STA 110B

Spring 2000

Name_____

Section_____

Quiz 5

week of 21FEB2000

Contracts for two construction jobs are randomly assigned to one or more of three firms, A, B, and C. Let Y_1 denote the number of contracts assigned to firm A and Y_2 the number of contracts assigned to firm B. Recall that each firm can receive 0, 1, or 2 contracts. The joint probability distribution $p(y_1, y_2)$ is given below.

		Y_1	
Y_2	0	1	2
0	1/9	2/9	1/9
1	2/9	2/9	0
2	1/9	0	0

You might want to use the following mathematical relationships:

$$Var(X) = E[(X - E(X))^2]$$

 $Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$

1. (2 points) Find the marginal probability distribution of Y_1 .

- $\begin{array}{c|cc} y_1 & p(y_1) \\ \hline 0 & 4/9 \\ 1 & 4/9 \\ 2 & 1/9 \end{array}$
- **2**. (2 points) Find the expected value of Y_1 .

$$E(Y_1) = \Sigma y_1 p(y_1) = (0)\frac{4}{9} + (1)\frac{4}{9} + (2)\frac{1}{9} = \frac{4}{9} + \frac{2}{9} = \frac{6}{9}$$

3. (2 points) Find the covariance $Cov(Y_1, Y_2)$ between Y_1 and Y_2 .

$$Cov(Y_1, Y_2) = E[(Y_1 - E(Y_1))(Y_2 - E(Y_2))]$$

= $E(Y_1Y_2) - E(Y_1)E(Y_2) - E(Y_1)E(Y_2) + E(Y_1)E(Y_2)$
= $E(Y_1Y_2) - E(Y_1)E(Y_2)$

$$E(Y_1Y_2) = \Sigma y_1y_2p(y_1, y_2)$$
$$= \frac{2}{9}$$

$$Cov(Y_1, Y_2) = E(Y_1Y_2) - E(Y_1)E(Y_2)$$

= $\frac{2}{9} - (\frac{6}{9})(\frac{6}{9})$
= $\frac{18}{81} - \frac{36}{81}$
= $-\frac{18}{81}$
= $-\frac{2}{9}$

4. (2 points) Are Y_1 and Y_2 independent? Why or why not?

No, Y_1 and Y_2 are not independent. If Y_1 and Y_2 were independent, $Cov(Y_1, Y_2)$ would be 0. Or, see if $p(y_1, y_2) = p_{Y_1}(y_1)p_{Y_2}(y_2)$.

$$p_{Y_1}(0) = \frac{4}{9}$$
$$p_{Y_2}(0) = \frac{4}{9}$$
$$p(0,0) = \frac{1}{9}$$

Since $p(0,0) = \frac{1}{9}$ does not equal $p_{Y_1}(0)p_{Y_2}(0) = \frac{16}{81}$, Y_1 and Y_2 are not independent.

5. (2 points) Let Z equal the total amount to be paid to complete these contracts. Firm A charges \$9000; firm B charges \$12000. Therefore, we can express costs as $Z = 9000Y_1 + 12000Y_2$, where Z is measured in dollars. Find the expected cost, E(Z).

$$E(Z) = E(9000Y_1 + 12000Y_2)$$

= 9000E(Y_1) + 12000E(Y_2)
= (9000)($\frac{6}{9}$) + (12000)($\frac{6}{9}$)
= 6000 + 8000
= 14000

OR

$$E(Z) = \left(\frac{2}{9}\right)(9000) + \left(\frac{1}{9}\right)(18000) + \left(\frac{2}{9}\right)(12000) + \left(\frac{2}{9}\right)(21000) + \left(\frac{1}{9}\right)(24000)$$

= $2000 + 2000 + \frac{24000}{9} + \frac{42000}{9} + \frac{24000}{9}$
= $4000 + 10000$
= 14000