STA205 Probability & Measure

Homework #1

Due 2002 April 3

1. For real-valued random variables X, Y on a probability space $(\Omega, \mathcal{F}, \mathsf{P})$, define

$$d(X,Y) = \mathsf{E}\left[\frac{|X-Y|}{1+|X-Y|}\right]$$

Show that

- a) d(X, Y) is a *metric*, *i.e.*, that it satisfies the three rules
 - * d(X,Y) = d(Y,X)* $d(X,Y) \ge 0$, and d(X,Y) = 0 if and only if X = Y a.s.
 - $* \ d(X,Z) \le d(X,Y) + d(Y,Z)$
- b) $d(X_n, X) \to 0$ as $n \to \infty$ if and only if $X_n \to X$ in probability
- 2. Let X and $\{X_n\}$ be random variables on a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. In class we showed that, if $X_n \to X$ in probability then $X_{n_i} \to X$ along some subsequence n_i . In fact something slightly stronger is true: Show that $X_n \to X$ in probability if and only if every subsequence n_i has a further subsequence n_{i_j} such that $X_{n_{i_j}} \to X$ almost surely. Note that the "only if" part follows directly from our in-class result, but the "if" part is new.
- 3. Using 2. above, give a two-line proof that if $X_n \to X$ in probability, then also $X_n \to X$ in distribution. (Hint: Lebesgue's DCT).
- 4. If $X_n \to X$ almost surely, does it follow that $\{X_n\}$ is Uniformly Integrable? Give a proof or counterexample.
- 5. Let U have the uniform distribution on [0,1) and define a sequence of random variables by

$$X_n = n U^n$$

In which (if any) of the following ways does X_n converge, and to what limit? Why?

$$\bigcirc pr. \bigcirc a.s. \bigcirc L^1 \bigcirc L^2 \bigcirc L^\infty \bigcirc dist$$