Homework 6

Due 3/28/2002

- 1. For the usual linear model $Y \sim N(X\beta, \phi^{-1}I_n)$ with prior distributions $\beta \sim N(b_o, V_o)$ independent of ϕ and $p(\phi) \propto 1/\phi$:
 - (a) Find the posterior distribution of $\beta | \phi$.
 - (b) Can you find a closed form expression for the posterior distribution of ϕ ? β ?
- 2. For the usual linear model $Y \sim N(X\beta, \phi^{-1}I_n)$ where X is $n \times p$ using Zellner's g-prior: $\beta | \phi \sim N(0, \phi^{-1}g(X'X)^{-1})$ and $p(\phi) \propto 1/\phi$:
 - (a) Show that the marginal distribution of Y, m(Y)

$$m(Y) = \int \int p(y|\beta,\phi) p(\beta|\phi) p(\phi) \ d\beta \ d\phi = \frac{\Gamma(n/2)}{(2\pi)^{n/2} (1+g)^{p/2}} \left(Y'Y - \frac{g}{1+g} Y' P_X Y \right)^{-n/2}$$

where $P_X = X(X'X)^{-1}X'$.

- (b) Taking the (Type II) likelihood for g to be proportional to m(Y) given above, find the (Type II) MLE of g, \hat{g} as a function of the F-statistic $(Y'P_XY/p)/(Y'Q_xY/(n-p))$ used for testing $\beta = 0$.
- (c) One concern with the above estimate is that \hat{g} may be unduly influenced by the intercept. Reparameterize the linear model as follows by centering all covariates:

$$X\beta = 1\alpha_0 + Q_1 X^* \alpha$$

where X^* corresponds to the p-1 columns of X without the column of ones and $Q_1 = I_n - P_1$ and P_1 is the projection matrix onto the space spanned by the vector of ones. Denote Q_1X^* by W. Using a noninformative prior distribution on α_0 ($p(\alpha) \propto c$), a g-prior on α , ($\alpha \sim N(0, \phi^{-1}g(W'W)^{-1})$) and $p(\phi) \propto 1/\phi$, find m(y) and \hat{g} . How do the two Empirical Bayes estimates of g compare?

- 3. Using $\beta | \phi, \tau \sim N(0, (\phi \tau X'X)^{-1})$ (a g-prior with $g = 1/\tau$, and $\tau \sim Gamma(\delta/2, 2/\delta)$ show that $\beta | \phi$ has a multivariate Student t distribution with δ degrees of freedom (be sure to give the location and scale parameters).
- 4. The data in bcherry.txt consist of Volumes (V), diameters (D) and heights (H) of 31 black cherry trees. If trees were shaped like a cylinder their volumes would be approximately $(\pi/4)D^2H$ or on the log-scale $\log(\pi/4) + 2\log(D) + \log(H)$. If trees were shaped like conic sections, the intercept would change but not the coefficients on $\log(D)$ and $\log(H)$. Of course, trees are not perfect geometric forms, so a more general approximate model is that $\log(V)$ is normally distributed with mean $\beta_0 + \beta_1 \log(D) + \beta_2 \log(H)$ and constant variance.
 - (a) Using the above information, construct an informative conjugate prior on the vector of regression coefficients β ; give the means and covariance matrix.
 - (b) Using $p(\phi) \propto 1/\phi$, find the marginal posterior distribution for each β_j (please specify your mean and standard deviation), and construct 95% posterior probability intervals for each of the coefficients.
 - (c) Repeat (b) using Zellner's g-prior with g = n = 31.
 - (d) Repeat (b) using an Empirical Bayes estimate of g.
 - (e) Contrast the usual classical 95 % confidence intervals with the above Bayesian intervals.