Random Variable and Probability
Distribution

Random Variables

e A random Variable is a function from a sample

space into the set of real numbers.

e Example: A coin is tossed twice. The sample space
is S={HH,HT,TH,TT}. Denote the sample

pointsase; = HH,es = HT,e3=TH, e, =TT.

— Let Y be the number of heads in two tosses.
ThenY is a random variable. Y(e1) = 2,Y (e2) =

17 Y(63) = 1, Y(64) =0.

— Let X be the number of tails — number of heads.
Then X is another random variable. X(e1) =

—2, X(eg) = 0, X(eg) = 0, X(64) =2

e A random variable partitions the sample space into
disjoint subsets on each of which the value of the

random variable is constant.

Discrete Random Variables and Its Proba-

bility Distribution

e A random variable is discrete if it assumes only a

finite or countably infinite number of values.

e The probability that a random variable Y takes the
value g is the probability of the set of sample points
e; for which Y (e;) = y. This probability is denoted

by P(Y =y) or p(y).

e The probability distribution of a discrete random
variable is a list of values or function p(y) for all
y in the range of Y where p(y) is as defined above.
This p(y) is also called the probability mass func-

tion (p.m.f.) of the random variable Y. Note that

3

the book uses the term “probability function” in-

stead of probability mass function.

e > P(Y =y) = 1, where the sum is taken over all
v

possible values that Y can assume.

e Eixample: Let Y be the number of heads in tow
tosses of a balanced coin. Then Ycan take values
0,1 or 2 and the distribution of Y is given by

=1land p(2) =1




Probability Histogram

e The probability distribution of a discrete random
variable can be represented by a probability his-

togram for simple cases.
e A probability histogram is similar to a regular his-

togram except that the area represents probability

instead of frequency.
Continuous Random Variables

e A continuous random variable can assume an un-

countably infinite number of values.

e The probability distribution of a continuous ran-
dom variable can not be described by the probabil-

ities P(Y = y).

Cumulative Distribution Function (c.d.f.)

e The cumulative distribution function or distribu-
tion function of a random variable Y, denoted by

F(y) is defined as
Fly)=P(Y <y) for —oc0o<y <o

e For a discrete random variable the c.d.f. is a step

function.

Properties of c.d.f.

lim F(y)=0

y——00

2. F(o0) = lim F(y) =1

y—)OO

3. F(y) is a nondecreasing function, i.e., if 3 < ys,

then F(y;) < F(y9).

4. F(y) is right continuous.

Examples of c.d.f. in Discrete and Continu-

ous Case.

e S
1 2 0 5 10 15

X y
Binomial c.d.f with n=3, p=1/6 Uniform c.d.f with a=0 and b=15




Continuous Random Variable and Density

Function

e A random variable is said to continuous if its c.d.f.

1S continuous.

e If a random variable is continuous with F'(y) as its
c.d.f., it has a probability density function (p.d.f.)

given by

wherever this derivative exists.

o If f(y) is the p.d.f. of a continuous random variable

Y, the c.d.f. of Y can be written as

Fly) = /y fla)dz
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Properties of p.d.f.

e f(z)>0forally.

o [ fly)dy=1.

—00

Calculating Probabilities from c.d.f. and p.d.f.
e If a random variable Y has a c.d.f. F(y), then

LPyn <Y < ) = F(y2) — F(n) for any
Y1 < Y2,
= F(y) — F(y—) for any y, where

F(y—) denotes the left limit of F" at y.

o If Y has a p.d.f. f(y), we can further write

Y2
LPyy <Y <) = f f(y)dy for any y; < yo,
Y1

2. P(Y = y) = 0 for any real y.
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The Expected Value of a Random Variable
The mean or expected value of a random variable Y is

denoted by E(Y).

e Discrete case: Suppose Y is a discrete random vari-
able with pm.f. p(y). Then E(Y) = > yp(y).
y

The E(Y) is defined if > |y|p(y) is finite.
Y
e Continuous case: Suppose Y is a continuous ran-
dom variable with p.df. f(y). Then E(Y) =

70 yf(y)dy. The E(Y) is defined if > |y| f(y)dy
e y

is finite.

Expected Value of a Function of a Random
Variable

If g(Y) is a function of a random variable Y with p.m.f.
p(y) or with a p.d.f. f(y), then the expected value of

g(Y) is given by
e Discrete case: E(g(Y))
e Continuous case: E(g(Y"))
Variance and SD of a Random Variable

e The variance of a random variable Y, denoted by

V(Y), is defined as V(Y) = E(Y — u)?, where




Some Properties of Expected Value
1. If ¢ is a constant, E(c) = c.

2. If X1, X, ..., X}, are random variables defined on

the same sample space and ¢, co,...,cp are con-

k k
stants, then F (Z CiXi> = Z CZ'E(XZ').
i=1

i=1
. Special cases:

(a) If g1(Y), g2(Y), ..., gx(Y) are functions of ¥V
k

then E (Z (Y )) =% E(gi(Y)). Proof: Take

(3

1
X, =¢g(Y)and ¢; = 1fori = 1,2,...,k. Then
apply the previous result.

(b) If @ and b are two constants, then E(a+bY) =

a+bE(Y).

Some Properties of Variance

e If ¢ and b are two constants, then V(a + bY) =

RV (Y).

Binomial Probability Model
e A fixed number (n) of trials.
e Trials are independent.

e Fach trial has two possible outcomes — either a suc-

cess or a failure.

e Probability of a success in a single trial is p.

Binomial Random Variable and Binomial Dis-

tribution

e In a binomial probability model let the random
variable X denote the number of successes. Then
X is a binomial random variable and the distri-
bution of X is called a binomial distribution and
denoted by Binomial (n,p). It has two parameters,

n and p.

e The p.m.f. of a binomial random variable is given

n)pm(l—p)””, z=0,1,...,n,
T

where p and n are as described in the binomial

model.




Proof: Let A be the event that the number of suc-
cesses is . Then number of sample points in A
is (;) Each sample point in A has probability

pr(l—p" "

Some Examples

i

Binomial prob. hist. with n=10 and p=0.4

i

Binomial prob. hist. with n=10 and p=0.7

Binomial prob. hist. with n=10 and p=0.25

_allh.

Binomial prob. hist. with n=10 and p=0.55

e The binomial table in the book gives the c.d.f. of

the binomial distribution for different n and p.

e If X is a binomial random variable with parame-
ters » and p, respectively, then F(X) = np and

V(X) =np(1 —p).

Examples

e Example 1: A box contains 1 green and 9 red balls.
From that box 5 balls are drawn at random with
replacement. What is the probability that exactly
2 draws will give red balls?

Solution: In this experiment, getting a red ball
in a draw is like a success in the binomial model.
The draws are independent, the number of draws is
fixed and in each draw the probability of getting a
red ball is same (). So, we have a binomial model.
By Y denote the number of red balls in 5 draws.
Then Y is a binomial random variable with n = 5

and p = 19—0.

— Calculation by using formula: P(Y = 2) =

() (2)7 (1 —2)"% = 0.0081.

— Calculation by using table: From the binomial
table, P(Y < 2) = 0.009 and P(Y < 1) = 0.
Then PY =2)=PY <2)—PY <1) =

0.009.

e Example 2: In the above experiment find the prob-

ability that al least 3 draws will give red balls.
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Solution: By formula, P(Y > 3) = Y  P(Y =
y=3

y) = 0.0729 + 0.32805 + 0.59049 = 0.99144.
By table: P(Y > 3) = 1—P(Y < 2) = 1-0.009 =

0.991.




Poisson Distribution and Poisson Random

Variable

e Poisson probability distribution is a good model for
the number of rare events that occur in a specific

time or space.

e A Poisson distribution has a parameter A which is

the average rate of the events.

e Example: Number of accidents at a particular in-
tersection during a month, number of errors made
by a typist in typing a page, the number of cars

entering a parking lot in a 5 minute period, etc.

e X is a Poisson random variable if it has a Poisson

distribution and the p.m.f. of X with average rate
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parameter A, is given by

7)\)\1
x)zem! , v=0,1,...

e [t is easy to check that the above function is ac-

tually a p.m.f. because e* has a series expansion

00
A"t
H.

=0

e If X has a Poisson distribution with parameter A,

then E(X)=Xand V(X) = A.

e The Poisson table at the end on the book gives the

c.d.f. of Poisson distribution for different \.

Some Examples

Poisson Approximation of Binomial Distri-
bution

A Binomial (n,p) distribution for a large n and small
p can be approximated by a Poisson distribution with

parameter A = np.

Uniform Distribution

o If X is distributed uniformly on the interval (a, b),

then X has p.d.f.

La fa<zx<b

f(z)

otherwise

x
Uniform p.d.f

o If X is distributed uniformly on the interval (a, b),

then




Example: Bill doesn’t get up as soon as his alarm
goes off. The extra time he sleeps in is given by the
random variable X, which is distributed uniformly on

the interval (0 min, 15 min).

e What's the probability that his extra sleeping time

is less than 5 min?

e What's the probability that his extra sleeping time

is less than 10 min, but more than 7 min?

Normal Distribution

e A normal distribution has two parameters mean g

and variance o2.

e A normal distribution with mean p and variance
o? is denoted by N(u,0?) and has p.df f(z) =

—5=exp{ 5z — p)*}, for —00 < & < o0.
e Has the classic bell-shape.

e Forms the basis of the empirical rule.

e Used to approximate many real-life variables.

The Standard Normal Distribution

e A random variable Z has a standard normal distri-
bution if it is distributed normally with © = 0 and

c=1.

e Values of Z correspond to how many standard de-

viations away from the mean they are.

e Any normally distributed random variable can be
transformed to the standard normal using this idea
of “how many SD from the mean is it?”

e For X ~ N(u,0?), we can transform X into stan-

X—p

dardized scores (z-scores) using Z = =-*. Then

Z ~ N(0,1)

Areas Under the Normal Curve

e To find P(a < X < b), where X ~ N(u,0?), we

b
a

need to evaluate | olﬁexp{%(m ~ p)2)de.

e But there is no closed-form solution to the integral!

e Numerical integration methods must be used in or-

der to find the integral.

e We employ the fact that any normal distribution
can be transformed into a standard normal distri-
bution. Area under any normal curve can be found
by first making the transformation to standard nor-
mal distribution and then finding the corresponding

area under the standard normal curve.




Using z-scores and the Normal Table

Standard normal p.d.f

e Areas under the curve have been calculated and

recorded in the normal table.

e For each z you look up in the table, you will get

P(Z > z)

e Since the standard normal is symmetric about p =

0, no negative values for z are given on the table.

e Two important properties to remember when using
the normal table: 1. Symmetry and 2. The total

area under the curve is 1.
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Using the Normal Table
Suppose the variable Z has a standard normal distri-

bution, i.e., Z ~ N(0,1).
1. Find the following probabilities:

e P(-1<7Z<1)

o P(Z < —1.96)

o P(—0.50 < Z < 1.25)

2. Which value marks the 95th percentile?

3. Which values are the boundaries for the middle

80% of the data?

Example Using the Normal
The time required to complete a college achievement
test was found to be normally distributed, with a mean

of 110 minutes and a standard deviation of 20 minutes.

e What percentage of students will finish within 2

hours?

e What percentage of students will finish after 1.5

hours but before 2.5 hours?




e When should the test be terminated to allow just
enough time for 90% of students to complete the

test?

e What are the boundaries for IQR of the time it

takes to complete the test?

Gamma Distribution

e If X has a gamma distribution with shape param-
eter a > 0 and scale parameter 8 > 0, then X has

p.d.f.:

Yy
a—1,7143 .
% 1f0§$<00

f(z) =
0 otherwise

where T is the gamma function defined on (0, 00)

as

F(a)z/ y* e vdy.
0

e Some Properties of gamma function:
—TI(a+1) = al'(a) for a > 0.

—T'(n) = (n — 1)! for any integer n > 1.

e Only when « is an integer, we can integrate the
gamma p.d.f. over an interval and get a closed-

form expression.

e For a gamma random variable X with parameters
a and S,

EX)=ap, V(X)=ap%

e Two special cases of the gamma have their own

names.

1. An exponential with parameter 5 is a gamma

with o = 1 and S.
2. A chi-squared with v degrees of freedom is a

gamma with a = g and 8 = 2.

Various Gamma p.d.f.s

-~ shape=2, scale=1
shape=3, scale=0.25
———- shape=4, scale=0.125




Beta Distribution

If X has a beta distribution with parameters o > 0

and 8 > 0, then X has p.d.f.:

ifo<z<1

otherwise.

alpha=2, beta=2
alpha=2, beta=4
alpha=3, beta=4

T
0.4




