What have we done so far?

- ➡ Graphical Analysis
 - Plot data, summary statistics, etc.
 - Does the relationship between y and x look linear?
- ➡ Simple linear regression
 - Assuming that the relationship between y and x is linear
 - Conducted simple linear regression
 - Interpretation of model and coefficients
 - Intercept and slope
 - CI's for coefficients and p-values
 - CI's for mean fitted y and for predictions
 - \mathbb{R}^2
- ➡ Assumptions in simple linear regression
 - <u>Assumptions</u>: linear relationship between y and x, residuals have constant variance and are normally distributed (also independence)
 - So, is the relationship between y and x linear?
 - Conduct regression of y on x and look at residual vs. fitted and Normal Q-Q plots
 - If not linear relationship transform?

Which transformation/s? Do you have a theoretical model in mind? Try common transformations (e.g., log, inverse, sqrt, logit for proportions)

- Do the transformations help? Look at residual vs. fitted and Normal Q-Q plots
- Interpretation of coefficients after transforming e.g., go back to the original scale Some that we've done in class:
 - $log y \sim x$ $y \sim log x$ $log y \sim log x$
 - $logit(P) \sim x$
- R^2 only can use it to compare models if the response variable is the same
- Formal lack-of-fit F-test to determine if the linear model is appropriate (need repeated x's)
- ➡ Multiple regression and inference
 - Can use x^2 term to "informally" test for lack-of-fit, x^2 allows you to model some curvature
 - Dummy/indicator variables
 - Extra SS F-test is a reduced model OK?

<u>Note</u>: the lack-of-fit F-test that we did is a special type of Extra SS F-test Various ways to conduct Extra SS F-test, e.g.:

- i.) run the 2 different models (e.g., reduced and full) and calculate Extra SS
- ii.) use the sequential SS ANOVA table ORDER of fit is important
- iii.) in S-plus use the "model comparison" option
- F-test vs. t-tests multiple parameter hypothesis vs. single parameter hypothesis
- R^2 vs. adjusted R^2
- Which variables to include in model? Variable selection a topic for later
- ➡ Model checking diagnostics
 - Outliers, leverage, influence, etc.