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(Breast cancer) discrimination

Two group problems: Binary outcomes

e.g., ER+ versus ER—
e.g., lymph node + versus lymph node —

DNA microarray data: expression levels of & 7000 genes (sequences)

in RNA from tumour, tumour location, time point, ...
23 ER+, 20 ER—
Discriminatory patterns of expression?
Predictive validity? Predictive classification of tumours 50, 51, ...7
Which genes are implicated? Surprises?
Which tumours depart from general patterns? How?

... etc




Expression array data

Microarray data: Affymetrix arrays
e ~ 7000 genes (sequences)

e Data issues:
— imaging, probe cell specific expression

— data summaries in commercial software

e Eistimates of expression level by gene: Absolute difference

e Here: log,(max(1, AbsDiff))




One array, one probe set




Projecting large-scale expression data

Binary regression: many predictor variables
Possibly many interacting genes relate to status

Singular factor projection of expression data
— reduces dimension with no loss of information

— summarises “important structure” in expression data
Principal components decomposition

Variances and correlations in expression fully “explained” by small

number of factors

Expression of (many) genes “driven” by (few) factors




Summary expression data

Notation:
e 1, ; is expression level of gene ¢ on microarray j

® p genes, n arrays: n << p
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Singular value (factor) decomposition

X = ADF

Factor loadings matrix A = [a;,...,a,]

e patterns/relationships among genes

Latent factors are rows of F

e patterns/relationships among arrays: n << p factors

Supergenes=Factors: linear combinations of expression

Factors “drive” expression levels: gene 7 on array j :

Tij = @inJ1g+ Gigfog + - A Ginfoy

.




Binary regression modelling

Microarray j, expression profile x;

Binary classification: 1 (ER+) or 0 (ER—)

Probability array j is ER+ is 7(x;,)

Standard probit model: 7(x;) = ®(5, + x.3)

Linear regression on gene expression, mapped to probability scale

- Nmm = Yim1 Bimi

— (3; is regression coefficient on gene ¢

Statistical analysis: estimate coeflicients, uncertainty




Supergenes in binary regression modelling

Regression on (many) genes reduces to regression on (few) supergenes

X' =F'0 0 — DA'S

e n parameters, sample size n
e Ignore “stable” factors

e Use of stochastic regularisation: priors on 6
— elements 6, independent (orthogonality)
— proper, “diffuse” priors: 6; ~ T}(0,1)

— neutral: implied priors for classification probability 7(x;)
e Efficient analysis to estimate 6

e Markov chain Monte Carlo model fitting




Theoretical context and issues

0 depends on design data X
New arrays: new parameter, new priors
Out-of-sample prediction: New tumours

SVD analysis of all arrays

Underlying latent factor model genesis
SVD regression as a limiting case

Consistent priors for @ and underlying gene coefficients 3 as new
data arises

44

Generalised “g-prior”




Underlying latent factor models

Latent factor model for gene expression: tumour

X; — H_WVJ mes.

e A\, ~N(0,I)and e, ~ N(0,W)
e patterns explained by (a few) latent factors: k =dim(X\;)

e residual/idiosyncratic terms g;

Outcomes:
Yi ~ ZAVAQQ C

e outcomes regress on latent factors in x; — indirect regression on Xx;

e different outcomes relate to different latent factors

.
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Underlying latent factor models: SVD regression case

e Latent factor model defines p(v;, x;, \;)
e Implied p(y;|x;): regression of y; on x;
e Linear regression coefficient 3 = HO

e H depends on B, ¥

Some implications:

e Prior on @ implies generalised g—prior on (3

e Limiting case: ¥ — 0 leads to SVD regression




Regression on genes via supergenes

Efficient analysis of regression on n << p supergenes
Posterior (samples) for supergene vector 6
Compute posterior (samples) 3 = AD'0

Bayesian /model justification of generalised inverse to 8 = DA’




Honest prediction and model assessment

Critical predictive assessment of discriminatory performance

e Predictions of new cases: validation sample

e “Omne-at-a-time” cross-validation of training data:
— Take out microarray j
— Fit model: Predict status of tumour j

— Repeat for all arrays j




Gene screening

e Heterogeneity in data: “noise” from many “irrelevant” genes?
e Screen to smaller subsets - e.g., raw correlations with ER+/— status
e Select “top k7 and fit model on £k genes

e Oestrogen receptor status example: £ = 100
— Multiple genes refine classification: minor effects

— Collective effects in addition to primary gene

Gene screening in one-at-a-time cross-validation:

Different overlapping subsets of 100 for each hold-out case

.




Breast cancer data: ER status study

e Two batches: 43 (training sample) and 6 (validation sample)

e Two arrays (#7,8) removed: hybridisation problems, scratches, .

ER status by immunohistochemical methods (summer 2000)
e Initial analysis questions ER+/— for some cases
e Checked by protein blot test (11/2000)
e Most confirmed: 3 cases (#14,31,33) differ

e Treat these 3 cases as of unknown status: add to validation set

38 training cases (18 ER+ and 20 ER—) 9 validation cases

o J




ER: Two factors underlying 100 “top genes”
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ER: Some “top” genes

ps2 protein gene (tff-1) ER regulated
mrna for oestrogen receptor receptor
cytochrome p450 iib mrna growth factor
intestinal trefoil factor mrna (tff-3) ER co-expressed
IGFBP-1 ER regulated

hepsin (hepatoma serine protease)

Gata-3 tf High in ER+ cells
maspin ER related
cystic fibrosis antigen ER related; BC marker
p37nb mrna

breast cancer, oestrogen regulated liv-1 protein mrna oestrogen induced

J




ER: Expression levels of some top genes

ps2 protein gene
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Tumours 16,40,43

Similar patterns: ER+ or ER—7

High uncertainty about Pr(ER+)

Oestrogen gene marginally down; other “up for ER+” genes up
Mixed /conflicting story

High classification uncertainty results
— Other regulators of Ps2, Liv-1 ... 7
— ER status determination ... ?

— Changing from — to +7




0.9

0.8

Probability
© o o o o
w EaN (&) (o)) ~

o
N

0.1

Supergene score




Classification and uncertainty

Classification probability for tumour 16

90% interval
o
25F mean value h

0.8 0.9

Choice of “point estimates” - Mean values “conservative”

J




Breast cancer nodal status

e Breast cancers classified by axilliary lymph nodal status
e Tumours metastasized to lymph nodes

e Most important risk factor in disease outcomes, therapy decisions

Data & Issues: Reported number of positive nodes
e 0 — 20+, out of totals 2 — 37
e crude categorization: reported Node+ versus Node—
e censored totals, “missed” positive nodes?

e tumours poised to metastasize to lymph nodes?

.
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Breast cancer nodal status

Clinicians define outcomes:

no positive nodes reported

at least 3 positive nodes reported

e to predict as validation cases: 1 or 2 positives reported

34 training cases (12 + and 22 —) 13 validation cases

J




Nodes: Two factors underlying 100 “top genes™
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Nodes: Fitted classification
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Nodes: Predictions for validation sample
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MIT ALL/AML leukemia study

Whitehead Institute, Lander group
Golub et al Science, 1999

2 leukemias: ALL (1) and AML (0)
“easily” identified on non-genetic bases
38 samples (27/11) on training arrays

34 samples (20/14) on validation arrays
MIT (Whitehead) study:

— data-based screen to 3,571 genes

— some difficulty in predictive classification of 5 validation cases

J




Leukemias: 2 factors in all genes
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L eukemia: Fitted classifications on top 50 genes
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Leukemia: Predictions for validation sample
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Leukemia: Top 50 genes on four arrays
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Data issues with Affymetrix arrays

Hybridisation problems: RNA quality
Fluorescent image scanning (registration, resolution)

Global normalisation of expression, array to array
— global scaling

— non-linearities induced by varying hybridisation quality

Local issues: scratches, patches, .

All distort expression summaries

Pixel-level image model for background

Bayesian image analysis: (non-negative) expression level parameters

J




More data issues

20 probe sequences per gene
— “averaging” of pixel values within probe cells
— “averaging” of probe cell averages

— empirically based: global reliability?
Marked variability across 20 probes for some genes

2bmer specific hybridisation intensity

Alternatives:
— Model 25mer-specific hybridisation intensities (Li & Wong 2000)

— Use all data: 20 measures per gene
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Data quality and imaging Issues

Image registration difficulties

e Scanning “grid” alignment problems

e Resulting probe cell summaries distorted

e Bayesian image registration methods to realign
Image background modelling

e Markov random fields at pixel level

e Aim to improve estimates of sequence-specific expression

.




C.O

Image registration issues

.v. of probe cell expression levels — original




Image registration Issues

c.o0.v. of probe cell expression levels — aligned
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Applications/extensions

Other outcomes: e.g., genomic predictor of treatment outcome

cancer states, remission/survival times, .
Exploration of relationships among genes

Combining expression profiles with other clinical data

Statistical models
Tumour heterogeneity issues
Modelling progression of nodal status
Refined factor models - to “de-noise” singular factor method
Accounting for measurement errors in expression sumimaries

Non-linear regressions




