
14-32 (p.470)
Remember that “deaths” in this problem means deaths for white males aged
15-64.
(a)
Average number of deaths per state (inspection states): 5144

15 ≈ 343
Average number of deaths per state (non-inspection states): 13380

33 ≈ 405

As a percentage:
13380

33 − 5144
15

13380
33

≈ 15.4%
So non-inspection states have a 15.4% higher number of deaths per state.
This isn’t such a useful statistic because we haven’t taken into account any
of the various factors that are different between inspection and non-inspection
states that might explain some of this difference (such as population, population
density, differences in vehicle usage/mileage).

(b) Average number of deaths per million (inspection states): 5144
16.7 ≈ 308

Average number of deaths per million (non-inspection states): 13380
30.0 ≈ 446

As a percentage:
13380
30.0 − 5144

16.7
13380
30.0

≈ 30.9%
This is an observational study. To make it a randomized controlled experiment,
we’d have to randomly assign white males to inspection and non-inspection
states. This isn’t feasible, so we’d do better to try to discover other factors that
might influence the number of deaths in inspection vs. non-inpsection states.

(c) I would say that very young and very old drivers are more likely to be
in accidents or cause accidents of others, so if the inspection states and non-
inspection states were different in age distributions, this could make a difference.
Areas with higher population densities will have different traffic patterns and
vehicle usage patterns (how many miles driven, how prevalent is the use of public
transportation, etc.). I would initially guess that areas with higher population
density may have more traffic and therefore more accidents, even if the average
person drives less. (This is just a guess...)

(d) H0 : βinsp = 0 HA : βinsp 6= 0
T 45 = 63.4−0

30.6 ≈ 2.07
Use T-table with 40 degress of freedom (closest to 45). This gives us the critical
value 2.02 (for α=0.05). This means our test statistic falls in the rejection
region, and we reject the null hypothesis. The effect of inspection is significant
(with α=0.05). Inspection makes a difference of 63.4 deaths per million white
males (with all other factors being equal), according to our model in part (d).

(e) H0 : βinsp = 0 HA : βinsp 6= 0
T = 8.1−0

39.8 ≈ 0.20
No matter how many degrees of freedom (and since they removed some of the
data points, we’re not sure exactly how many degrees of freedom there are), we
cannot conclude that inspection makes a difference (fail to reject H0). All else
being equal, having inspection reduces deaths by 8.1 deaths per million white
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males.

(f)
i.)Unlike my proposition in part (c), it seems from this regression that in-

creases in population density correspond to decreases in mortality. Maybe peo-
ple in higher population density areas drive shorter distances and/or take public
transportation more (or any of a variety of other reasons one might think of).

ii.) All else being equal, introducing inspection reduces mortality reate by
8.1 deaths per million white males. If you double the population density (with
all else) equal, you get the following equations:
Before doubling the population density x, you have:
MR60 = 483 − 62.5 logx + c (where c equals contributions from the other
regressors)
Before doubling the population density x, you have:
MR60 = 483 − 62.5 log 2x + c = 483 − 62.5(log 2 + log x) + c

So, doubling the population density lowers the mortality rate by 62.5 log 2 ≈
43.3 deaths per million white males.

(g)
part d 63.4 per million takes population density (log) into account
part e 8.1 per million takes into accout mortality rates from 1950

(h) Factors that we might like to control for (obviously, this list is not exclusive:
how many cars there are, how many licensed drivers there are, total/average
miles driven per capita, etc.

15-22 (p. 508)
(a) R2 = SS explained by all regressors/total SS
(b) Multicollinearity occurs when the regressors are highly correlated with each
other.
(c) True.
(d) True.
(e) True.

15-24 (p. 510)
(a)

i.) (0.34)(2) = 0.68 → 0.68 SDs more police officers than group with less
income disparity

ii.) (0.34)(2) + (0.27)(-1) = 0.41 → 0.41 SDs more police officers
iii.) (0.63)(2) = 1.26 → 1.26 SDs more police officers. If the one is drawn

at random, the other variable values will probably change, so we use the simple
regression fit of P ′ on D′.
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(b)
I would disagree with Sue. Once you take into account all the factors that

we’re given (disparity in income, mean family income annually, etc.), it looks like
an increased number of riots is correlated with a small decrease in policemen.

(c)

X ′ =
X − X̄

sX

0.15I ′ = 0.15
I − 10000

1200

0.15I ′ =
1

8000
I − 1.25

where -1.25 goes into the intercept term.

(d)Starting with the 2nd answer: large, number of small stores S, correlation
coefficient
The 1st answer is dependent on how you read the question. I read it as asking
why it can sometimes be helpful to standardize the variables. If you don’t
standardize the variables, the units that the explanatory variable is measured
in will affect the regression coefficient. However, I think most people would
read the question to ask “When you standardize the variable, is the regression
coefficient closely related to the units in which the variable is measured”? The
answer to this question is no, leading to the choice “independent of”.

15-26 (p. 512)
(a) In the sense that this coefficient will change as the units change, this isn’t
necessarily true.

(b) False. Would be 5.4 minutes.

(c)
i.)

x̄ ± z.025
s√
n

32 ± 1.96
15√
200

(29.9 , 34.1)

ii.)

b ± z.025SEb
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−0.24 ± 1.96(0.05)
(−0.338 , −0.142)

(d) False. Patients who are late are less likely to wait longer (according to this
model) → coefficient of PALATE is negative

(e) R2 would be larger, but R̄2 might not be (because R̄2 has a “penalty” for
introduction for new varaibles → will only increase if new variable explains a
sufficient amount of the variation)
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