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Abstract

In the Bayesian paradigm the marginal probability density func-

tion at the observed data vector is the key ingredient needed to com-

pute Bayes factors and posterior probabilities of models and hypothe-

ses. Although Markov chain Monte Carlo methods have simplified

many calculations needed for the practical application of Bayesian

methods, the problem of evaluating this marginal probability remains

difficult. Newton and Raftery discovered that the harmonic mean

of the likelihood function along an MCMC stream converges almost-

surely but very slowly to the required marginal probability density. In

this paper examples are shown to illustrate that these harmonic means

converge in distribution to a one-sided stable law with index between

one and two. Methods are proposed and illustrated for evaluating

the required marginal probability density of the data from the limit-

ing stable distribution, offering a dramatic acceleration in convergence

over existing methods.
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1 Introduction

In the Bayesian paradigm hypotheses are tested and models are selected by
evaluating their posterior probabilities or, when opinions differ about what
should be the hypotheses’ or models’ prior probabilities, Bayes factors are
used to represent the relative support offered by the data for one hypothesis or
model against another. In Bayesian model mixing, predictions and inference
are made amid uncertainty about the underlying model by weighting different
models’ predictions by their posterior probabilities. In all these cases a key
ingredient is the marginal probability density function fm(x) at the observed
data vector x, for each model m under consideration.

Although Markov chain Monte Carlo methods have broadened dramat-
ically the class of problems that can be solved numerically using Bayesian
methods, the problem of evaluating fm(x) remains difficult. Newton and
Raftery (1994) discovered that the sample means of the inverse likelihood
function fm(x|θi)

−1 along an MCMC stream {θi} will converge almost surely
to the inverse fm(x)−1, so that fm(x) itself can be approximated by the
harmonic mean of the likelihoods fm(x|θi); unfortunately, as they also dis-
covered, the partial sums Sn of the fm(x|θi)

−1 often do not obey a Central
Limit Theorem, and in those cases Sn/n does not converge quickly. Many
others have discovered the same phenomenon.

In this paper examples are shown to illustrate that fm(x|θi)
−1 will lie in

the domain of attraction of a one-sided stable law of index α > 1. Only
in problems with precise prior information and diffuse likelihoods is α = 2,
where the Central Limit Theorem applies and the Sn have a limiting Gaussian
distribution, with sample means converging at rate n−1/2; with more sample
information (or less prior information) the limit law is stable of index close
to one, and slow convergence at rate n−1/α.

2 Stable Laws

Early this century Paul Lévy (1925) proved that the only possible limit-
ing distributions for recentered and rescaled partial sums Sn =

∑

j≤n Yj

of independent identically-distributed random variables are the stable laws
(Sn − an)/bn ⇒ Z with characteristic functions (see Cheng and Liu, 1997)

E [eiωZ ] = exp
(

iδω − |γω|α + iβ tan
πα

2

{

|γω|α sgn ω − γω
})

(1)
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for some index α ∈ (0, 1) ∪ (1, 2], skewness −1 ≤ β ≤ 1, scale γ > 0, and
location −∞ < δ < ∞ (a similar formula holds for α = 1); for 1 < α < 2 and
β = 1, the cases of interest to us below, Z is integrable and the characteristic
function can be written in Lévy-Khinchine form as

E [eiωZ ] = exp
(

iδω + C

∫ ∞

0

{

eiωu − 1 − iωu
}

u−1−α du
)

(2)

with C = 2γα sin πα
2

Γ(α + 1)/π. We will face the problem of estimating the

mean E [Z] = δ − βγ tan πα
2
≈ δ + 2βγ

π(α−1)
for α ≈ 1 from data.

This location/scale family has a density function γ−1fα,β

(

x−δ
γ

)

, but only

in a few special cases is fα,β(x) known in closed form; still it and its distri-
bution function can be evaluated numerically by inverting the Fourier trans-
form,

fα,β(x) =
1

2π

∫

R

e−iωx−|ω|α+iβ tan πα
2

[|ω|α sgn ω−ω] dω

=
1

π

∫ ∞

0

e−ωα

cos
(

ωx − β tan
πα

2
[ωα − ω]

)

dω

Fα,β(x) = c +
1

π

∫ ∞

0

e−ωα

sin
(

ωx − β tan
πα

2
[ωα − ω]

)

ω−1 dω. (3)

If the distribution of the {Yj} has finite variance (or tail probabilities that fall
off fast enough that y2 P[|Yj| > y] → 0) the central limit theorem applies and
the limit must be normal. The limit will be stable of index α < 2 if instead
P[|Yj| > y] ∼ ky−α as y → ∞ for some 0 < α < 2; it will be one-sided stable
if also P[Yj < −y]/P[Yj > y] → 0, whereupon β = 1 and the density function
is given by

fα,1,γ,δ(x) =
1

γπ

∫ ∞

0

e−ωα

cos

[

ω(x − δ)

γ
− tan

πα

2
(ωα − ω)

]

dω (4)

=
1

γπ

∫ ∞

0

e−ω cos

[

ω(x − δ)

γ
+

2

π
ω log ω

]

dω if α = 1, (5)

with approximate median F α
50 ≈ δ and quartiles F α

25, F α
75 ≈ δ ∓ γ. For

example, here are the densities for α = 1.1 and α = 1.5, with unit scale
γ = 1 and zero location δ = 0:
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Each has the median (near x = 0) and the mean (further to the right) labeled
(with “M” and “mu”, respectively) and indicated with short vertical strokes;
evidently the right tails are quite heavy, more so for α ≈ 1, making it difficult
to estimate δ or E [Yj] from sample averages. In principle it would be possible
to estimate α, γ and δ by constructing averages Zi of sufficiently many of the
Yj that the {Zj} are approximately independent one-sided stable variables
of index α and center δ, then applying nonlinear optimization methods to
minimize the negative log likelihood

− log L(α, γ, δ) =
m

∑

i=1

− log fα,1,γ,δ(zi),

evaluated by applying numerical integration to (4); this computation of the
maximum likelihood estimators α̂, γ̂, δ̂ entails an enormous computational
burdon for sample sizes m large enough to provide clear evidence about δ,
since the stable distribution has no nontrivial sufficient statistics or sim-
ple formulas for the MLE’s. Instead we follow the following prescription of
McCulloch (1986), based on the distributional quantiles xα

p of the standard
fully-skewed stable distribution of index α, satisfying P[X ≤ xα

p ] = p, and
the sample quantiles x̂p from the data, for p ∈ {.05, .25, .50, .75, .95}:

• Find the index α for which

x̂.95 − x̂.05

x̂.75 − x̂.25
≡ ν̂α = να ≡ xα

.95 − xα
.05

xα
.75 − xα

.25

;

note that the quantity να depends only on the kurtosis (and hence on
α) but not on either scale or location (hence γ or δ).
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• For this α, find the scale γ = (x̂.75 − x̂.25)/(xα
.75 − xα

.25) for which

x̂.75 − x̂.25

γ
≡ ν̂γ = νγ ≡ xα

.75 − xα
.25

1
;

note that the quantity νγ = (xα
.75 − xα

.25) depends only on the kurtosis
and scale (hence on α and γ) but not on location (hence δ).

• For this α and γ, find the location δ = x̂.50 − γxα
.50 for which

δ − x̂.50

γ
≡ ν̂δ = νδ ≡

0 − xα
.50

1
.

Thus E [Y ] = δ − βγ tan πα
2

may be estimated from the sample quantiles. A
partial table of the necessary indices (along with ζ ≡ νδ + tan πα

2
) is given in

(McCulloch, 1986).

2.1 Example 1

Let Xj ∼ Ga(a, λ) be independent draws from a Gamma distribution with
shape parameter a and rate parameter λ, and set Yj ≡ exp(Xj); then Yj

satisfies

E [Yj
p] = (1 − p/λ)−a < ∞ if p < λ;

P[Yj > y] = P[λXj > λ log y]

= Γ(a, λ log y)/Γ(a)

≈ (λ log y)a−1 exp(−λ log y)[1 + O(1/λ log y)]/Γ(a)

∼ ky−λ as y → ∞,

where Γ(a, x) denotes the incomplete Gamma function (Abramowitz and
Stegun, 1964, §6.5.32). If λ > 2 then Yj has finite variance and lies in the
normal domain of attraction, while for λ < 2 the limit is one-sided stable of
index α = λ.

2.2 Example 2

Now let Zj be independent normally-distributed random variables with mean
µ ∈ R and variance V > 0, and set Yj = exp(c Zj

2). If µ = 0 then c Zj
2 ∼

c V χ2
1 is Gamma distributed with a = 1/2 and λ = 1/2cV , so for V > 1/4c
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the limiting distribution is again one-sided stable of index α = 1/2cV ; even
for µ 6= 0 the same limit follows from the calculation

P[Yj > y] = P
[

|Zj| >
√

(log y)/c
]

(

set η ≡
√

(log y)/c
)

= Φ
(−η − µ

σ

)

+ Φ
(−η + µ

σ

)

≈ σ√
2π

[

exp
(

− (η + µ)2/2V
)

η + µ
+

exp
(

− (η − µ)2/2V
)

η − µ

]

∼ k e−η2/2V = k y−1/2cV as y → ∞,

where Φ(z) is the cumulative distribution function for the standard normal
distribution (Abramowitz and Stegun, 1964, §26.2.13), so again Yj lies in the
domain of attraction of the one-sided stable distribution of index α = 1/2cV .

2.3 Example 3 (Main Example)

Now let Xk
iid∼ No(θ, σ2) with known variance σ2 > 0 but uncertain mean θ.

Two models are entertained: M0, under which θ ∼ No(µ0, τ
2
0 ), and M1, under

which θ ∼ No(µ1, τ
2
1 ) (the point null hypothesis with τ0 = 0 is included).

Thus the joint and marginal densities for the sufficient statistic x̄ from a
vector of n observations {Xk} under model m ∈ {0, 1} are:

πm(θ, x̄) = (2πσ2/n)−1/2(2πτ 2
m)−1/2e−n(x̄−θ)2/2σ2−(θ−µm)2/2τ2

m

fm(x̄) = [2π(σ2/n + τ 2
m)]−1/2e−(x̄−µm)2/2(σ2+τ2

m)

and the posterior probability of model M0 and the posterior odds against
M0, under prior probabilities π[M0] = π0 and π[M1] = π1, are

P[M0 | ~x] =
π0f0(x̄)

π0f0(x̄) + π1f1(x̄)

P[M1 | ~x]

P[M0 | ~x]
=

π1

π0

f1(x̄)

f0(x̄)
.

Thus the key for making inference and for computing the Bayes factor B =
f1(x̄)/f0(x̄) is computing the marginal density function

f(x̄) = [2π(σ2/n + τ 2)]−1/2e−(x̄−µ)2/2(σ2/n+τ2)

at the observed data point x̄.
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At equilibrium any Markov Chain Monte Carlo (MCMC) procedure will
generate random variables θj ∼ π(θ|x̄) from the posterior distribution π(θ|x̄) =
π(θ, x̄)/f(x̄), so for any posterior-integrable function g(θ) the ergodic theo-
rem ensures

E [g(θ) | x̄] =

∫

g(θ) f(x̄ | θ) π(θ) dθ

f(x̄)
= lim

n→∞

1

n

n
∑

j=1

g(θj).

Newton and Raftery (1994) reasoned that the posterior mean of the random
variables Yj ≡ 1/f(x̄ | θj) would be

E
[

f(x̄ | θ)−1 | x̄
]

=

∫

π(θ) dθ

f(x̄)
=

1

f(x̄)
,

leading to the Harmonic Mean Estimator

f(x̄) = lim
n→∞

1

Ȳn

= lim
n→∞

n
∑n

j=1 1/f(θ̄j | x̄)
. (6)

For any proper prior the limit in (6) converges almost surely. It is our goal
to show that the convergence can be very slow. Indeed,

Yj = 1/f(x̄ | θj) = (2πσ2/n)1/2en(x̄−θj)2/2σ2 ∝ exp
( n

2σ2
(θj − x̄)2

)

is the same as Example 2 above, with c = n/2σ2 and V the conditional
variance of θj given x̄, V = (n/σ2 + 1/τ 2)−1, so the limiting distribution is
normal and the central limit theorem applies if

α =
1

2cV
=

1

2(n/2σ2)(n/σ2 + 1/τ 2)−1
=

(

1 + σ2/nτ 2
)

exceeds 2, i.e., if the prior variance τ 2 is less than the sampling variance
σ2/n). Otherwise, if σ2/n < τ 2, then the limiting distribution of Sn is one-
sided stable with index α ∈ (1, 2). As the sample size n increases, so that
the data contain substantially more information than the prior, then we are
driven inexorably to the stable limit, with index α just slightly above one.

Since E [Yj] = 1/f(x) Lévy’s limit theorem asserts that

Sn − n/f(x)

n1/α
⇒ Z (7)
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converges in distribution to a stable of index α = 1 + σ2/nτ 2, β = 1, and
mean 0, whence

Sn/n ≈ 1/f(x) + Z n1/α−1;

evidently Sn/n → 1/f(x) as n → ∞, but the convergence is only at rate n−ε

for ε = 1 − 1/α = (1 + nτ 2/σ2)−1 and moreover the errors have thick-tailed
distributions with infinite moments of all orders p ≥ α.

2.4 Example 4 (Bernstein/von Mises)

Under suitable regularity conditions every posterior distribution is asymptot-
ically normally distributed, and every likelihood function is asymptotically
normal, so the stable limiting behaviour of the preceeding section can be ex-
pected in nearly all efforts to apply the Harmonic Mean Estimator to compute
Bayes factors for large sample sizes and relatively vague prior information.

3 Improving the Estimate

Instead of estimating 1/f(x) ≈ Sn/n directly from ergodic averages, we may
try to estimate the parameters α, γn, δn for the fully-skewed stable Ȳn = Sn/n
using the quantile-based method of McCulloch (1986) or the recent Bayesian
approach of [check citation], whereupon we can estimate

1/f(x) = E [Ȳn] = δn − γn tan
πα

2
.
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