STA244

Homework 7

Due 4/16/2001

1. Problem 15.7 in CW.

To obtain case diagnostics in S-Plus, fit a model using the QR option, i.e. mylm.obj <- lm(Y \sim X1 + X2, data=mydataframe, qr=T)

To obtain the case diagnostics, use the function ls.diag() in the command line: mylm.diag <- ls.diag(lm.obj) This will create an object mylm.diag that contains

- leverage mylm.diag\$hat,
- Cook's distance mylm.diag\$cooks
- Externally Studentized residuals mylm.diag\$stud.res

Download Bayesian outlier functions from the web page.

2. The matrix $X'_{(i)}X_{(i)}$ can be written as $X'_{(i)}X_{(i)} = X'X - x_ix'_i$ where x'_i is the *i*th row of X and $X_{(i)}$ is the matrix X with the *i*th row removed. Use this to prove

$$(X'_{(i)}X_{(i)})^{-1} = (X'X)^{-1} + \frac{(X'X)^{-1}x_ix'_i(X'X)^{-1}}{1 - h_{ii}}$$
(1)

3. The quantity $Y_i - x'_i \hat{\beta}_{(i)}$ is the residual for the *i*th case when β is estimated without the *i*th case. Use the above result to show that

$$Y_i - x'_i \hat{\beta}_{(i)} = \frac{\hat{e}_i}{1 - h_{ii}}$$
 (2)

4. Using (1), verify that Cook's distance can be written as

$$D_{i} = \frac{1}{p} r_{i}^{2} \frac{h_{ii}}{1 - h_{ii}}$$
(3)

where $r_i = \hat{e}_i / \sqrt{\hat{\sigma}^2 (1 - h_{ii})}$, the internally Studentized residual.

- 5. Use (1) to prove the relationship between r_i and t_i in equation 15.14 in CW. Show that the two approaches for testing outliers outlined in the text (using the t_i in Equation 15.11 and testing $\delta = 0$ in the model in 15.12) are in fact equivalent. *Hint:* you qill need to prove that $x'_i(X'_{(i)}X_{(i)})^{-1}x_i = h_{ii}/(1-h_{ii})$
- 6. Prove that

$$\hat{\sigma}_{(i)}^2 = \hat{\sigma}^2 \frac{n - p - r_i^2}{n - p - 1}$$