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CHAPTER 5 MULTIVARIATE PROBABILITY
DISTRIBUTIONS

Denote a sample space in terms of the firm that received the first and second
contracts;

s (yl’ y2)
AA 2,0)
AB (1, 1)
AC (1,0)
BA (1.1)
BB 0. 2)
BC 0, 1)
CA (1,0)
CB (01)
cc (0, 0)

Each sample point is equally likely with probablllty Setting up a table for the joint function for
Y and Yy,

n
0 1 2
2 1
S A
L5 5 0
2 5 0 0

b. F(1,0)=P(Y; < 1,Y,<0)=p(0,0)+p(1,0) = 1 + 2 =

The sample space for the toss of three balanced coins, the values for Y1 and Y, at each
outcome, and the probability of each outcome are given below:

OUTCOMES  (y1, 12) PROBABILITY
HHH 3,1) 5
HHT (3, 1) 3
HTH 2, 1) 3
HTT (1, 1) :
THH (2,2) 3
THT (1,2) L
TTH (1,3) 3
TTT (0, —1) i

Y1

0 1 2 3
-1 1 0 0 0
CHEEE N A
2 0 i i 0
30 : 0 0

b. F(2,1)=P(Y¥1<2,Y2<1)=p(0, -1)+p(1, 1)+ p(2, D=i+3+2=

In this exercise Y} and Y; are both discrete random variables, and the joint distribution
for Y7 and Y5 is given by

P(Y1 =y1, Y2, y2) = p(y1, ¥2)
We must calculate p(yy, y2) fory1 =0,1,2,3 andy, = 0, 1, 2, 3. The total number of
ways of choosing 3 persons for the committee is ( ) = 84. Now,
P(Y1 =0,Y; = 0) = P(3 divorced) = 0
since there are only 2 divorced executives available. However,

P(Y; = 1, Y, = 0) = P(1 married, 0 never married, 2 divorced) = MGG ;—4
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Similar calculations, using an extension of the hypergeometric probability distribution
discussed in Chapter 3, will allow one to obtain all 16 probabilities, and the joint
probability distribution of ¥; and Y2 may be written in the form of a table.

p(2,0)= W@ _ 2 p0,2=WHPN ¢
p(ﬁl,l): (3(8]4)( :%% o
p(3,0)=Yl = & p(1,2) =W _ 1
p(2,1) = (0 G) _ s

p(0,3) = (’) =& p(0, 1) = (*)(8’4) (2 E

P 1) = p(2.2) = p3,2) = 503,3) = (1,3) = 5(2,3) =0
Notethat 5. 3 p(y1, y2) = 1.

n=0 =0
Y2

0 1 2 3

3 6 1
o % 8 ® 4
S I
2 2 B9 0

3 & 0 0 0

54 a. Notice that all of the probabilities are at least 0 and sum to 1

b. Note F(1,2) = P(Y; < 1,Y; <2) = 1. The interpretation of this value is that every child
in the experiment either survived or didn't and used either 0, 1 or 2 seatbelts.

56 a. We'must have

] 1
=[ [ Kyippdypn dyy = 1.
[ ]

Then
[ 1 a1 1 K ] & T2 1 K
ofofK!hyzdyxdy2=an()'2)['y§L}o =—2-0fy2dy2=7[%2]0=7—1
so that K = 4. ) : )
] n 21h
b. Fly,y)=[ [ dtitadtidty= | [4-25']0 dty = [ 2ylty dty = yivj
0 i} [H] 0
for0 < y; < 1and 0 < g < 1. Recall that (
F 0, fory; <Oory; <0
%) =\ 1, fory, > landy; > 1.
2 1372
¢ PMis<hn<)=FGH-G' =2

5.14.. PMi<gpY>g)= fllf/z (y1+yz)dy1dyz=/f|(§+%)dyz=%_
i/4 0 1/4

- L e - -

5.17a y

p(y1)
b. No. Evaluating f(y) =

probabilities as those giv

5184 4 i

p(y2) %

b. P(H—Bli’z—l)—ﬂ%—z_%z

1

T PN . - %

1
4
9
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5 20 a. The marginal distributions for Y; and Y> are given in the margins of the table.
That is, the marginal distribution for ¥; is P(Y; = 0) = .76 and P(Y1=1) =.24
and the marginal distribution for Yz is given by P(Y,=0)= .55, P(Ya=1) = .16
and P(Y; = 2) = .29.
b P(Ya=0lYi=0) = Pnl) = & = 5, PYa=1Y; =0) =4 =18
P(Ys =2Y; = 0) = & = .32
c. The desired probability P(Y; = 0|Y; = 2) = ¢ = .69.

522 a. By definition, ‘
) ! 1
o = T ) dve = [ dnvdua = ) ($)] =20 fro<m<l
—o0 0
and

\ 2 1

falyz) = [ dy19e dyr = (492) (7})] 0 2y2 for0 <y <1
{]

(
b. By the definition of conditional probability,

P(Ylﬁélifz>%):11?%‘%%>§).

Now
, 12 12 - 2 a2
PYi<5Ya> N=J [ 4nydy dy = [ 291 (4330 401 = L,
0 34 0
1
&
and
1 1
1
P(V;>3)= [ fly)dpn= /f 2 dy2 = ¥las = 16-
3/4 1/a
Hence

a
P> ==1
Notice this the same probability as P(¥1 < 3)-

c. By Definition 5.7, if0 <y <1

) _ A 3
flyilye) = ’if(‘y,”)” =k =2y,  0<n< 1.

Notice this is the same as f(y1)-
d. 1fo<ym <1,
_ fnw) o Anm 0y,
fluply) = Bl = S =2y, 02 <L
Notice this is the same as f(32)

3/4 374

e. P(i<iv=4)=/ fk= 3)dyz =] 2 dy = o = %

o

530a )=/ twdp=n+i 0Su<l

1
fz(y2)=f(y1+y2)dy1=y2+% 0<y <1

0

b. Calculate
1

\ 2
P(hzy)=[ (a+d) an= [t ], =

oof\n

l i 1
Pvi>ivaxl)=] [ntw)dnde= [ G+8)dp=3
i2

12 12

Hence

wisie
W

Przim2y) ==
¢. First consider f(yly2) = ﬁf’i(‘i’,—:’)i). If 0 <y <1 wehave
fly) =258 0<wm<l

~Then
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41
P, > T5|Y; = .5) / y; D2 gy,
2 2
1

)it (3)s],
)

(
= ( (_ -~ 28125375 = .324375

AR

5.39 ne. For example, consider P(Y; = 0, Y2 = 0) and p(Y; = 0)p(Y2 = 0)
p(0,0) =5 # (3) (5) = m(0)p2(0).

Thus, Y;and Y; are not independent.
=3)p(Y2=1)

5.40 No. Considering P(Y; = 3, Y2 = 1) and p(Y; =
p(3, ) =1# (3) (§) =mB)pA(l)

Thus, Yland Y, are not mdependent
5 42 Dependent, for example P(Y; =0, V> = 0) # p(y1 =0) p(y 0)

544 Independent as f(yi,y2) can be factored (Theorem 5.5)

5 623 EY))=np= 2( ) % .
b. V(¥)=np(l-p)=2(3) ) =5. |
e. E(vi-Y)=EM)_-E®)=()-0()=0

5 64 Refer to Exercxses 5.6 and 5.22. Recall f1 (yl) = 2y1 for0<y < 1.

a. B, f 2y, dyr = f 23 dyy =
b E(Y2)=[ 2 dyr = Lsothat V(¥y) = 1 -4
4]

)
¢ Since E(Ys)= [ 2y3dy, =3, E(Y1~Y2)=0.
4 .
568 Refer to Exercise 5.14.
o oo ] 1 :
EYD)= [ [ wfny)dndya=[ [ yi(y +y2)dy dye
_ 7 '

l 3 bk |1 ¥
=] ] dn=[wrd] - 4
By symmetry, E(Yz) = & and E(30Y4 +25Y;) = (30 +25) () = 32.08.

E(Y1)E(Yy).
0) (5) + (©)(1) (3)

575Covm,y2 E(VYy) -
E(Y:) =3 ¥ nivep(yi, y2) = (0)(0) (2) + (1)(0) (3) +
+(MM3)+ @) (}) =2
dp

Since ¥; and Y5 are both binomial with n = 2 =
E(Y) = B(Y2) =2(3)

Thus, Cov(¥;, ¥2) = (3) - (3) (3) =~ %
No, as value of Y] increases, value of Y5 tends to decrease



577 From Exercise 5.46; B(Y;) = E(Ys) = % Then
]

| B ‘
EWY) = [ 4vividyidyp = [ o3 dy, = 4
[}
Cov(11, Y2) = § - $=0.
No, this is not surprising since ¥; and Y; are independent.

-,

.80 cov(w, 1) = By + v)(¥i - v, - [E() + E(G)IEMW) - E()]}
= E(MYs) + B(Y?) - B(YiYs) — E(Y}) - [E(V)P — E(Y;)E(Ys)
+ EM)E(Y:) + [E(Y2)]
=0} — 0}
Now
V() = E[U}] - [E(U)P
=E(VP+2MY, +Y) - [(EN)? +2(EV)(EY,) + (EY2)?]
= V(%) + V(Y) +2E(Y;¥%) ~ (EY,)EYy)]
=0} + 0% + 2Cov(Y}, V3)
=0} +a}
since Y] and Y; are uncorrelated. A similar calculation yields V(U;) =o? + o2. Hence

of—g2 030

p= ;(‘71:4"72)(014‘;2) = oi+o3

5 . 86 Let X' = dollar amount Spent per week = 3Y; + 5.

E(X) = E[3Y; + EYs] = 3EM1) +SE(Y;) = 3(40) + 5(65) = 445,
V(X)=V[3Y1 +5%] = IV (Y1) + 25V (V3) since Y} and Y; are independent
=9(4) +25(8) = 236, »

.89 v(vi-v) =L+ L-20)=
(See Exercise 5.64 for V(Y1). Als

S o=

, V(¥a) = V(V}) by symmetry.)

EERN ~e

5 . 93 Several intermediate results will be necessary,
()  From Exercise 5.50, E(Y}) = 1 and B(Y3) = -
[ | 1
() B0 = -+ v s dun dyy = [ [ 1 18]
Q

(LI

(B 4,81 _ 1
=/ (3+%)an=[4+4] =1

0

z
3

(@) V) = [ [ (v +vive) doa dn ~ [EQR)P = [ (33 + i) dn - %

) 0

n a7l ’
=184 Bl 4 _ 11
_L+6] =

and V(Y3) = V(%) = .
(iv)  Cov(V}, Ya) = E(ViY3) ~ EM)E(Yy) =1~ (&) (&) =— i = -0069
Thus
E(30Y1 4+ 25Y;) = 30E(Y;) + 25E(Y2) = 32.08
and
V(3011 +25Y5) = 900 (yg5) + 625 () +2(750) (= 1) = 106.08.
Then o = /V (30Y; + 25Y;) = 10.30. '
Using Tchebysheff's theorem with k = 2, the necessary interval is
# =20 =32.08 +2(10.30) = 32.08 + 20.6, or 11.48 t0 52.68



