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Solution (6.22)

a. We need the expectation of X,

E(X) =

∫ 1

0
(θ + 1)xθ+1dx =

θ + 1

θ + 2
.

The method of moments estimator θ̂mme of θ, arises from the solution (in θ) of the equation

X̄ = E(X) =
θ + 1

θ + 2
,

resulting in θ̂mme = (1 − 2X̄)/(X̄ − 1).
Based on the data given, θ̂mme = 3.

b. The likelihood function is

L(θ) =
∏n

i=1
f(xi; θ) = (θ + 1)n(

∏n

i=1
xi)

θ,

and hence the log likelihood is given by

log L(θ) = n log(θ + 1) + θ
∑n

i=1
log xi.

Solving (in θ) the equation d log L(θ)
dθ

= 0, we obtain

θ̂mle = −
n +

∑n
i=1 log xi∑n

i=1 log xi

.

This is indeed the maximum likelihood estimator of θ since it gives a negative value to the second
derivative with respect to θ of log L(θ).
Based on the data given, θ̂mle = 3.12.



Solution (6.23)

We are given X1, ..., Xn i.i.d. Poisson(λ1) and Y1, ..., Yn i.i.d. Poisson(λ2). The additional as-
sumption we need (and is not clearly stated in the problem) is that of independence between the
two random samples. This assumption provides the joint likelihood function as follows

L(λ1, λ2) =
∏n

i=1

e−λ1λxi

1

xi!

∏n

j=1

e−λ2λ
yj

2

yj!
.

The maximum likelihood estimators λ̂1
mle

and λ̂2
mle

of λ1 and λ2, respectively, are obtained from
the solution of the system of equations

d log L(λ1, λ2)

dλ1
= 0,

d log L(λ1, λ2)

dλ2
= 0,

yielding λ̂1
mle

= X̄ and λ̂2
mle

= Ȳ . (One can check that the pair (λ̂1
mle

, λ̂2
mle

) indeed maximizes
log L(λ1, λ2).) Finally, the maximum likelihood estimator of λ1 − λ2 is given by

λ̂1
mle

− λ̂2
mle

= X̄ − Ȳ ,

using the invariance principle for maximum likelihood estimators.



Solution (6.29)

a. This is an example where maximizing the likelihood function cannot be done by simply taking
derivatives since the maximum for one of the parameters is obtained at the boundary.

The likelihood function is

L(λ, θ) = λne−λ(−nθ+
∑n

i=1
xi), θ ≤ min

i
xi

and hence the log likelihood becomes

log L(λ, θ) = n log(λ) − λ
∑n

i=1
xi + nλθ, θ ≤ min

i
xi.

Note that the constraint θ ≤ mini xi is very important and has to be included. This is true for any
problem where the set of possible values for the random variable depends on the parameters of the
distribution (in our case, x ≥ θ in the definition of the density function).

Now let’s consider maximizing log L(λ, θ) with respect to θ (that is keeping λ fixed). We note

that d log L(λ,θ)
dθ

= nλ > 0. This means that log L(λ, θ) as a function of θ (with λ fixed) is increasing.
This, along with the fact that θ ≤ mini xi, implies that the maximum of log L(λ, θ) (with λ fixed)
is obtained at θ = mini xi. Since this value doesn’t depend on λ (is the same for any value of λ we
fix) the maximum likelihood estimator of θ is

θ̂mle = min
i

xi.

Having found the maximum with respect to θ, we can substitute this value in log L(λ, θ) leading
to

log L(λ, θ̂mle) = log L(λ,min
i

xi) = n log(λ) − λ
∑n

i=1
xi + nλmin

i
xi

which needs to be maximized with respect to λ in order to get the maximum likelihood estimator
of λ. This is now a standard maximization that involves derivatives. Solving

d log L(λ,mini xi)

dλ
= 0

we obtain

λ̂mle =
n

−nmini xi +
∑n

i=1 xi

.

(Again, it can, and should, be checked through the second derivative that λ̂mle indeed maximizes
log L(λ,mini xi)).

b. For the particular data set, we get θ̂mle = 0.64 and λ̂mle = 0.202.


