
Multivariate probability distributions

• Often we are interested in more than 1 aspect of an experiment/trial

• Will have more than 1 random variable

• Interest the probability of a combination of events (results of the different
aspects of the experiment)

Examples include:

• Price of crude oil (per barrel) and price per gallon of unleaded gasoline at
your local station (per gallon)

• Level of different chemical contaminants in soil samples

• Probability of obtaining a certain sample mean and sample variance in a
sample from a population



Bivariate and discrete

Assume that X1 and X2 are discrete random variables. The joint (bivariate)
probability distribution for X1 and X2 is p(x1, x2) = P (X1 = x1, X2 = x2).

• p(x1, x2) ≥ 0 for all x1 and x2

• ∑
x1

∑
x2

p(x1, x2) = 1

• C.d.f given by F (x1, x2) = P (X1 ≤ x1, Y1 ≤ x1)



Simple bivariate example

Have one die with 3 “1” faces and 3 “2” faces. Each face is
equally likely to come up. The second die has 2 “1” faces, 2
“2” faces, and 2 “3” faces, also with equally weighted sides.

X: how many “2”’s rolled
Y : sum of the these dice

Find p(x, y) = P (X = x, Y = y). Also find the c.d.f.



Multivariate and continuous

• Random variables Y1 and Y2 are jointly continuous if
their joint c.d.f is continuous in both arguments

• Joint density function is given by f(y1, y2); the function
is non-negative for all y1 and y2

• Volume under the surface must be 1:∫ ∞
−∞

∫ ∞
−∞ f(y1, y2)dy1dy2 = 1

• Some calculations will require multiple integrals
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Marginal distributions

If we’re given the joint distribution for 2 or more variables, how can we find the
distribution for just one of them?

• Assume we have p(x, y) for the random variables X and Y , want p(x)

• We want the probability for a union of mutually exclusive events:
(x ∩ y1) ∪ (x ∩ y2)... ∪ (x ∩ yn) → x

• Since they’re mutually exclusive, we sum the probabilities for all the different
possible values of Y that can occur with X = x

• In the discrete case, this leads to p(x) =
∑

y p(x, y) and p(y) =
∑

x p(x, y)

• In the continuous case, this leads to p(x) =
∫ ∞
−∞ p(x, y)dy and

p(y) =
∫ ∞
−∞ p(x, y)dx



Dice example continued

What are the marginal distributions for X and Y in our
earlier dice example?

X: how many “2”’s rolled
Y : sum of the these dice

Y

X 2 3 4 5

0 1/6 0 1/6 0

1 0 1/3 0 1/6

2 0 0 1/6 0



Conditional distributions

Let’s say we have two random variables X and Y with a
joint probability function or density function, and we want
to know the probability function or density function of one
given the value of the other.

Discrete case:

• Use the definition of conditional probability
P (A|B) = P (A∩B)

P (B)

• P (X = x|Y = y) = P (X=x,Y =y)
P (Y =y) = p(x,y)

p(y)

Continuous case:

• Want to have the conditional probability density
function rather than a probability function

• f(x|y) = f(x,y)
f(y)



Dice example revisited

X: how many “2”’s rolled
Y : sum of the these dice

Y

X 2 3 4 5

0 1/6 0 1/6 0

1 0 1/3 0 1/6

2 0 0 1/6 0

Give the conditional probability distribution of Y given X

and X given Y in our dice example.



Independence revisited

In chapter 2, we discussed briefly independence and
dependence of events A and B.

• These are independent if P (A|B) = P (A) or
P (B|A) = P (B) or P (A ∩ B) = P (A)P (B)

• Otherwise, knowing that A happened gives you
info about P (B) (or vice-versa) and the events are
dependent

Extend this principle to random variables and their
probability distributions/densities.

• Two discrete random variables X and Y are
independent if p(x, y) = p(x)p(y) for all x and y.

• Two continuous random variables X and Y are
independent if f(x, y) = f(x)f(y)



Independence and our dice example

X: how many “2”’s rolled
Y : sum of the these dice

Y

X 2 3 4 5

0 1/6 0 1/6 0

1 0 1/3 0 1/6

2 0 0 1/6 0

In our dice example, were X and Y independent?



Expected value

We just extend our ideas about expected value to more than one variable. If
g(X1, X2, ..., Xn) is the function of random variables X1, X2, ..., Xn for which we
are interested in finding the expected value:

Discrete case:

E[g(X1, X2, ..., Xn)] =
∑
x1

∑
x2

...
∑
xn

g(x1, x2, ..., xn)p(x1, x2, ..., xn)

Continuous case:

E[g(X1, X2, ..., Xn)] =
∫

x1

∫
x2

...

∫
xn

g(x1, x2, ..., xn)f(x1, x2, ..., xn)dxn...dx2dx1



Properties of expected value remain the same

Also, we still have the same properties for expected values that we discussed
before:

• E(c) = c where c is a constant

• E[cg(X1, X2, ..., Xn)] = cE[g(X1, X2, ..., Xn)]

• E[g1(X1, X2, ..., Xn) + g2(X1, X2, ..., Xn)] = E[g1(X1, X2, ..., Xn)] +
E[g2(X1, X2, ..., Xn)]



Covariance

For two random variables X and Y :

• Denote their means as E(X) = µX and E(Y ) = µY

• Covariance is an expected value:
Cov(X, Y ) = E[(X − µX)(Y − µY )]

The covariance calculation can be simplified (similar to
simplification for variance):



Covariance

X: how many “2”’s rolled
Y : sum of the these dice

Y

X 2 3 4 5

0 1/6 0 1/6 0

1 0 1/3 0 1/6

2 0 0 1/6 0

In our dice example, find Cov(X, Y ).



Implications of covariance

• If X and Y are independent, Cov(X, Y ) = 0

• If Cov(X, Y ) = 0, this does not necessarily mean that X and Y are
independent

• It is possible for the X and Y to be dependent (according to definition,
p(x, y) 6= p(x)p(y)), yet have Cov(X, Y ) = 0



Coefficient of correlation

Let X be a random variable with V ar(X) = σ2
X and Y be a random variable

with V ar(Y ) = σ2
Y . Then the coefficient of correlation is

ρ =
Cov(X, Y )

σXσY

• Coefficient of correlation measures strength of linear relationship

• −1 ≤ ρ ≤ 1, where the extremes denote perfect linear relationships (positive
or negative)

• There can be a perfect non-linear relationship between X and Y , but this
won’t give you ρ = −1 or ρ = 1



More about ρ

• ρ = 1 denotes perfect positive linear relationship (where line has positive
slope)

• ρ = −1 denotes perfect negative linear relationship (where line has negative
slope)

• ρ = 0 means 0 linear correlation, 0 covariance



How do various values of ρ look?
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Correlation in the dice example

In the previous slide about covariance, we found

Cov(X, Y ) = 0.25

E(X) =
5
6

E(Y ) =
21
6

Find the coefficient of correlation ρ.



Variance for a linear function

Let’s say we have two random variables X and Y , and
we are interested in the variance of a linear combination
aX + bY of these two.

V ar[aX + bY ] = a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y )

This can be extended to the case of a linear combination of
n > 2 variables, using the same procedure. (See p. 228 for
details.)


