October 11, 2001 1 October 11, 2001

One-way ANOVA: Example

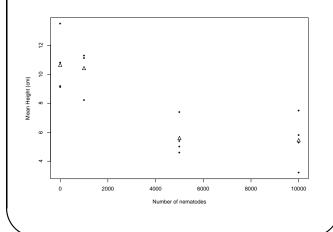

How do nematodes (microscopic worms) affect plant growth? A botanist prepares 16 identical planting pots and randomly assigns each pot to receive different numbers of nematodes. A tomato seedling is transplanted into each plot.

Table 1: Increase in the height of tomato seedlings 16 days after planting

Nematodes	See	edling G	rowth (d	cm)
0	10.8	9.1	13.5	9.2
1000	11.1	11.1	8.2	11.3
5000	5.4	4.6	7.4	5.0
10000	5.8	5.3	3.2	7.5

Exploratory Data Analysis

Nematodes	\bar{X}	s
0	10.650	2.053
1000	10.425	1.486
5000	5.600	1.244
10000	5.450	1.771

October 11, 2001 3 October 11, 2001

One-Way ANOVA

- $\bullet \;$ Goal: comparison of k population or treatment means μ_1, \cdots, μ_k
- Assumptions
 - Each of the *k* populations is normally distributed.
 - $\sigma_1 = \cdots = \sigma_k$
 - Independence of observations both within and between the k groups.
- Test of Hypotheses: (k = 4 here) Let μ_i = mean growth (cm) for nematode level i, where i=1,2,3,4.
 - $H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4$
 - H_A : at least two of the μ_i are different.

ANOVA model

$$y_{ij} = \mu_j + \varepsilon_{ij}$$
$$i = 1, \dots, n_j$$
$$j = 1, \dots, K$$

- y_{ij} 's varying about their population mean μ_j .
- $\varepsilon_{ij} \sim N(0, \sigma)$ where ε_{ij} represent random variation from fit of ANOVA model.

Components of Variation

- Variation between k sample means: Extra Sum of Squares (SSG)
- Variation within the k samples: RSS $_{full}$ (SSE)
- Variation of data around overall mean: RSS_{reduced} (SST)

	ESS $\sum_{j=1}^{K} \sum_{i=1}^{n_j} \left(\bar{y}_j - \bar{y}\right)^2$
ANOVA Decomposition	$\sum_{j=1}^{K} \sum_{i=1}^{n_j} (y_{ij} - \bar{y})^2 = \sum_{j=1}^{K} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2 + \sum_{j=1}^{K} \sum_{i=1}^{n_j} (\bar{y}_j - \bar{y})^2$

Analysis of Variance Table

	F-statistic	$\frac{ESS/(K-1)}{RSS_{full}/(N-K)}$		
Mean	Square	ESS/(K-1)	$RSS_{full}/(N-K)$ $(= s^2_{pooled})$	
	d.f.	K-1	¥ Ż	Z-7
Sum of	Squares	$\begin{aligned} ESS &= \\ \sum\nolimits_{j=1}^{K} \sum\nolimits_{i=1}^{n_{j}} \left(\vec{y}_{j} - \vec{y} \right)^{2} \end{aligned}$	RSS _{full} = $\sum_{j=1}^{K} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2$	RSS _{reduced} = $\sum_{j=1}^{K} \sum_{i=1}^{n_j} (y_{ij} - \bar{y})^2$
Source of	Variation	Between Groups	Within Groups	Total

October 11, 2001 7 October 11, 2001

Nematodes: Analysis of Variance Table

F-statistic p-value Square Mean 33.55 2.78 d.f 15 12 က Squares Sum of 133.98 33.33 Between Groups Within Groups Source of Variation Total

Steps in Splus

- Number of nematodes is a factor. Go to Data

 Change Data Type. Change the variables for number of nematodes to factor.
- 2. Statistics \rightarrow ANOVA \rightarrow Fixed Effects.
 - Dependent Variable: Height
 - Independent Variable: Number of nematodes

This produces the Splus formula: height \sim nematodes

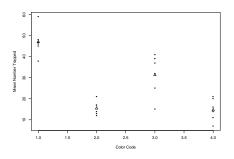
October 11, 2001 9 October 11, 2001 10

```
nematode)
                                                                                                                                           Pr(F)
                                                                                                                                                       12.07974 0.000616
                                     II
                                                                                                                                           F Value
                                   data
                                    num.nema,
                                                         Residuals
                                                                    33.3275
                                                                                                         error: 1.666521
                                                                                                                                            Mean Sq
                                                                                                                                                       33.54896
                                                                                                                                                                  2.77729
Variance Model
                                                                                                                     are balanced
                                                           num.nema
                                                                     100.6469
                                                                                                                                                      100.6469
                                  height
                                                                                                                                           Sum of Sq
                                                                                                                                                                  33.3275
                                                                                                         standard
                                                                                                                     effects
of
                                    II
                                                                     Squares
                                                                                 Freedom
                                   aov(formula
*** Analysis
           Short Output:
                                                                                                                                           DĘ
                                                                                                                                                        \sim
                                                                                                                                                                   12
                                                                                                                    Estimated
                                                                                                                                                        num.nema
                                                                                                                                                                   Residuals
                                                                                                         Residual
                                                                     of
                                                                                 οĘ
                                               Terms:
                      Call:
                                                                      Sum
                                                                                  Deg.
```

Example: Insects and colors

The presence of harmful insects in farm fields is detected by erecting boards covered with a sticky material and then examining the insects trapped on the board. Which colors are most attractive to cereal leaf beetles? 6 boards in 4 colors were placed in a field of oats.

Table 2: Number of cereal leaf beetles trapped


Color		Νι	umber	trapp	ed	
Yellow	45	59	48	46	38	47
White	21	12	14	17	13	17
Green	37	32	15	25	39	41
Blue	16	11	20	21	14	7

October 11, 2001 11 October 11, 2001 12

Summary statistics

Color	n	\bar{X}	s
Yellow	6	47.17	6.79
White	6	15.67	3.33
Green	6	31.50	9.91
Blue	6	14.83	5.34

Figure 1: 1=Yellow, 2=White, 3=Green, 4=Blue

• Sum of squares: Between: 4218.458, Within: 920.500

	Analys	is of \	Analysis of Variance Table	Table		
Source of	Sum of		Mean			
Variation	Squares	d.f.	Square	F-statistic	p-value	
Between Groups						
Within Groups						
Total						