
Review of key points about estimators

• Populations can be at least partially described by population parameters

• Population parameters include: mean, proportion, variance, etc.

• Because populations are often very large (maybe infinite, like the output of a
process) or otherwise hard to investigate, we often have no way to know the
exact values of the paramters

• Statistics or point estimators are used to estimate population pararmeters

• An estimator is calculated using a function that depends on information
taken from a sample from the population

• We are interested in evaluating the “goodness” of our estimator - topic of
sections 8.1-8.4

• To evaluate “goodness”, it’s important to understand facts about the
estimator’s sampling distribution, its mean, its variance, etc.



Different estimators are possible for same parameter

• In everyday life, people who are working with the same information arrive at
different ideas/decisions based on the same information

• Given the same sample measurements/data, people may derive different
estimators for the population parameter (mean, variance, etc.)

• For this reason, we need to evaluate the estimators on some criteria (bias,
etc.) to determine which is best

• Complication: the criteria that are used to judge estimators may differ

• Example: For estimating σ2 (variance), which is better:
s2 = 1

n−1

∑n
i=1(xi − x̄)2 (sample variance) or some other estimator

s∗2 = 1
n

∑n
i=1(xi − x̄)2 (which more closely resembles population variance)



Repeated estimation yields sampling distribution

• If you use an estimator once, and it works well, is that enough proof for you
that you should always use that estimator for that parameter?

• Visualize calculating an estimator over and over with different samples from
the same population, i.e. take a sample, calculate an estimate using that
rule, then repeat

• This process yields sampling distribution for the estimator

• We look at the mean of this sampling distribution to see what value our
estimates are centered around

• We look at the spread of this sampling distribution to see how much our
estimates vary



Bias

• We may want to make sure that the estimates are centered around the
paramter of interest (the population parameter that we’re trying to estimate)

• One measurement of center is the mean, so may want to see how far the
mean of the estimates is from the parameter of interest → bias

• Assume we’re using the estimator θ̂ to estimate the population parameter θ

• Bias(θ̂) = E(θ̂) − θ

• If bias equals 0, the estimator is unbiased

• Two common unbiased estimators are:

1. Sampling proportion p̂ for population proportion p

2. Sample mean X̄ for population mean µ



Bias and the sample variance

What is the bias of the sample variance,
s2 = 1

n−1

∑n
i=1(xi − x̄)2? Contrast this case with that of

the estimator s∗2 = 1
n

∑n
i=1(xi − x̄)2, which looks more like

the formula for population variance.



Variance of an estimator

• Say your considering two possible estimators for the same population
parameter, and both are unbiased

• Variance is another factor that might help you choose between them.

• It’s desirable to have the most precision possible when estimating a
parameter, so you would prefer the estimator with smaller variance (given
that both are unbiased).

• For two of the estimators that we have discussed so far, we have the
variances:

1. V ar(p̂) = p(1−p)
n

2. V ar(X̄) = σ2

n



Mean square error of an estimator

• If one or more of the estimators are biased, it may be harder to choose
between them.

• For example, one estimator may have a very small bias and a small variance,
while another is unbiased but has a very large variance. In this case, you
may prefer the biased estimator over the unbiased one.

• Mean square error (MSE) is a criterion which tries to take into account
concerns about both bias and variance of estimators.

• MSE(θ̂) = E[(θ̂ − θ)2] → the expected size of the squared error, which is the
difference between the estimate θ̂ and the actual parameter θ



MSE can be re-stated

Show that the MSE of an estimate can be re-stated
in terms of its variance and its bias, so that
MSE(θ̂) = V ar(θ̂) + [Bias(θ̂)]2



Moving from one population of interest to two

• Parameters and sample statistics that have been discussed so far only apply
to one population. What if we want to compare two populations?

• Example: We want to calculate the difference in the mean income in the year
after graduation between economics majors and other social science majors
→ µ1 − µ2

• Example: We want to calculate the difference in the proportion of students
who go on to grad school between economics majors and other social science
majors → p1 − p2



Comparing two populations

• Try to develop a point estimate for these quantities based on estimators we
already have

• For the difference between two means, µ1 − µ2, we try the estimator x̄1 − x̄2

• For the difference between two proportions, p1 − p2, we try the estimator
p̂1 − p̂2

We want to evaluate the “goodness” of these estimators.

• What do we know about the sampling distributions for these estimators?

• Are they unbiased?

• What is their variance?



Mean and variance of x̄1 − x̄2

Show that x̄1 − x̄2 is an unbiased estimator for µ1 − µ2.
Also show that the variance of this estimator is σ2

1
n1

+ σ2
2

n2



Mean and variance of p̂1 − p̂2

Show that p̂1 − p̂2 is an unbiased estimator for p1 − p2.
Also show that the variance of this estimator is
p1(1−p1)

n1
+ p2(1−p2)

n2



Summary of two sample estimators

• We have just shown that x̄1 − x̄2 and p̂1 − p̂2 are unbiased estimators, as
were x̄ and p̂

• The CLT doesn’t apply to these estimators since they are not sample means
- they are differences of sample means

• Other theorems do state that given at least moderate (n ≥ 30) sample sizes,
these estimators have sampling distributions that are approximately normal



Estimation errors

• Even with a good point estimate θ̂, there is very likely to be some error
(θ̂ = θ not likely)

• We can express this error of estimation, denoted ε, as ε = |θ̂ − θ|
• This is the number of units that our estimate, θ̂, is off from θ (doesn’t take

into account the direction of the error)

• We can use the sampling distribution of θ̂ to help place some bounds on our
estimate


