Linear Statistical Models

Inference Topics Covered So Far
e Identified estimators for common parameters.
e Discussed the sampling distributions of estimators.

e Introduced ways to judge the “goodness” of an es-

timator. (bias, MSE, etc.)
e Used maximum likelihood estimation.

e Used confidence intervals and hypothesis testing to

make inferences about means and proportions.

None of the methods that we've discussed so far allow
us to model the relationship (correlation) between two

variables.



Describing the Linear Relationship

e Imagine that you have two quantitative variables

that are correlated.

e Think back to our coefficient of correlation, p. Now
instead of just measuring the strength of the linear
relationship, we want to get a more specific idea

about the nature of the relationship.

e In particular, we might want to predict values of

one variable given the other variable.

e We will discuss how to make inference when two

variables have linear relationship.

e [f the relationship between the 2 variables is not lin-
ear, sometimes appropriate transformations of the

data may yield a more linear relationship.



Deterministic Linear Relationships

e [f the correlation between the two variables is known
to be perfect (1 or —1), or very close to it, we might

use a deterministic model.

e Linear relationship between two variables can be

described based on the equation for a line.

e Then, if we know the value of one variable, we can
exactly (or very close to it) predict the value of the

other variable.

e This kind of models may be appropriate for well-

established laws of science.

e One can model this kind of linear relationship be-
tween two variables X and Y as 'Y = [y + /1 X
where 5y and (7 are the intercept and slope of the

line that describes the relationship.
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Probabilistic Linear Models
What if the correlation between two variables is not
perfect? What if there seems to be a scatter cloud of

points that has a general linear trend?

e We can express the relationship using the model
Y = Bo+ 51 X; + €

e For every observation (X;, Y;), Y; is a linear func-

tion of X; plus some random “noise” given by &;.

e The noise 1s assumed to have mean 0 and be inde-

pendent from data point to data point.

e We cannot exactly predict Y for every X, but we
can say what the expected value for Y given X is.

Then, we are modeling the means of the Y;s given

the changing X;s: E(Y;) = By + 51X,



e This is called the regression of Y on X.

e In regression, we have a dependent and one or more
independent variable. The role of dependent vari-

able is different from that of independent variables.

e One important goal of regression is to predict the
value of a variable form the value of the other vari-
ables. The variable that has to be predicted is
chosen as the dependent variable and the predictor

variables are chosen as the independent variables.

e When we have only one independent variable, then
that is called simple linear regression. When we
have more than one independent variable, that is

called multiple linear regression.

e Above is a simple linear regression model with X as

the independent and Y as the dependent variable.
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Example of Two Correlated Variables

We may be interested in predicting a student’s second
midterm score, given his/her first midterm score. We
could look at a sample of such scores to help us deter-

mine how these grades are correlated.
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Figure 1: Sample of scores on the two midterms



Interpretations of Estimates

e Since we have just a sample from the population,
we can only estimate the slope and intercept of the

“true” regression line.

e These estimates are denoted Bo and Bl, and the

fitted values that they yield are denoted g
Ui = Bo + B

° Bl gives the estimated change in the dependent
variable associated with a one unit change in the

independent variable.

e /3, gives the estimated value of the dependent vari-

able when independent variable is 0.



How to Fit the Line?

e We want the line to be as close to the data points as
possible, but since there is so much variation from
a strict linear pattern, we need some criterion to

choose the “best” line.

e How do we measure the distances between the data
points and the line? We could use vertical distance,
horizontal distance, or closest distance (perpendic-
ular approach from each data point to the fitted

line).

e The vertical distance between the data point and
the fitted line is appropriate because that is an es-

timate for the “noise” ;.



Least Squares Approach

e The vertical distance between a data point y; and
the regression line is called the error or residual,

and denoted by e; = y; — 9;. The sum of squared
errors (SSE) is > e? = > (y; — 1;)°.
i=1 i=1
e We choose the line that minimizes the SSE.

e The approach is called “least squares” since it min-
imizes the sum of the squared vertical distances.

The sum of the vertical distances, not squared, is 0.

e This provides us with the following least square es-
timates for the slope and intercept of the regression

line:

3 Z?:l(yi —y)(z; — T) _ Sy
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Back to Our Grades Data
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Figure 2: Fitted regression line: § = 44.396 4 0.382z

S(zi—2)(yi—y) = 2290.73 > (z;—1)* = 5996.445
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When Are These Estimates Good?

When certain conditions are met, we can say that our
least squares method yields good estimates 31 and BAO
of 51 and y. These are called the Gauss-Markov con-

ditions.
o F(g;) =0 forall 4
o Var(e;) = o* for all ¢
e Cov(gj,ej) =0forall i #j

These assumptions are also necessary for us to make
statements about the mean and variance of the esti-
mates and for further inference about the model pa-

rameters.
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Measuring the Fit of the Model
Once we've determined our estimated regression line,
we'd like to know how well the model fits. How far/close

are the observations to the fitted line?
e One way to do this is to see how big the SSE is.

e Lor simple linear regression SSE = 5, — BAley
where Sy, = > (v — 9)°.

e Note that this quantity depends on the units in

which the dependent variable is measured.

e Another way to measure the fit of the model is to
look at the proportion of the total variability in
the dependent variable that can be explained by

the independent variable.
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e We can measure the total variability in the de-

pendent variable using the total sum of squares

e We can measure the variability in the dependent

variable that can be explained by the independent

variable SSR = i(y} — )2

1=1

e This means that the proportion of total variability

in the dependent variable that can be explained by

the independent variable i1s 2%7.

e This quantity is called the coefficient of determina-

tion and denoted by R?.

e We can prove that SST = SSR + SSE. There-

SST-SSE __ 1 SSE

2 - _ SSE
fore, R* can also be written =2c22= = ST
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Sample Correlation

e We'd like to have a way to estimate the true corre-

lation, p, using the data.

e This is the sample correlation r, given by:

D » H et et )
NS S

e This can be re-expressed in terms that we have used

before. Remember, that we can write Bl as g—;”i
This yields r = T ﬁAM /2
\/ SzzSyy Syy

e This relationship also means that we can write the

regression equation given 7, Sy;, Sy, and the sam-

ple means of x and y. We know Bl =74/ g—i/f’

e In the case of simple linear regression (one inde-
pendent variable), the coefficient of determination
R? =12,
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Inferences about the Model Parameters

e The least squares estimates BAO and Bl obtained us-

ing our sample are only estimates of 5y and f.
e How good are these estimators?
e What are their means, variances, etc.?”

e How can we make a confidence interval /hypothesis

test for these parameters?
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Sampling Distribution for Slope Estimate, 5

and Intercept Estimate, 50

o E(ﬁAl) = [, E(BAO) = By. So B, is unbiased for 3

and Bo is unbiased for (.

A o2 S0 z? A 2
o Var(fy) = —==—L and Var(f) = & where

nSyr Saa
See =Y i (x;—x)*and 0% = Var(Y) = Var(e).

2

o Cov(f, P1) = 2=

e The distributions of Bl and Bo both depend on the
distribution of the error term €. These are normally

distributed if € is normally distributed.

e We will generally be looking at models, in which

we assume that e is normally distributed.
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Estimator for o2

2

e We rarely know o, so we will need to estimate it

based on the data.

e Since o2 represents the variance of the Y;s around
the line By + £1.X;, it makes sense to estimate it
using some function of the distances between the

data points and the fitted line.

e This estimator for o? is S? = %, where SSE =
> i1 (Yi = 9i)”.

e S? is unbiased for o2.
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Sampling Distribution of the Parameter Es-

timators Under Normality
e If the error term ¢ is normally distributed, then
1. (71—0_22)52 ~ x? distribution with n — 2 d.f.

2. 5% is independent of BAO and BAl.

3. Both % and % have ¢ distribution with

n—2 df where SE(G) = Sy/Z=" and

NSy
SE(Bl) — S\/ SLM

e Knowledge of the sampling distributions of these
statistics enables us to conduct hypothesis tests and

form confidence intervals.
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Hypothesis Tests/Cls for Coefficients

o After fitting a linear model, we might ask whether
there is sufficient evidence to conclude that the x

variable is a useful predictor of the y variable.

e This is a hypothesis test with Hy: 51 = 0 and H,;

B # 0.

e We can conduct the test as usual, formulating the

test statistic as:

N

~0
ro b
S/ 5

e Of course, we can also use the same methodology
to test hypotheses which involve another value of

B1 (instead of 0) or to test hypotheses involving fy.
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e In general, to test Hy : B; = B0 vs Hy, : 57;7257;0 (for

i = 0,1) we use the test statistic

_ Bi— B
SE(Bi)
which has a t distribution with n — 2 d.f. under

T

Hy.

e Using the information about the sampling distribu-
tions of ﬁo and BAl, we can form confidence intervals

for these parameters. To find a (1 — «)100% confi-

dence interval:

bi £ty 2SB(f)
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Are the Assumptions of the Model Met?

e Suppose we use least squares to obtain an estimated

regression line.

e In order to make inferences concerning the parame-
ters By and 1, we need to make assumptions about

the distribution/correlation of the residuals.

e One way to examine the truthfulness of the assump-
tions is to look at a scatter plot of the residuals

(e =y — ) vs. the fitted values (7).

e They should form a cloud (no patterns), symmetric
about 0, with fairly even variation of the residuals

over the range of fitted values.
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Using a log Transform of the Response

e Suppose we suspect an exponential pattern in the

data (rather than linear).

e A non-linear model of the form E(Y') = A exp(51X)

may be appropriate in this case.

e [f we take the log transform of the response/dependent
variable, we get a simple linear model: Fllog(y)] =
log(A)+ 1 X = Bo+ 51X, where the intercept that

we're fitting is log(A).

e We can substitute the estimates that we obtain

through the least squares into the original model,
yielding ¢ = exp(f) exp(81X).
e Now, each one-unit change in X means our estimate

of Y increases by a factor of e, the base of the

natural log.
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Confidence Interval for E(Y)

e Remember that our regression line is just an esti-

mate for the expected value of the Y variable.

e This means we're estimating F(Y) = [y + f1a*
with BAO + BAlx*, where x* is just the value of X for

which we want to estimate F(Y).

e We know that since BAO and 31 are unbiased estima-

tors, the quantity B}H—le* is an unbiased estimator

for E(Y).

e The standard error for our estimate can be shown

to be S\/ + G where §2 = 25E

S:cx n—2
e This yields a confidence interval for E(Y) = By +

p1x*, of the form

(BO+5A1x*)it%23\/l+<x*_x)2

n S
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Prediction Interval for Y when X = x*

e Instead of a confidence interval for the mean E(Y),

if we want a confidence interval for a prediction of

Y when X = ™.

e Before, we were estimating a parameter E(Y'). Now
we want to estimate the value of a random vari-

able, the Y we observe at some specific time when

X =z*.

e Intuitively, we would estimate this value somewhere
near the middle of the distribution for Y for X =
x*. The center of this distribution is F(Y) = £y +

b1x*, which is estimated by BAO + le*.

e S0 we have the same estimate for E(Y') as we do
for a prediction of Y, but intuitively, the variance

for a prediction must be larger.
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2

e The SE can be shown to be S\/1+ + (335;;) )

yielding a prediction interval for Y (when X = z*

and S? = 22L)

~ ~ * __ )2
(50—1—5133*):|:t%25\/1+1+<x 37)

n S,
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