STA 110B

Spring 2000

Name____

Section_____

Quiz 9

week of 03APR2000

1. Consider a study performed to assess attitudes toward welfare payments, with 3 groups of 9 people each. The first group is a random sample from the middle class, the second group consists of current welfare recipients, and the third group is from the lower-middle class. A respondent whose score is high is strongly supportive of welfare payments. We are interested in comparing the mean score (the average level of welfare support) among these 3 groups using the ANOVA method. (Assume that the assumptions are satisfied so that this method is a valid choice.)

a. (6 points) Fill in the three marked spots in the ANOVA table for this study given below. (Factor A represents the 3 socioeconomic groups in the study.)

Source	Sum Sq.	d.f.	Mean Sq.	\mathbf{F}
Factor A	114.9630	2	57.4815	7.8186
Residual	176.4444	24	7.3519	
TOTAL	291.4074	26		

b. (1 point) Define the null and the alternative hypotheses.

 H_0 : $\mu_1 = \mu_2 = \mu_3$ All 3 groups are from the same population (they have the same mean). H_A : at least one of the μ s is different from one or more of the others

c. (1 point) What is the p-value associated with this test?

0.001

d. (2 points) At the 5% error level, what can we conclude from our sample and our test? Explain which hypothesis you support and why (in math or a very brief phrase).

At $\alpha = 0.05$, we have enough evidence to reject the null hypothesis, since $p < \alpha$. In other words, we believe at least one of the group means is statistically discernible from one or more of the others.