1. The dividend yields for all companies whose shares were traded on the New York Stock Exchange
in 1990 obeyed a normal distribution with standard deviation 2.6%. A random sample of 16 of
these companies was taken in order to estimate the population mean dividend yield.

(a) (6 pts) What is the probability that the sample mean was below the population mean by more
than 1.1%?
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(b) (3 pts) Suppose that a second (independent) random sample of 40 companies was taken.
Without calculation, state whether the probability in (a) would be higher, lower, or the same
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(c) (6 pts) Suppose you did not know the population standard deviation, instead you knew only
the standard deviation of the dividend yield for the 16 randomly selected companies as 2.6%.
Find the probability that the sample mean was below the population mean by more than

1.1%.
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2. Let X and Y be two random variables with V/(X) =5,V (Y) = 20, Cov(X,Y) = —6.

(a) (6 pts) Find V(X +Y).
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(b) (6 pts) Find V(X — 2Y).
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(¢) (6 pts) Find Cov(X —2Y, X +Y).
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(d) (3 pts) Find the correlation coefficient between X — 2Y and X + Y.
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(e) (3 pts) Find the correlation coefficient between 2X — 4Y — 4 and 4X + 4Y + 10.
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3. The joint probability density function of two random variables X and Y is given by
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(b) (3 pts) Evaluate the joint cumulative distribution function of X and Y at (.5, 1).
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(d) (12 pts) Find the conditional probability that X < .5 given that Y = 2.
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4. Let X, X5, X3, X4 be a random sample from a large population with mean i and variance o2.
‘Two estimators i1 and jiy for the parameter u are defined as
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(b) (9 pts) Which one of /i; and i is a better estimator with respect to the variance criterion?
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5. Seventy-five percent of a school’s law class passes the state bar examination on the first attempt.

(a) (7 pts) If a randomly selected group of 250 of this school’s law graduates take the state bar
examination, what is the probability that 80% or more of them will pass the examination on
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(b) (7 pts) If a randomly selected group of 120 of this school’s law graduates take the state bar
examination, what is the probability that exactly 100 of them will pass the examination on
the first attempt?
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