Clustering Gene Expression Data

Harry Zuzan

Room 217 Old Chemistry Building 684-4447

harry@stat.duke.edu

Cell Cycle Experiment

replication and cell cycle progression. Identification of transcription factors regulating DNA

- 1. Synchronize cells in a tissue culture.
- 2. Stimulate cell growth and take tissue samples over 14 time points spanning one cell cycle.
- 3. Extract RNA from the 14 samples and obtain measured expression levels for a large number of genes
- 4. Look for similar expression expression patterns using clustering methods

Organizing Multivariate Data Into Matrices

organized in a matrix in one of two ways. Many programs which analyse these data wish to see them Suppose p genes are measured once on each of n microarrays.

- 1. Let each row correspond to a microarray and each column correspond to a gene
- 2. Let each row correspond to a gene and each column correspond to a microarray.

Today we choose to use arrangement 2.

The Matrix of Observations

where $i \in \{1, \dots, p\}$ and $j \in \{1, \dots, n\}$. Let $x_{i,j}$ be the measurement of gene i from microarray j,

$$\mathbf{X} = [x_{i,j}] = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{p,1} & x_{p,2} & \dots & x_{p,n} \end{bmatrix}$$

Interpreting Rows and Columns

image, standardizing rows can be viewed as image analysis micorarray. Since the data for each column are from the same The columns of X are "snapshots" of gene expression on each

levels of specific genes. Comparing rows to one another can be viewed as **pattern recognition**. The rows of X can be used to reveal changes in expression

Quantifying Similarities and Dissimilarities

dissimilarity must be quantified. on the data contained in X, the idea of similarity or In order to perform a preliminary analysis, such as clustering,

There are two sets of distances to be concerned with in X:

- 1. The set of pairwise distances between columns can be used to identify similar gene expression "snapshots".
- 2. The set of pairwise distances between rows can identify genes with similar behaviour across differing experimental conditions.

Distance Measures

Let \mathbf{x}_q , \mathbf{x}_r and \mathbf{x}_s be any three rows of \mathbf{X} .

between any two rows \mathbf{x}_r and \mathbf{x}_q of \mathbf{X} . Let $d(\mathbf{x}_q, \mathbf{x}_r)$ be a function which generates a distance

Common choice of d is the Euclidean distance.

$$d(\mathbf{x}_q, \mathbf{x}_r) = \sqrt{\sum_{j=1}^{n} (x_{q,j} - x_{r,j})^2}$$

Distance Matrix

Writing $d(\mathbf{x}_q, \mathbf{x}_r)$ as $d_{q,r}$,

$$\mathbf{D} = [\mathbf{d}(\mathbf{x}_q, \mathbf{x}_r)] = \begin{bmatrix} 0 & d_{1,2} & d_{1,3} & \dots & d_{1,p} \\ d_{2,1} & 0 & d_{2,3} & \dots & d_{2,p} \\ d_{3,1} & d_{3,2} & 0 & \dots & d_{3,p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d_{p,1} & d_{p,2} & d_{p,3} & \dots & 0 \end{bmatrix}$$

D is a symmetric matrix.

Clustering Methods

Non-hierarchical

K-means Clustering (1)

hierarchical structure on the clusters. K-means clustering partitions the data without imposing a

K-means Clustering (2)

Clustering the p rows of X into K clusters.

1. Randomly assign each of $\mathbf{x}_1, \ldots, \mathbf{x}_p$, to the K clusters.

- 2. Compute the centroids $y_1, \dots y_K$, of the K clusters.
- 3. In the order $i = 1, \dots, p$, compute the distance between cluster with the closest centroid. \mathbf{x}_i and each of the centroids $\mathbf{y}_1, \dots \mathbf{y}_K$. Assign \mathbf{x}_i to the
- 4. If \mathbf{x}_i was moved to a new cluster update the centroids of both clusters affected.
- Return to step 3 until no more reassignments will take

K-means Clustering (3)

 \mathbf{x}_j is in cluster k. For k = 1, ..., K, let C_k be the set of all j such that column

minimize the quantity K-means clustering tries to find the sets C_1, \ldots, C_K which

$$\sum_{k=1}^{\infty} \sum_{j \in C_k} ||\mathbf{x}_j - \mathbf{y}_k||^2$$

search usually is not possible, even for small data sets which is the sum of squares within clusters. An exhaustive

Hierarchical Clustering

In hierarchical clustering, the data is divided by a binary tree.

Agglomerative Hierarchical Clustering (1)

Suppose the p rows of \mathbf{X} , $[\mathbf{x}_1, \dots, \mathbf{x}_p]$, are to be clustered.

- 1. Start with p clusters, each containing one row of X. And compute the $p \times p$ symmetric matrix of distances between the <u>clusters</u>.
- 2. Search the distance matrix for the smallest distance between \mathbf{x}_q and \mathbf{x}_r . Label these clusters (Q) and (R). between clusters. Suppose the smallest distance is

Agglomerative Hierarchical Clustering (2)

- 3. Merge clusters (Q) and (R). Label the newly formed cluster (QR). Update the entries in the distance matrix
- (a) Deleting the rows and columns corresponding to clusters (Q) and (R).
- (b) Adding in a row and column giving the distances between cluster (QR) and the remaining clusters.
- 4. Repeat steps 2 and 3 a total of p-1 times. All of the p-1 iterations. rows of X will then be found in a single cluster after

Agglomerative Hierarchical Clustering (3)

as: Single linkage, complete linkage or average linkage. is determined by the type of clustering algorithm, such The meaning of smallest distance between clusters

Single Linkage Hierarchical Clustering

nearest neighbours The distance between two clusters is the distance between

contains \mathbf{x}_s and \mathbf{x}_t . The distance between (QR) and (ST) will Suppose cluster (QR) contains \mathbf{x}_q and \mathbf{x}_r , and cluster (ST) $d(\mathbf{x}_r, \mathbf{x}_t)$. be the **minimum** of $d(\mathbf{x}_q, \mathbf{x}_s)$, $d(\mathbf{x}_q, \mathbf{x}_t)$, $d(\mathbf{x}_r, \mathbf{x}_s)$, and

oddly shaped. The single linkage algorithm is also invariant to monotonic transformations of distance d. Single linkage is useful when clusters are well defined but

Complete Linkage Hierarchical Clustering

between any pair of data not in the same cluster. The distance between two clusters is the largest distance

 $d(\mathbf{x}_r, \mathbf{x}_t)$. is the **maximum** of $d(\mathbf{x}_q, \mathbf{x}_s)$, $d(\mathbf{x}_q, \mathbf{x}_t)$, $d(\mathbf{x}_r, \mathbf{x}_s)$, and containing \mathbf{x}_s and \mathbf{x}_t . The distance between (QR) and (ST) Suppose cluster (QR) containing \mathbf{x}_q and \mathbf{x}_r , and cluster (ST)

within some maximum distance. Complete linkage ensures that all data within any cluster are

Average Linkage Hierarchical Clustering

between all pairs of data in opposing clusters The distance between two clusters is the average distance

Suppose cluster (QR) contains \mathbf{x}_q and \mathbf{x}_r , and cluster (ST) the average of $d(\mathbf{x}_q, \mathbf{x}_s)$, $d(\mathbf{x}_q, \mathbf{x}_t)$, $d(\mathbf{x}_r, \mathbf{x}_s)$, and $d(\mathbf{x}_r, \mathbf{x}_t)$. contains \mathbf{x}_s and \mathbf{x}_t . The distance between (QR) and (ST) is

Hierarchical / Non-hierarchical

Hierarchical Clusters

- The same result will be got each time with the same data.
- Can be difficult to decide on a representative member for each cluster. Especially with single linkage.

K-means Clustering

- The final result depends on the initial partition of the data.
- The centroid of each cluster is a natural representation, or summary of its membership.