Recall that if Y_i is Exponential(θ) then $E(Y_i) = \theta$ and $V(Y_i) = \theta^2$. Hence we can use Theorem 5.12 to obtain

$$\begin{split} E(\hat{\theta}_1) &= E(\hat{\theta}_2) = E(\hat{\theta}_3) = E(\hat{\theta}_5) = \theta \\ V(\hat{\theta}_1) &= \theta^2 \\ V(\hat{\theta}_2) &= \frac{1}{4}(2\theta^2) = \frac{\theta^2}{2} \\ V(\hat{\theta}_3) &= \frac{1}{9}(\theta^2 + 4\theta^2) = \frac{5\theta^2}{9} \\ V(\hat{\theta}_5) &= \frac{1}{9}(3\theta^2) = \frac{\theta^2}{3} \end{split}$$

The distribution of $\hat{\theta}_4$ can be obtained by using the methods of Section 6.6 in the text, with $F(y) = 1 - e^{-y/\theta}$. Then

$$g_1(y) = \frac{3}{\theta} e^{-y/\theta} (e^{-y/\theta})^2 = \frac{3}{\theta} e^{-3y/\theta}$$

which is an exponential distribution with mean $\frac{\theta}{3}$.

$$E(\hat{\theta}_4) = \frac{\theta}{3} \qquad V(\hat{\theta}_4) = \frac{\theta^2}{9}$$

a. The unbiased estimators are $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$, and $\hat{\theta}_5$.

b. Among these four estimators, $\hat{\theta}_5 = \overline{Y}$ has the smallest variance.

- **8.6** a. For the Poisson distribution, $E(Y_i) = \lambda$ and $E(\overline{Y}) = \lambda$. Hence $\hat{\lambda} = \overline{Y}$ is an unbiased estimator for λ .
 - b. In order to find $E(Y^2)$, use the fact that $V(Y) = \lambda$ and $E(Y^2) = V(Y) + [E(Y)]^2$ = $\lambda + \lambda^2$. Then $E(C) = 3E(Y) + E(Y^2) = 4\lambda + \lambda^2$.
 - c. Since $E(\overline{Y}) = \lambda$, $E(\overline{Y})^2 = V(\overline{Y}) + [E(\overline{Y})]^2 = \frac{\lambda}{n} + \lambda^2$, we construct as an estimator $\hat{\theta} = \overline{Y}^2 + \overline{Y} \left(4 \frac{1}{n}\right)$. Considering

$$E(\hat{\theta}) = \frac{\lambda}{2} + \lambda^2 + 4\lambda - \left(\frac{1}{2}\right)\lambda = 4\lambda + \lambda^2.$$

Thus, $\hat{\theta}$ is an unbiased estimator of E(C).

- 8.8 a. For the uniform distribution given here, $E(Y_i) = \theta + \frac{1}{2}$. Hence $E(\overline{Y}) = \theta + \frac{1}{2}$ and the bias is $B = E(\overline{Y}) \theta = \frac{1}{2}$.
 - b. An unbiased estimator of θ can be constructed by using $\hat{\theta} = \overline{Y} \frac{1}{2}$, which has
 - c. If \overline{Y} is used as an estimator, then

$$V(\overline{Y}) = \frac{V(Y)}{n} = \frac{1}{12n}$$
 and $MSE = V(\overline{Y}) + B^2 = \frac{1}{12n} + \frac{1}{4}$.

8.18 The point estimate of μ is $\overline{y} = 7.2\%$, and the bound on the error of estimation is $2\sigma_{\overline{y}}$. With n = 200 and s = 5.6%, we have

$$2\sigma_{\overline{y}} = 2 \frac{\sigma}{\sqrt{n}} \approx 2 \frac{s}{\sqrt{n}} = \frac{2(5.6)}{\sqrt{200}} = .79$$

8.20 The value .54 is a point estimate of p. A two-standard-deviation bound on the error of estimation is

$$2\sqrt{\frac{pq}{n}} = 2\sqrt{\frac{\hat{pq}}{n}} = 2\sqrt{\frac{(.54)(.46)}{1000}} = .03$$

Note that .54 - .03 = .51. Thus we an conclude that a majority of individuals in this age group feel that religion is a very important part of their lives.

8.22 The point estimate for p is $\hat{p} = \frac{2}{3}$. The bound on the error of estimation is

$$2\sqrt{\frac{20}{n}} = 2\sqrt{\frac{\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)}{1752}} = .023$$

8.36 Use the fact that $Z = \frac{Y - \mu}{\sigma} = Y - \mu$ has a standard normal distribution.

The 95% confidence interval for
$$\mu$$
 is $(Y - 1.96, Y + 1.96)$ since $P(-1.96 \le Z \le 1.96) = .95$ $P(-1.96 \le Y - \mu \le 1.96) = .95$ $P(Y - 1.96 \le \mu \le Y + 1.96) = .95$

b. Since

$$P(Z \le -1.645) = .05$$

 $P(Y - \mu \le -1.645) = .05$
 $P(\mu \ge Y + 1.645) = .05$

Hence Y + 1.645 is the 95% upper limit for μ .

- c. Similarly, Y 1.645 is the 95% lower limit for μ .
- **8.42** a. $\hat{p} = \frac{268}{500} = .536$. Therefore, an approximate 98% confidence interval for p is $\hat{p} \pm z_{.01} \sqrt{\frac{\hat{p}\hat{q}}{n}} = .536 \pm 2.33 \sqrt{\frac{(.536)(.464)}{500}} = .536 \pm .052$ or (.484, .588).
 - b. Since the interval does include p = .51, we cannot conclude that there is a difference in the graduation rates before and after Proposition 48.
- 8.44 The parameter to be estimated in this exercise is μ , the average number of days required for treatment of patients. The 95% confidence interval is approximately

$$\overline{y} \pm z_{.025} \left(\frac{s}{\sqrt{n}}\right)$$
 or $5.4 \pm 1.96 \left(\frac{3.1}{\sqrt{500}}\right)$ or $5.4 \pm .27$ or $(5.13, 5.67)$

8.70 a. n = 20, $\overline{x} = 419$, s = 57. Then the 90% confidence interval for the mean SAT scores for urban high school seniors is

$$\overline{y} \pm t_{.05} \left(\frac{s}{\sqrt{n}} \right)$$

where $t_{.05}$ is based on n-1=19 degrees of freedom. From the Appendix, this is $t_{.05}=1.729$. Then the confidence interval is

$$419 \pm 1.729 \left(\frac{57}{\sqrt{20}}\right) = 419 \pm 22.04 = (396.96, 441.04).$$

- b. The interval does include 422. Thus 422 is a believable value for μ at the 90% confidence level. However, numbers such as 397, 410, and 441, for example, are also believable values for μ .
- c. Given n = 20, $\overline{x} = 455$, s = 69, the 90% confidence interval for the mean mathematics SAT score is

$$\overline{y} \pm t_{.05} \left(\frac{s}{\sqrt{n}} \right) = 455 \pm 1.729 \left(\frac{69}{\sqrt{20}} \right) = 455 \pm 26.67 = (428.33, 481.67).$$

The interval does include 474. We would conclude, based on our 90% confidence interval, that the true mean mathematics SAT score is not different from 474.

8.74 For the n=12 measurements given here, calculate $\sum y_i = 108$ and $\sum y_i^2 = 1426$. Then

$$y = \frac{108}{12} = 9$$
 and $s^2 = \frac{1426 - \left[\frac{(108)^2}{12}\right]}{11} = 41.2727$

The 90% confidence interval is then

$$\overline{y} \pm t_{.05} \left(\frac{s}{\sqrt{n}} \right) = \pm 1.796 \sqrt{\frac{41.2727}{12}} = 9 \pm 3.33$$
 or (5.67, 12.33).

8.76 a. Let μ_1 = mean verbal score for engineering students and μ_2 = mean verbal score for language/literature students. Then the 95% confidence interval is

$$(\overline{y}_1 - \overline{y}_2) \pm t_{.025} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}$$

where $t_{.025} = 2.048$ with 28 degrees of freedom. Then,

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = \frac{14(42)^2 + 14(45)^2}{28} = 1894.5$$

and the confidence interval is

$$446 - 534 \pm 2.048 \sqrt{1894.5 \left(\frac{1}{15} + \frac{1}{15}\right)} = -88 \pm 32.55 = (-120.55, -55.45)$$

b. Similar to part a. Let μ_1 = mean math score for engineering students and μ_2 = mean math score for language/literature students. First, calculate

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = \frac{14(57)^2 + 14(52)^2}{28} = 2976.5.$$

Then the interval is

$$548 - 517 \pm 2.048 \sqrt{2976.5 \left(\frac{1}{15} + \frac{1}{15}\right)} = 31 \pm 40.80 = (-9.80, 71.80).$$

- c. The 95% confidence intervals indicate that a significant difference exists in the mean verbal scores for students in engineering and language/literature (since both endpoints of the interval are negative). However, the other interval does not indicate that a significant difference exists in the mean math scores for students in engineering and language/literature, since 0 is in the interval.
- d. We assume that the verbal (math) scores for the two groups are randomly and independently selected from two normal distributions with common variance.