
Statistical testing vs. interval estimation

Chp. 8 focused on estimating a parameter (µ, p, etc.) and placing some bounds
on the error of estimation.

• Can describe the population more accurately - knowing the mean income of
a population gives us an idea of the average person’s economic position

• Can report on the status of a situation - the difference in the percentage
of voters supporting Bush and those supporting Gore (p1 − p2) may be of
interest just before an election?

Chp. 10 focuses on statistical testing.

• We have hypotheses about the population, and we use a random sample to
help us decide which is accurate

• We may be testing a new medication/treatment, a new scientific theory, etc.

• Is the value of a parameter equal to a particular value, or is it larger?
smaller? just different?



What are the hypotheses?

To begin, we need to formulate our two hypotheses.

Null hypothesis

• Expressed in the form θ = θ0, where θ is a population
parameter and θ0 is a specific value hypothesized for
that parameter

• Denoted H0

• H0 is the hypothesis to fall back on if we don’t have
enough evidence to support HA

Alternative hypothesis

• Expressed in one of the three forms: θ 6= θ0, θ > θ0,
θ < θ0,

• Denoted HA (or occasionally H1)

• The “burden of proof” is on HA



Types of errors

Since we have two hypotheses, there are two errors that we
could make.

Type I error

• Occurs when H0 is rejected when it’s really true

• Probability of making a type I error is denoted α and
called the level of the test

• We choose the probability of making a type I error
before conducting the test; it’s often chosen to be 0.05.

Type II error

• Type II error occurs when H0 is not rejected when it
should be (when HA is true)

• Probability of making a type II error is denoted β

• This probability is not determined beforehand

It isn’t possible to reduce the probability of both types of
error to 0 at the same time.



Example: medical treatments

Experience has shown that 30% of people with a certain
illness recover. We have developed a new medication, and
we have given it to 10 randomly selected patients to test
whether it increases the recovery rate.

1. What are the hypotheses that we want to test?

2. How many of them have to recover before we believe
that the medicine increases the recovery rate?
To answer this question, we want to look at the
probabilities of 0, 1, 2, ... 10 patients recovering if
the probability of recovery is unchanged by the new
medicine.

3. If we assume that each person’s probability of recovery
is the same, the number of people recovering has
binomial distribution with n = 10 and p = 0.3.



Binomial probabilities for our example
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Larger example

• Our previous example was a very small one, but the
same ideas hold for more complicated problems

• We usually have a much larger sample size, and we
use the central limit theorem to approximate the
sampling distributions with the normal distribution (or
t distribution)
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Figure 1: Approximate sampling distribution with n=1000



Establishing the rejection region

• In general, we are given α (the significance level of the test)

• We have to establish a rejection region (RR) based on α

• This means we want to find a RR such that the probability of observing an
estimator in that region, given that the null hypothesis is true, is α

• We need to consider the sampling distribution of the estimator, and
determine the values that fall in this range



What is a test statistic?

• Depending on H0 the center and spread of the sampling distribution may
change

• It’s easier to rescale the sampling distribution to the standard normal (or
t) distribution than to look at a different sampling distribution for each
example

• This means that estimator (x̄, p̂, etc.) we observe from our data needs to be
thought of in terms of how far it deviates from its expected value (under H0)

• This re-adjusted value is called the test statistic: θ̂−θ0
SEθ̂

• We can define the rejection region using standard normal (or t) distribution
as well



Example: medical treatments (cont.)

Instead of randomly choosing 10 ill patients, we were able
to randomly choose 1000. We observed that 350 of the 1000
recovered after being given the medicine.

Is there evidence to lead us to believe that those given the
new medicine have a higher rate of recovery than 30%? Test
with significance level α = 0.05.



Example: bottling factory

A bottling factory fills thousands of 20oz bottles daily with
soda, but not all the bottles are filled to the same level. A
random sample of bottles was taken from the factory line,
containing the following amounts of soda (in oz):

19.8 20.1 19.7 19.2 19.9 20.0 19.8 19.9 19.7

Assuming that the distribution of amounts of soda is
approximately normal, is there evidence to lead us to
believe that the mean level of filling is not 20 oz? Test with
significance level α = 0.05.

From the sample data, we have: n = 9, x̄ ≈ 19.79, s ≈ 0.26



Attained levels of significance (p-values)

• If we assume that H0 is true, we can calculate the probability of seeing a test
statistic that is this far away from what we would expect given H0, or further

• This probabilitly is the p-value or attained level of significance

• If the p-value is less than α, this is equivalent to saying that the test statistic
falls in the rejection region

• Reporting the p-value lets each reader know whether the null hypothesis
would be rejected using his/her own choice of α.



Example: Comparing mean incomes

We want to compare the mean family income in two states.
For state 1, we had a random sample of n1 = 100 families
with a sample mean of x̄1 = 35000. For state 2, we had a
random sample of n2 = 144 families with a sample mean of
x̄2 = 36000. Past studies have shown that for both states
σ = 4000.

Is the mean income in state 1 lower than that in state 2?
Test at significance level α = 0.01. Give the p-value.



Summary: Hypothesis testing methodology

1. Establish the null hypothesis.

2. Determine the alternative hypothesis → one-tailed or two-tailed test

3. Define assumptions needed for the test, make sure they are met. (Ex:
paired/unpaired, equal variances, etc.)

4. Calculate the test statistic:
Z/T = estimator for parameter−value for parameter given by null hypothesis

standard error of estimator
5. Based on α and HA, determine the rejection region. This is the portion of

the tail(s) (based on HA) of the estimator’s sampling distribution which has
area α.

6. Determine the p-value (attained level of significance). This is the probability
of seeing a result as extreme or more extreme than your test statistic under
the null hypothesis, where “extreme” is defined by HA

7. Reject H0 if p < α or the test statistic falls in the rejection region



Example: Diff. in means (small samples)

The strength of concrete depends, to some extent, on the
method used for drying it. Two different drying methods
yielded the results below for independently tested specimens
(in psi). Do the methods appear to produce concrete with a
statistically significant difference in mean strengths? Use
α = 0.05. Find the attained significance level.

Method 1 n1 = 7 ȳ1 = 3250 s1 = 210

Method 2 n2 = 10 ȳ2 = 3240 s2 = 190



Confidence intervals vs. hypothesis tests

Imagine a two-tailed test with hypotheses H0 : θ = θ0 and HA : θ 6= θ0

• For level of significance α, reject if test statistic (could be Z or T ) falls in
Z < −zα

2
or Z > zα

2

• This means we fail to reject H0 when −zα
2

< Z < zα
2

• We can re-write this:
−zα

2
< θ̂−θ0

SEθ̂
< zα

2

−θ̂ − zα
2
SEθ̂ < −θ0 < −θ̂ + zα

2
SEθ̂

θ̂ + zα
2
SEθ̂ > θ0 > θ̂ − zα

2
SEθ̂

θ̂ − zα
2
SEθ̂ < θ0 < θ̂ + zα

2
SEθ̂

• As long as θ0 lies within bounds (θ̂ − zα
2
SEθ̂, θ̂ + zα

2
SEθ̂), we fail to reject

• These are confidence interval boundaries! A confidence interval can suffice
for a 2-tailed test. If interval doesn’t include θ0, then we can reject H0

Can show similar relationship for one-sided CIs and one-tailed hypothesis tests.



Ex: Compare CIs and hypothesis tests

We have a random sample of checking account balances at
each of two banks, and we’re interested in testing whether
the mean checking account balances are different at the two
banks. Use α = 0.10.

Bank 1 n1 = 12 x̄1 = 1000 s1 = 150

Bank 2 n2 = 10 x̄2 = 920 s2 = 120



More about type II error

• We’ve discussed the probability of type I error, α, associated with hypothesis
tests, but we may also be interested in the probability of type II error, β

• This is the probability of failing to reject H0, when HA is really correct

• Type II error is the probability that test statistic does not fall in rejection
region, given that the parameter has a value categorized by HA

• In order to calculate this value, we need to calculate the test statistic given a
specific value of the parameter under HA

• Power of the test = 1-β



Example: Probability of type II error

Experience has shown that 30% of people with a certain
illness recover. Ten people are selected at random and given
an experimental medicine; nine recover shortly thereafter.

Calculate β, the probability of type II error, with rejection
region of Y ≥ 8 and HA: p = 0.6.



Example: Probability of type II error

A bottling factory fills thousands of 20oz bottles daily with
soda, but not all the bottles are filled to the same level. A
random sample of n = 9 bottles was taken from the factory
line to try to determine whether the mean filling level is
20oz or not. If we test these hypotheses with α = 0.05, find
the probability of type II error if HA = 19.8. Assume that
the distribution of amounts of soda is approximately normal
and that σ = 0.25 (known from previous experience).



Figure illustrating regions in bottling example
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Example: Probability of type II error

A manufacturer claims that at least 20% of the public
prefers her product. A sample of 500 people is taken to
check her claim. If we test her claim with α = 0.05, what is
β if the percentage of the public prefering her product is
really 22%?


