Statistical analysis and predictive using DNA microarray data discrimination

Genomic features, patterns

Physiological characteristics, clinical outcomes

Mike West

www.isds.duke.edu

Institute of Statistics & Decision Sciences

Duke University

Collaborators

Joseph Nevins Genetics

Holly Dressman Genetics

Jeff Marks Surgery & Cancer Center

Carrie Blanchette Surgery & Cancer Center

Rainer Spang ISDS & Genetics

Mike West ISDS

Harry Zuzan

ISDS & Genetics

Center for Bioinformatics & Computational Biology Center for Genome Technology

(Breast cancer) discrimination

Two group problems: Binary outcomes

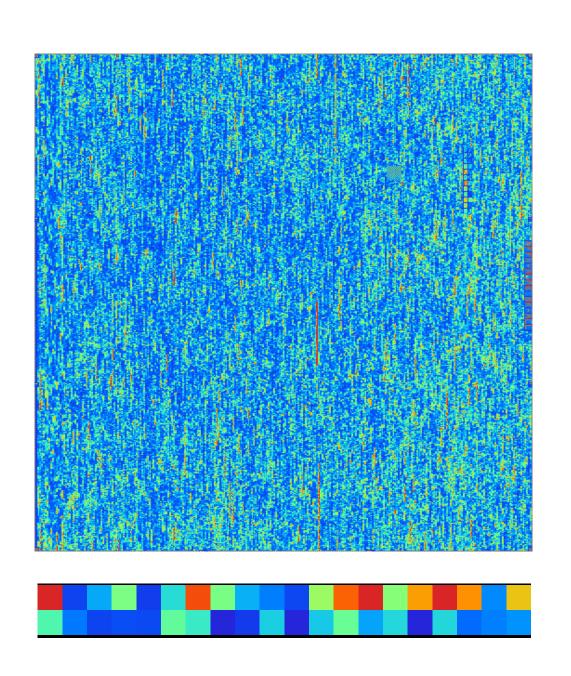
- e.g., ER+ versus ER-
- e.g., lymph node + versus lymph node -
- DNA microarray data: expression levels of ≈ 7000 genes (sequences) in RNA from tumour, tumour location, time point, ...
- 23 ER+, 20 ER-
- Discriminatory patterns of expression?
- Predictive validity? Predictive classification of tumours 50, 51, ...?
- Which genes are implicated? Surprises?
- Which tumours depart from general patterns? How?
- ... etc

Expression array data

Microarray data: Affymetrix arrays

- $\approx 7000 \text{ genes (sequences)}$
- Data issues:
- imaging, probe cell specific expression
- data summaries in commercial software
- :
- Estimates of expression level by gene: Absolute difference
- Here: $\log_2(\max(1, AbsDiff))$

One array, one probe set



Projecting large-scale expression data

- Binary regression: many predictor variables
- Possibly many interacting genes relate to status
- Singular factor projection of expression data
- reduces dimension with no loss of information
- summarises "important structure" in expression data
- Principal components decomposition
- Variances and correlations in expression fully "explained" by small number of factors
- Expression of (many) genes "driven" by (few) factors

Summary expression data

Notation:

- $x_{i,j}$ is expression level of gene i on microarray j
- p genes, n arrays: n << p

$$\begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ x_{p,1} & x_{p,2} & \cdots & x_{p,n} \end{pmatrix}$$

 $[\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n]$

Singular value (factor) decomposition

$$X = ADF$$

Factor loadings matrix $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_n]$

• patterns/relationships among genes

Latent factors are rows of F

patterns/relationships among arrays: $n \ll p$ factors

Supergenes—Factors: linear combinations of expression

Factors "drive" expression levels: gene i on array j:

$$x_{i,j} = a_{i,1}f_{1,j} + a_{i,2}f_{2,j} + \ldots + a_{i,n}f_{n,j}$$

Binary regression modelling

- Microarray j, expression profile \mathbf{x}_j
- Binary classification: 1 (ER+) or 0 (ER-)
- Probability array j is ER+ is $\pi(\mathbf{x}_j)$
- Standard probit model: $\pi(\mathbf{x}_j) = \Phi(\beta_0 + \mathbf{x}'_j \boldsymbol{\beta})$
- Linear regression on gene expression, mapped to probability scale

$$-\mathbf{x}_{j}'\boldsymbol{\beta} = \sum_{i=1}^{p} \beta_{i} x_{i,j}$$

- $-\beta_i$ is regression coefficient on gene i
- Statistical analysis: estimate coefficients, uncertainty

Supergenes in binary regression modelling

Regression on (many) genes reduces to regression on (few) supergenes

$$\mathrm{X}'eta=\mathrm{F}'oldsymbol{ heta}$$

$$\theta = \mathrm{DA}'eta$$

- n parameters, sample size n
- Ignore "stable" factors
- Use of stochastic regularisation: priors on θ
- elements θ_j independent (orthogonality)
- proper, "diffuse" priors: $\theta_j \sim T_k(0,1)$
- neutral: implied priors for classification probability $\pi(\mathbf{x}_j)$
- Efficient analysis to estimate θ
- Markov chain Monte Carlo model fitting

Theoretical context and issues

- θ depends on design data X
- New arrays: new parameter, new priors
- Out-of-sample prediction: New tumours
- SVD analysis of all arrays
- Underlying latent factor model genesis
- SVD regression as a limiting case
- Consistent priors for θ and underlying gene coefficients β as new data arises
- Generalised "g-prior"

Underlying latent factor models

Latent factor model for gene expression: tumour i

$$\mathbf{x}_i = \mathbf{B} \boldsymbol{\lambda}_i + \boldsymbol{\epsilon}_i$$

- $\lambda_i \sim N(\mathbf{0}, \mathbf{I}) \text{ and } \epsilon_i \sim N(\mathbf{0}, \mathbf{\Psi})$
- patterns explained by (a few) latent factors: $k = \dim(\lambda_i)$
- residual/idiosyncratic terms ϵ_i

Outcomes:

$$y_i \sim N(\lambda_i' \theta, 1)$$

- outcomes regress on latent factors in \mathbf{x}_i indirect regression on \mathbf{x}_i
- different outcomes relate to different latent factors

Underlying latent factor models: SVD regression case

- Latent factor model defines $p(y_i, \mathbf{x}_i, \boldsymbol{\lambda}_i)$
- Implied $p(y_i|\mathbf{x}_i)$: regression of y_i on \mathbf{x}_i
- Linear regression coefficient $\beta = H\theta$
- \mathbf{H} depends on $\mathbf{B}, \mathbf{\Psi}$

Some implications:

- Prior on $\boldsymbol{\theta}$ implies generalised g-prior on $\boldsymbol{\beta}$
- Limiting case: $\Psi \to 0$ leads to SVD regression

Regression on genes via supergenes

- Efficient analysis of regression on $n \ll p$ supergenes
- Compute posterior (samples) $\beta = AD^{-1}\theta$ Posterior (samples) for supergene vector $\boldsymbol{\theta}$
- Bayesian/model justification of generalised inverse to $\theta = \mathbf{D}\mathbf{A}'\boldsymbol{\beta}$

Honest prediction and model assessment

Critical predictive assessment of discriminatory performance

- Predictions of new cases: validation sample
- "One-at-a-time" cross-validation of training data:
- Take out microarray j
- Fit model: Predict status of tumour j
- Repeat for all arrays j

Gene screening

- Heterogeneity in data: "noise" from many "irrelevant" genes?
- Screen to smaller subsets e.g., raw correlations with ER+/- status
- Select "top k" and fit model on k genes
- Oestrogen receptor status example: k = 100
- Multiple genes refine classification: minor effects
- Collective effects in addition to primary gene

Gene screening in one-at-a-time cross-validation:

Different overlapping subsets of 100 for each hold-out case

Breast cancer data: ER status study

- Two batches: 43 (training sample) and 6 (validation sample)
- Two arrays (#7,8) removed: hybridisation problems, scratches, ...

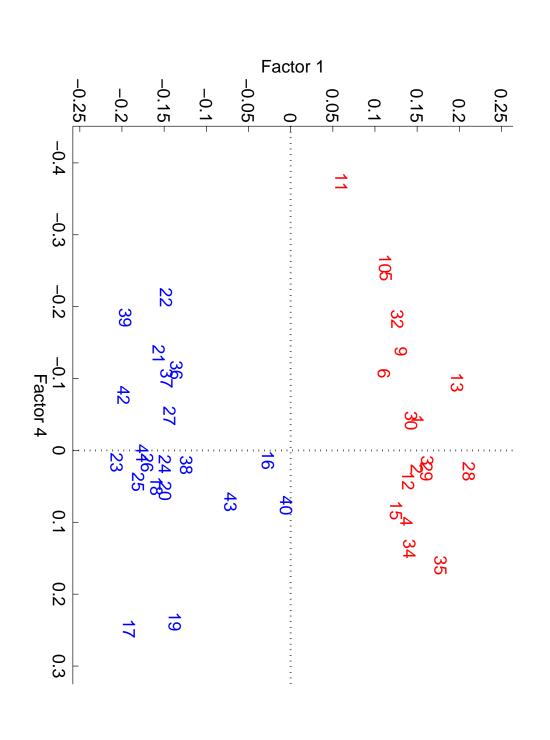
ER status by immunohistochemical methods (summer 2000)

- Initial analysis questions ER+/- for some cases
- Checked by protein blot test (11/2000)
- Most confirmed: 3 cases (#14,31,33) differ
- Treat these 3 cases as of unknown status: add to validation set

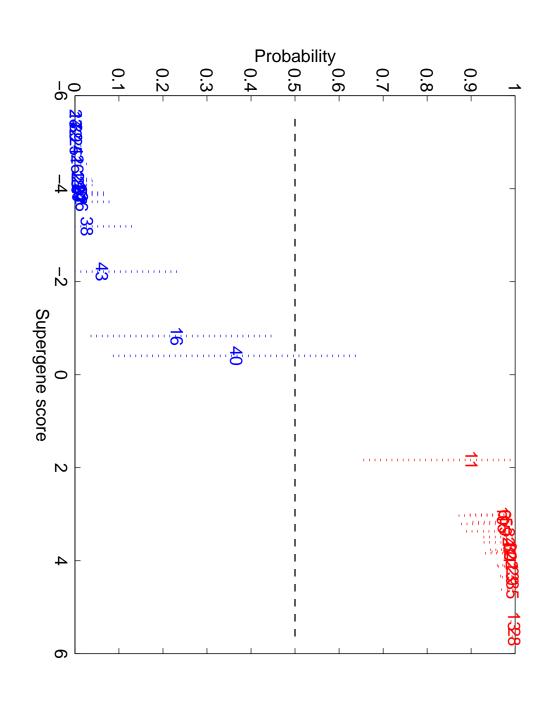
38 training cases (18 ER+ and 20 ER-)

9 validation cases

ER: Two factors underlying 100 "top genes"



ER: Fitted classification



ER: Cross-validatory predictions



ER: Some "top" genes

• ps2 protein gene (tff-1)

ER regulated

mrna for oestrogen receptor

receptor

• cytochrome p450 iib mrna

growth factor

• intestinal trefoil factor mrna (tff-3)

ER co-expressed

• IGFBP-1

ER regulated

hepsin (hepatoma serine protease)

High in ER+ cells

Gata-3 tfmaspin

ER related

cystic fibrosis antigen

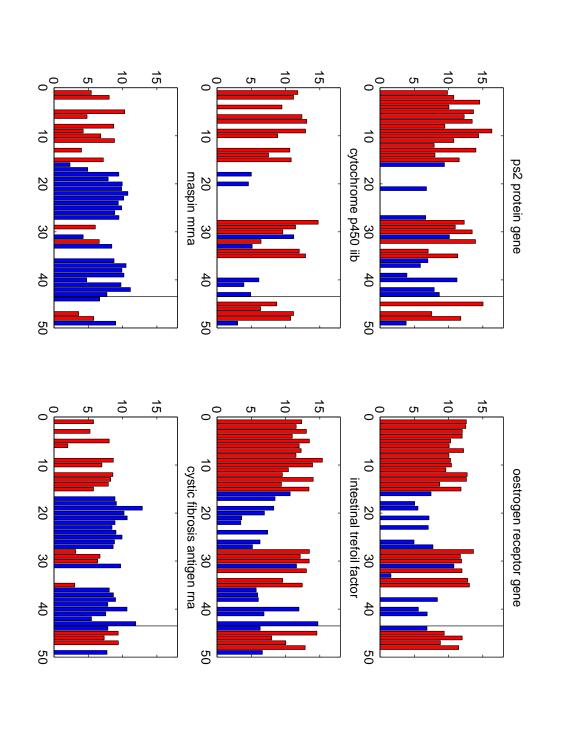
ER related; BC marker

• p37nb mrna

• :

breast cancer, oestrogen regulated liv-1 protein mrna oestrogen induced

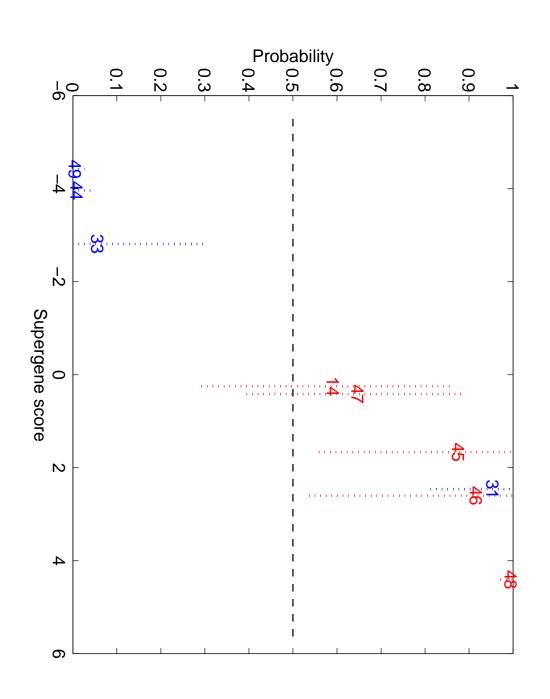
ER: Expression levels of some top genes



Tumours 16,40,43

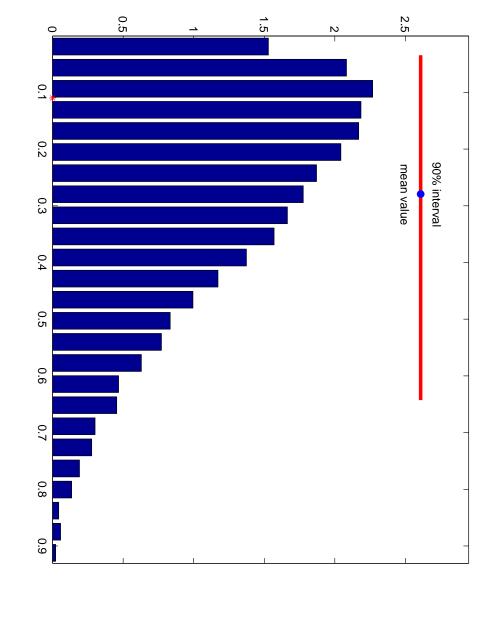
- Similar patterns: ER+ or ER-?
- High uncertainty about Pr(ER+)
- Oestrogen gene marginally down; other "up for ER+" genes up
- Mixed/conflicting story
- High classification uncertainty results
- Other regulators of Ps2, Liv-1 ...?
- ER status determination ...?
- Changing from to +?

ER: Predictions for validation sample



Classification and uncertainty

Classification probability for tumour 16



Choice of "point estimates" - Mean values "conservative"

Breast cancer nodal status

- Breast cancers classified by axilliary lymph nodal status
- Tumours metastasized to lymph nodes
- Most important risk factor in disease outcomes, therapy decisions

Data & Issues: Reported number of positive nodes

- 0-20+, out of totals 2-37
- crude categorization: reported Node+ versus Node-
- censored totals, "missed" positive nodes?
- tumours poised to metastasize to lymph nodes?

Breast cancer nodal status

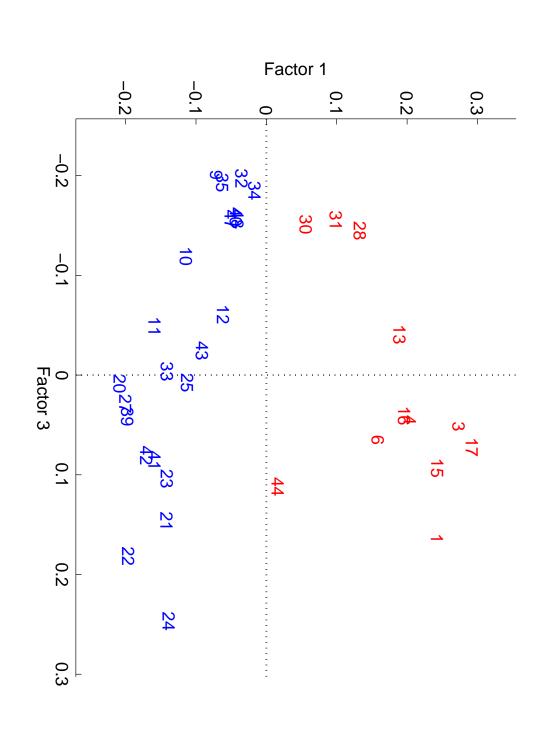
Clinicians define outcomes:

- 0: no positive nodes reported
- 1: at least 3 positive nodes reported
- to predict as validation cases: 1 or 2 positives reported

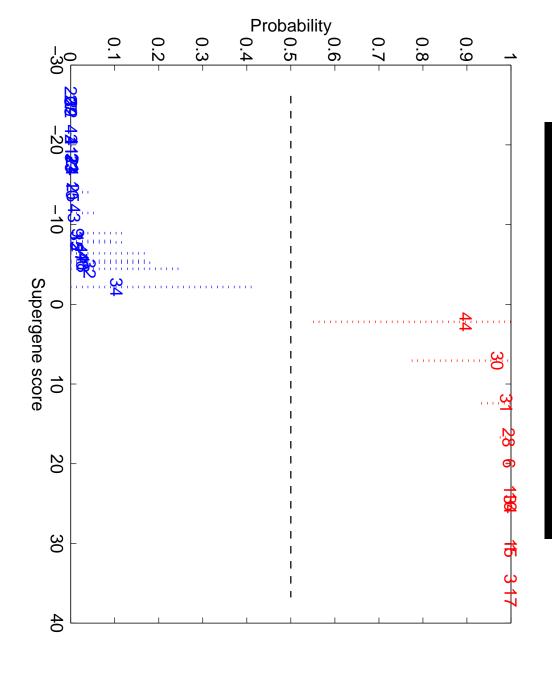
34 training cases (12 + and 22 -)

13 validation cases

Nodes: Two factors underlying 100 "top genes"

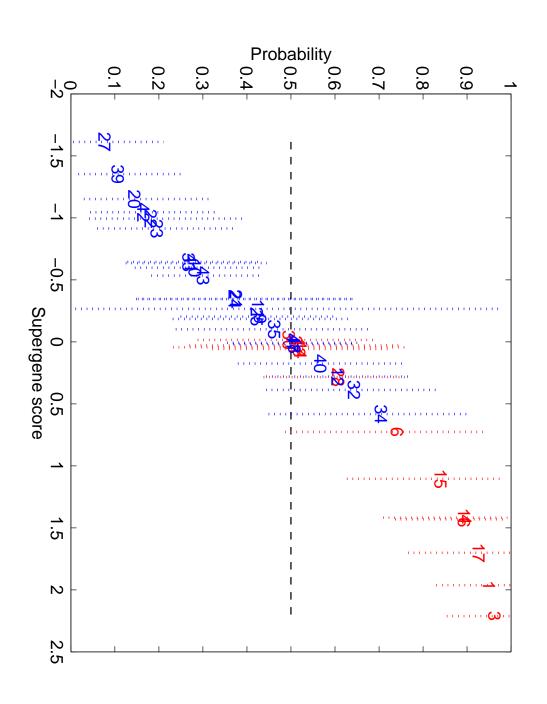


Nodes: Fitted classification

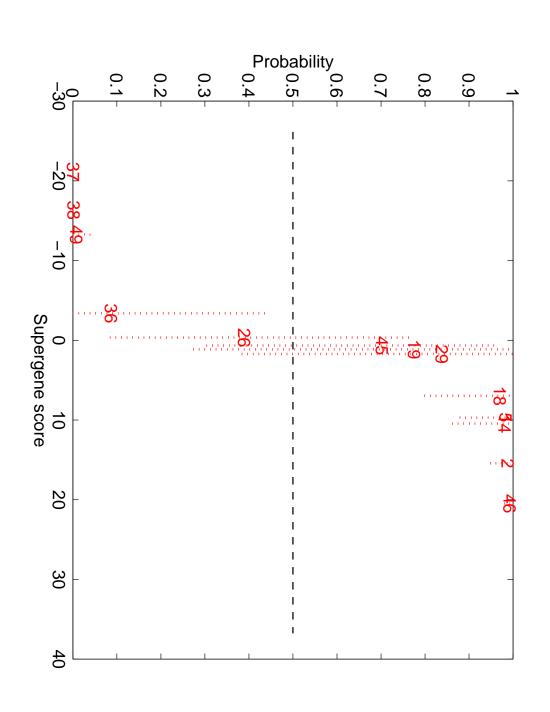


Case 44: 0/17 BUT positive intramammary lymph nodes

Nodes: Cross-validatory predictions



Nodes: Predictions for validation sample



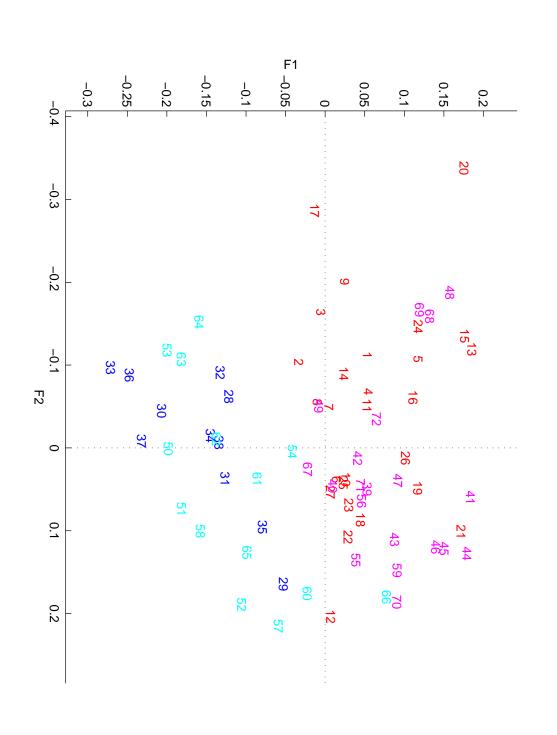
MIT ALL/AML leukemia study

Whitehead Institute, Lander group

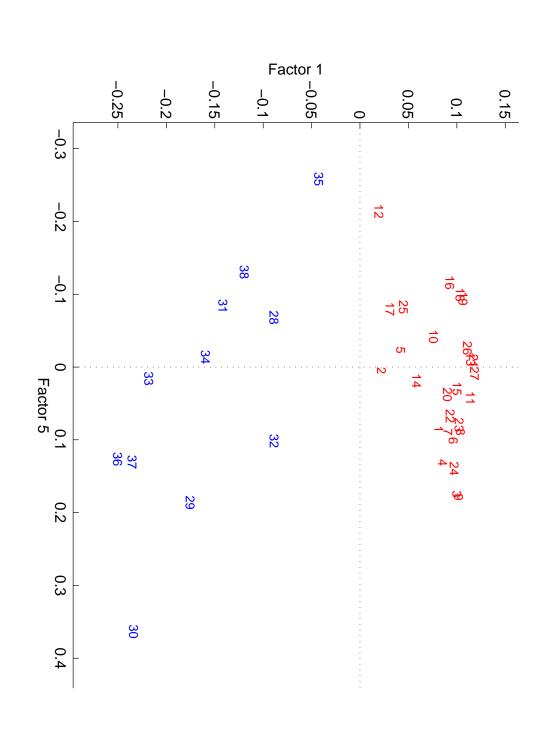
Golub et al Science, 1999

- 2 leukemias: ALL (1) and AML (0)
- "easily" identified on non-genetic bases
- 38 samples (27/11) on training arrays
- 34 samples (20/14) on validation arrays
- MIT (Whitehead) study:
- data-based screen to 3,571 genes
- some difficulty in predictive classification of 5 validation cases

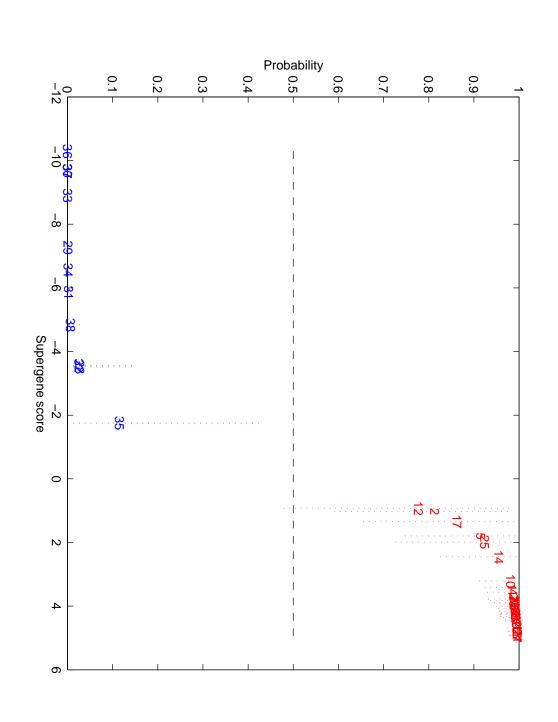
Leukemias: 2 factors in all genes



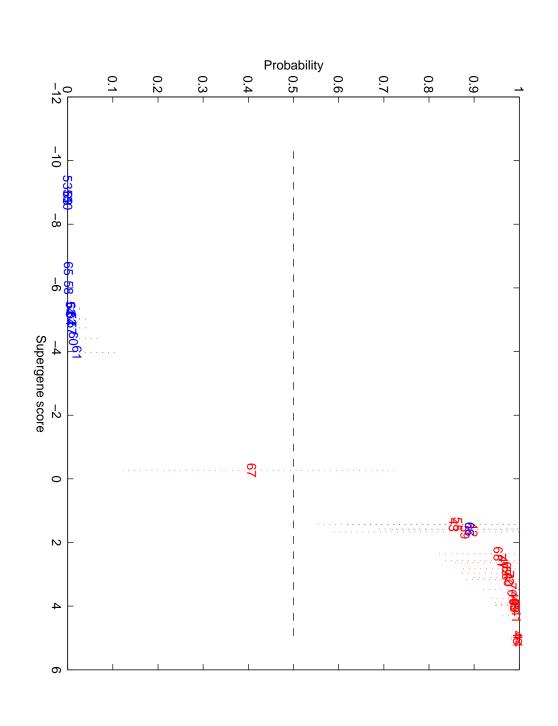
Leukemia: Two factors underlying 50 "top genes"



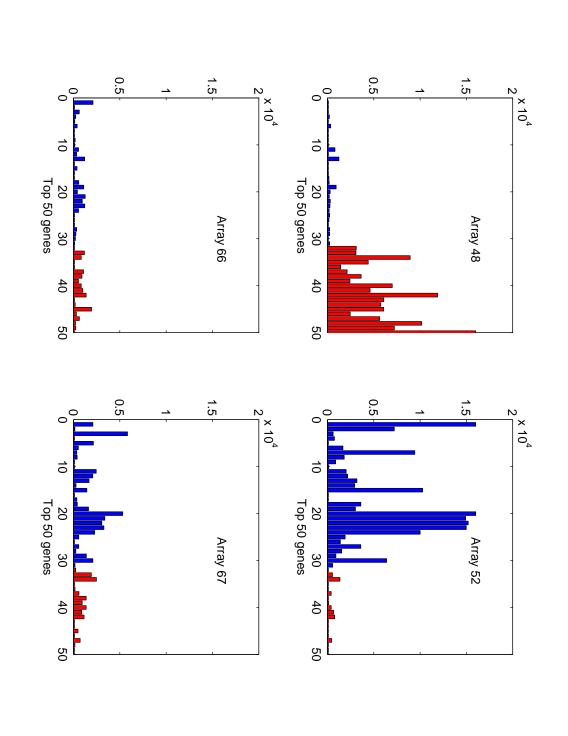
Leukemia: Fitted classifications on top 50 genes



Leukemia: Predictions for validation sample



Leukemia: Top 50 genes on four arrays



Data issues with Affymetrix arrays

- Hybridisation problems: RNA quality
- Fluorescent image scanning (registration, resolution)
- Global normalisation of expression, array to array
- global scaling
- non-linearities induced by varying hybridisation quality
- Local issues: scratches, patches, ...

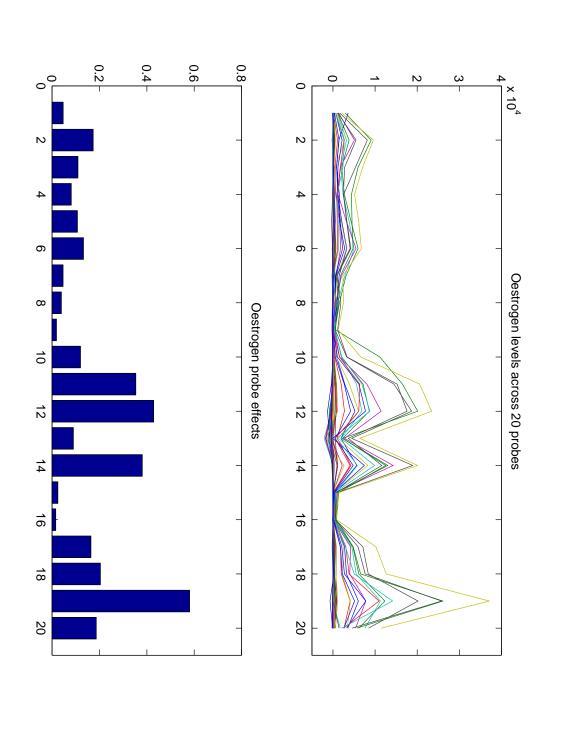
All distort expression summaries

- Pixel-level image model for background
- Bayesian image analysis: (non-negative) expression level parameters

More data issues

- 20 probe sequences per gene
- "averaging" of pixel values within probe cells
- "averaging" of probe cell averages
- empirically based: global reliability?
- Marked variability across 20 probes for some genes
- 25mer specific hybridisation intensity
- Alternatives:
- Model 25mer-specific hybridisation intensities (Li & Wong 2000)
- Use all data: 20 measures per gene

Probe effects



Data quality and imaging issues

Image registration difficulties

- Scanning "grid" alignment problems
- Resulting probe cell summaries distorted
- Bayesian image registration methods to realign

Image background modelling

- Markov random fields at pixel level
- Aim to improve estimates of sequence-specific expression

Image registration issues

c.o.v. of probe cell expression levels – original

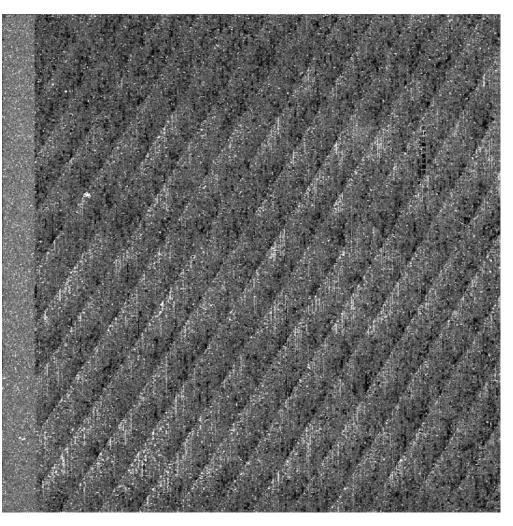
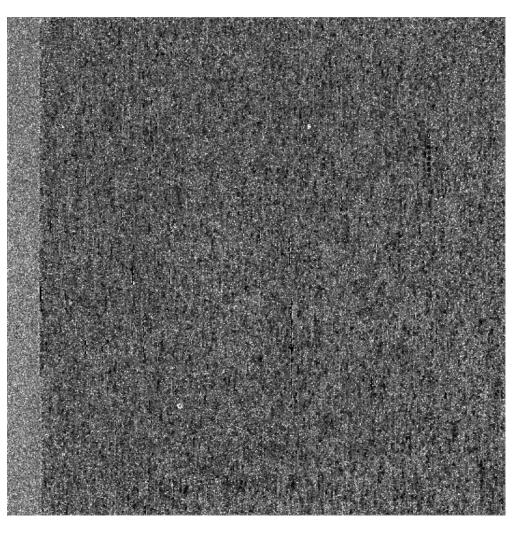


Image registration issues

c.o.v. of probe cell expression levels – aligned



Futures

Applications/extensions

- Other outcomes: e.g., genomic predictor of treatment outcome cancer states, remission/survival times, ...
- Exploration of relationships among genes
- Combining expression profiles with other clinical data

Statistical models

- Tumour heterogeneity issues
- Modelling progression of nodal status
- Refined factor models to "de-noise" singular factor method
- Accounting for measurement errors in expression summaries
- Non-linear regressions