
9-10 (p.305)
Type I error, α, is the probability of rejection the null hypothesis when it is
actually correct. That means we need to find the probability of getting 2 or
more (out of a sample of 10) defectives if the true percentage of defectives, π,
is 10%.

α = P (X ≥ 2)
= 1 − [P (X = 0) + P (X = 1)]
= 1 − (0.9)10 − (10)(0.1)(0.9)9

≈ 0.2639

9-12 (p. 305)
(a) Since the test statistic is approximately -3.38 (see previous homework, in
which we solved part b), the p value is very small (less than 0.001). So, we
have enough evidence to reject the null hypothesis; the difference is statistically
discernable.

9-16 (p. 310)
H0: π = 1

6
HA: π > 1

6

(a) To reject H0 with α = 0.05, how many aces do you need?

x
100 − π√

π(1−π)
n

= 1.65

x

100
=

1
6

+ (1.65)
√

5
60

x ≈ 22.82

To be conservative then, in a sample of 100, you should require 23 aces before
rejecting H0.

(b) The probability of type I error is given by the area to the right of the vertical
line (which is drawn at 0.2282) under the leftmost curve (centered at 1

6 ). The
probability of type II error is given by the area to the left of the vertical line,
but under the rightmost curve (centered at 0.25).

(c) Twenty aces isn’t enough to really make you favor the alternative hypothesis;
it’s slightly more likely to happen under H0 than HA. I wouldn’t be happy with
the decision, though, largely because of the friend’s experience.
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Figure 1: Plot for problem 9-16b
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Figure 2: Plot for problem 9-16d

(d) The probability of type I error (about 10%) is given by the area to the right
of the vertical line (which is drawn at 0.2144) under the leftmost curve (centered
at 1

6 ). The probability of type II error (about 0.21) is given by the area to the
left of the vertical line, but under the rightmost curve (centered at 0.25).

9-23 (p. 319)
H0: π1 − π2 = 0
HA: π1 − π2 6= 0

(b) First, we calculate the test statistic:

Z =
0.42 − 0.45√

0.42(0.58)
1500 + 0.45(0.55)

1500

≈ −1.66

Since this is a 2-sided test, p = 2(0.048) = 0.096.

(c) (ii) The p value doesn’t fall below α = 0.05, so we don’t have enough evidence
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to reject the null hypothesis.

9-25 (p. 319)
H0: µ = 14000
HA: µ > 14000

(b) First, we calculate the test statistic:

Z =
14740− 14000

2000√
25

= 1.85

Since this is a 1-sided test, p = 0.032.

(c) (ii) Since the p value does fall below α = 0.05, we have enough evidence to
reject the null hypothesis. The new process is discernibly better.

9-30 (p. 321)
H0: π = 20%
HA: π > 20%

In particular, when the process is not in control, the percentage of defectives is
pi = 60%.

(a)

α = P (X ≥ 3|π = 0.20)
= 1 − P (X < 3|π = 0.20)

= 1 − (0.8)10 − (10)(0.2)(0.8)9 − (10)(9)
2

(0.2)2(0.8)8

≈ 0.3222

(b)

β = P (X < 3|π = 0.60)

= (0.4)10 + (10)(0.6)(0.4)9 +
(10)(9)

2
(0.6)2(0.4)8

≈ 0.0123

(c) G: process in control
S: sample of 10 has less than 3 defectives (this makes us think the process is in
control)

4



C: total cost of our testing/stopping scheme per day

Event Cost P(event)
G ∩ S $100 + 10($10) 0.95(1 − α)
G ∩ SC $100 + 10($10) + $3000 0.95α
GC ∩ S $100 + 10($10) + $18000 0.05β
GC ∩ SC $100 + 10($10) 0.05(1 − β)

We can use the answers in parts a and b above to get the values for α and
β. Then, we can calculate the expected daily cost:

E(C) ≈ 0.6439($200) + 0.3061($3200)+ 0.0006($18200)+ 0.0494($200)
≈ $1129.10

(d) If we don’t test, we’ll have no way of knowing whether the process is “out
of whack” or not.

E(C) = 0.95($0) + 0.05($18000) = $900

(e) Must recalculate α and β with the new testing criterion that the process will
only be stopped if 4 or more (out of 10) are defective. Then, we can recalculate
the expected cost.

α = P (X ≥ 4|π = 0.20)
= 1 − P (X < 4|π = 0.20)
= 1 − (0.8)10 − (10)(0.2)(0.8)9

− (10)(9)
2

(0.2)2(0.8)8 − (10)(9)(8)
(3)(2)

(0.2)3(0.8)7

≈ 0.1209

β = P (X < 4|π = 0.60)

= (0.4)10 + (10)(0.6)(0.4)9 +
(10)(9)

2
(0.6)2(0.4)8 +

(10)(9)(8)
(3)(2)

(0.6)3(0.4)7

≈ 0.0548

E(C) ≈ $593

We can do the same thing for the strategies of requiring 5 or 6 defectives
(out of 10) before stopping the process, resulting in expected costs of $443 or
$548 (respectively).
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So, given these choices, the lowest average daily cost is about $443. The
more defectives (out of 10) we require before closing production, the higher
our type II error. The fewer defectives we require, the higher the type I error.
However, requiring 5 (out of 10) defectives seems to strike the best balance.

(f) If we start taking samples of size 12, that will change our costs, as well
as require us to recalculate various values of α and β. The procedure is the
basically the same as before, though.

E(C) = 0.95(1− α)($220) + 0.95α($3220) + 0.05β($18220)+ 0.05(1− β)($220)

If we require 6 (out of 12) defectives before stopping, the expected cost is
about $418. This is the lowest-cost strategy for a sample of this size.

(g) If we require 8 of 18 defective to stop, expected cost is about $378.

(h) My report would just offer a brief discussion of type I and type II error
(which I mentioned above), and conclude by recommending the strategy in part
g.

10-4 (p. 335)
H0: µ1 = µ2 = µ3

HA: at least one of the µs is different than the others

(a) We’ll need the overall mean before calculating the rest of the table:

¯̄x =
50x̄1 + 50x̄2 + 50x̄3

150
=

x̄1 + x̄2 + x̄3

3
= 29

Sum Sq. df Mean Sq. F p
Factor A 18900 2 9450 29.6 <0.001
Residual 47000 147 320
TOTAL 65900 149

(b) It is fair to say that given our evidence, the mean incomes are statistically
different. However, the F-test doesn’t tell us how much which means differ from
one another.

10-14 (p. 346)
(a) There are

(
8
2

)
pairs that can be compared.

(
8
2

)
=

(8)(7)
2

= 28
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(b) The expected number wrong would be (0.05)(28)=1.4. (Remember the
formula n × π from the chapter concerning the binomail theorem?)

(c)
√

(k − 1)F 7,192
.05 replaces t192.025 ≈ 1.96 in each of the confidence intervals.

√
(k − 1)F 7,192

.05 ≈
√

(8 − 1)(2.17) ≈ 3.90

So, the width of the intervals is increased by about

2(3.90sp

√
1
25

+
1
25

− 1.96sp

√
1
25

+
1
25

) ≈ 1.10sp
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