals, deviance residuals 219
Residuals, gam 219
Residuals, gam, END 220
Residuals, glm 219
Residuals, glm, END 220
Residuals, Pearson residuals 220
Residuals, response residuals 220
Residuals, working residuals 220
response

lm models 126
Response residuals 220
Response variable 5

Response weights
in ppreg 190

robust autogregression parameter estimates 615
robust filters 616
robust methods 43, 575, 615
Robust regression 146

least absolute deviation 151
least trimmed squares 147
M-estimates 152

robust smoothers 616, 621
roots

polynomials 587
Rotations

factor analysis 494
oblimin 494
types listed 496
varimax 494

RowPermutation function 793
Roy’s maximum eigenvalue test 433
rreg function

arguments 153
weight functions 154

rreg function 153
rts function 553, 554
rug.tree function 279
running averages 603
Ruspini data 526
ruspini data 526

   S
s function 201, 217
s function 168
Salk vaccine trials data 91, 96, 97
salk.mat data set 97
samp.boot.bal function 831
samp.boot.mc function 831
samp.permute function 831
sampler function 831
sandwich estimator 687
save.indices function 832
Scaling data 472
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Scatter plots
lagged 569, 570

scatter plots 61
Scatterplot matrices 5, 134, 231
scatterplot matrices 129
scatterplot smoothers 124, 158

locally weighted regression 160
Schur decomposition 812
schur function 812
Score equations 216
Scores

principal components 480
scores data set 419
scores.treat data set 419
screeplot function 478
Screeplots 477, 478

creating 478
seasonal models 589
second derivatives 359
seed argument 833
seed function 831
seed.end component 833
seed.start component 833
select.tree function 270
self-starting function 329–334

biexponential model 329
first-order compartment model 329
four-parameter logistic model 329
logistic model 329

seq function
dates 557

Sequence operator 758
shewhart 739
Shewhart charts 736

control limits 736, 738
new data 739
reading 736
run length 736
summary statistic 740
target value 736
violating points 743

shewhart function
arguments listed 736
returned objects 742

shewhart function 736, 740
shoe wear data 59
shrink.tree function 264, 265
shrinking trees 264, 265
signal plus noise model 596
Signal processing 772
silhouette plot 516
simple effects comparisons 456
simple matching coefficient 513
Simultaneous confidence intervals 145

linear models 144
sin function 760
Since 216
single linkage method 519
Singular value decomposition 766
sinh function 760
SLC see Standardized linear combinations
smooth.spline function 165
smoothers 124

B-splines 201
cleaners 617
comparing 166
cubic smoothing spline 159
cubic spline 165
defined 616
functions with gam 217
kernel-type 159, 162
locally weighted regression 159
periodograms 603
robust 615, 616, 621
variable span 159, 160

snip.tree function 269
solder data set 111
solder.balance data set 208
solve function 764
solve function 814
Soybean data 309–312, 330–334
spatial data 545
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Spearman’s r measure 68, 69
spec.ar function 607
spec.pgram function

filter component 604
spec.pgram function 602, 605
spec.plot function 608
spec.taper function 609
spectral analysis 600

autocovariance sequence 601
autoregressive spectrum estimation 607
cross-spectrum 604
detrending and de-meaning 602
Fourier series 600
padding 603
periodogram 602, 603
phase 604
spectral density estimate 604
spectral representation 601
squared coherency 604
tapering 602, 608

spectral density 601
spectrum function 608
spline function 771
Splines

cubic 771
splines

B-splines 165
cubic smoothing splines 165
degrees of freedom 166
regression 159

split-plot designs 433
sqrt function 760
squared coherency 604
Stable distribution 774
stack.df data set

defined 129
stack.loss data set 129
stack.x data set 129
standard deviation 41
Standard error

predicted values 143

standard error
linear models 126

Standardized linear combinations 467
standardized residuals 594
start function 556
state transition matrix 621
stationarity 593
stationary process 580
statistic argumen 833
statistic argument 833
statistic function 831
statistical inference 46

alternative hypothesis 47
assumptions 43
confidence intervals 46
counts and proportions 89
difference of the two sample means 56
equality of variances 57
hypothesis tests 46
null hypothesis 47

stats.med function
created 734

stats.xbar function
qcc uses 734

status data set 97
status.fac data set 99
step function

displaying each step 138
step function 137
Step functions 772
stepfun function 772
Stepwise model selection 137
straight line regression 123
structured covariance matrix 300, 305

ar1 structure 300
compsymm structure 300
diagonal structure 300
identity structure 300
re.block argument 300–301
re.structure argument 300
unstructured structure 300
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Student’s t distribution 774
Student’s t-test 48, 197

one-sample 52
paired test 62
two-sample 56

Subtraction 757
subtree function 509
suite of functions for bootstrapping and jack-

knifing 829
Sum contrasts 33
Summarizing data 5
summary function

ANOVA models 407
principal components 470
time series 556
tree models 259

summary function 546
summary function 5, 8, 20, 125
summary function 292
Super smoother 182, 187
super smoother 177
supersmoother 160
supsm function 161
supsmu

use with ppreg 187
Surface plots 222
Survival analysis

censored observations 637, 638
computations for parametric 705
examples 638
gaussian distribution for parametric 703
hazard function 637
IRLS formulation for parametric 699
log likelihood for parametric 700
logistic distribution for parametric 704
other distributions for parametric 705
overview 627
parametric compared with GLM 701
parametric distributions 699, 703
parametric regression 699
ridge-stabilized weighted likelihood for

parametric 705
smallest extreme value distribution for para-
metric 703
survival curves 637
survival distributions 646, 649
survival function 637
tests 647

survival analysis
correlated observations 679
discontinuous intervals of risk 673
examples 655, 664
multiple events 672
survival curves 653
time-dependent covariates 672
time-dependent strata 673
using the counting process 671

Survival curve
confidence intervals 643
Fleming-Harrington estimate 641
Kaplan-Meier estimate 637, 638, 649
Nelson’s cumulative hazard 640

survival curve
Cox model 653
Cox models 694

Survival function
algorithm 637

Survival time
mean 645
median 645

SVD
see matrix decompositions

singular value decomposition
svd function 799, 800
sweep function 784
symbolic differentiation 360
symmetric binary variables 513
symmetric matrices, see Hermitian matrices

   T
t function 762
t measure of correlation 68
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t.test function 52, 56, 62
table function 98
tan function 760
tanh function 760
tapering 602, 608

data taper 608
split cosine bell taper 609

tapply function 548
tapply function 548
test.vc data set 441
testscores data set

created 468
testscores data set 488
textbook parameterization of the lm model 459
Theoph data 314–316, 320
tile.tree function 277
time domain 575
time function 563
Time series 553

calendar 559
creating 553, 559, 560
differences 568
ending time 556
extracting times 563
frequency 554
irregular 560
lagged 566
multivariate 553, 562
naming component series 555
plotting 568, 569
sampling cycle 564
starting time 553, 556
subsetting 564, 566
summary 556
time interval 553, 554
tspar attribute 553
types 553
univariate 553
updating 561

time series 585
long memory models 597
seasonal 589
stationary 575
univariate 588, 594, 595

time-dependent covariates 672
time-dependent strata 673
Toeplitz matrix 582
Toothaker’s two-factor design 456
trace argument 832
trading days 597
transfer function 613
transformations

variance stabilizing 177
Treatment 376
Treatment (ANOVA models) 380
Treatment contrasts 33
tree function 8
Tree-based models

fitting function 8
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tree-based models 258
see also classification trees
advantages 253
browsing nodes 269, 272
classification rules 253
determining splits 273
displaying 259
editing 276
factor response 256
finding paths 272
graphical interaction 268
identifying nodes 272
importance of subtrees 264
missing data 262
nodes 270
numeric response 254
partitioning 253
prediction 261
pruning 264
regression rules 253
removing subtrees 269
selecting subtrees 268, 270
shrinking 265
see also regression trees

triangular matrices
creating 792

tri-cube weight function 159
Trigonometric functions 760
ts.intersect function 562
ts.union function 562
tspar attribute

deltat component 554
frequency component 554
start component 554

t-tests
see Student’s t-test

tukey.1 function
defined 393

tukey.1 function 390
Tukey’s bisquare psi-function 619

Tukey’s method 449
Tukey’s one degree of freedom 390, 392
Tukey-Kramer multiple comparison method

449
Two-way layout

additive model 388
details 402
multiplicative interaction 390
power law 402
replicated 394–403
replicates 398, 400
unreplicated 383–394
variance stabilizing 400, 401

two-way layout
robust methods 438

   U
Under-dispersion, regression models 218
Uniform distribution 774
uniroot function 339
unpack function 789
update function

linear models 139
update function 9, 36, 229, 246
Updating models 9

linear models 139
local regression models 229, 246

   V
var.test function 57
varcomp function 8
varcomp function 440
variability

minimizing 615
Variables

continuous 26
variables of mixed types 514
variance 41
879



Index
variance components models 439
estimation methods 440
maximum likelihood estimate 440
MINQUE estimate 440
random slope example 441
restricted maximum likelihood (REML) es-
timate 440
winsorized REML estimates 440

Variance stabilizing 400, 401
Box-Cox analysis 403
least squares 403

vecnorm function 761
Vectors

arithmetic 758
computing p-norm 761
creating 758
dot product 760

vershft argument 340
votes.repub data 532

   W
wafer data 423
wafer data set 423
Ward’s method 505
wave-soldering skips experiment 351
wear.Ascom data set 60
wear.Bscom data set 60
Weibull distribution 774
weight gain data 54

weighted least squares estimate 618
Weighted regression 37, 139, 142
weighted regression 123
White noise 555
white noise 576, 580, 583, 588
Whittle’s recursion 585
wilcox.test 48
wilcox.test function 53, 56, 58, 63
Wilcoxon rank sum distribution 774
Wilcoxon test 48, 49

one-sample 53
paired test 63
Peto-Peto modification 647
two-sample 58

Wilks’ lambda test 433
window function 566
Working residuals 220

   X
xy2cell function 548

   Y
yield data set

created 384
Yule-Walker equations 581

sample-based 582
vector form 583

Yule-Walker estimate 615
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