Bivariate Distributions

Concepts similar to Univariate r.v.

New concepts related with Bivariate r.v.

Joint distribution

Expectation

Marginal distribution

Conditional distribution

Independent r.v.

Covariance, correlation coefficient

Independence of Random Variables

Review the concepts of independence for two events

The random variables z and y are independent if
and only if for all values of x and y

p(z,y) = ps(z)py,(y) = and y are discrete

f(z,y) = fu(z) fy(y) =« and y are continuous

That is, the following are equivalent to the random
variables x and y being independent:

Same for discrete probability functions.

If x and y are independent, then
E(zy) = E(z)E(y)




Covariance

How two variables, say « and y, vary together? For
example, do they cluster along some line?

Can quantity E[zy] be a reasonable measure here?

The covariance is defined as

Cov(z,y) = E[(z — pa) (y — py)]
Note that if x = y, this reduces to the variance a§

An equivalent expression for covariance

Cov(z,y) = Elzy — pay — py® + papsy]
= E(zy) — pepy — Hyta + patty
= E(zy) — papy

Cov(az + b,cy + d) = acCov(zx,y) where a,b,c,d are
constants.

If z and y are independent, then

Cov(z,y) = 0.

Correlation

e It turns out that when the covariance is

normalized by dividing by the product of
oz and oy, then its value will always be in
the interval [—1,1],

Cov
(z,y) <
Oz0y

1< 1

This “normalized covariance” is called the
coefficient of correlation, and usually de-
noted by p:

Cov(z,y)

Oz0y

p=

p=1and p = —1 imply deterministic linear
relationships between x and y, the former
with a positive slope and the latter with
a negative slope. p = 0 implies no linear
relationship between z and y.



| True or False?

The correlation is near -1 when the points are tightly
packed along a line with negative slope.

Correlations near O indicate the scatter plot shows
at least one curve.

Let x be the temperature in NYC and y be temper-
ature in LA in degrees Fahrenheit. Changing y to
degrees Celsius changes the value of the correlation.

Correlation is an appropriate measure for non-linear
relationships too.

A newspaper article contains a quote from a psy-
chologist, who says, “The evidence indicates the
correlation between the research productivity and
teaching rating of faculty members is close to zero.”
The paper reports this as “The professor said that
good researchers tend to be poor teachers, and vice
versa.”

Important Facts about Correlation

e Correlation is not causation.

250

501

Scatter plot of life expectancy of popula-
tion and number of people per TV for 22
countries (1991 data)




Correlation Matrix|

e Correlations can be strongly affected by

. e How to examine many correlations simul-
outliers.

taneously

e The correlation matrix displays correla-
tions for all pairs of variables.

>> cov(lifetv)
ans =
1.0e+03 *

. Correlation = —0.08

0.1180 -0.6596
-0.6596 5.7055

>> corrcoef (lifetv)
ans =

~ Correlation = 0.89

1.0000 -0.8038
-0.8038 1.0000



Independent vs Uncorrelated| Contents in Chap 7

PY Independence |mp||es p= O: |f T and Y are [ ] DIStI’IbutIOHS Of FunCtionS Of r.v.

independent, then
e CDF method (Sec 7.3)

Cov(z,y) = E[(z —pz)(y — py)]
E(z — pz)E(y — py)
= 0

e Simulation (Sec 7.4)

Distribution of Sampling Statistics
e Uncorrelated random variables are NOT nec- * ping

essarily independent. But if they are un- e Definitions (Sec 7.2)
correlated and normal, then they are in-
dependent. e Central Limiting Theorem (Sec 7.5, 7.6)



' The CDF method

e Let w be a function of random variables.

e Find the probability P(w < wg), which is
(dropping the subscript 0) is equal to F'(w).

o fuw(w) =dF(w)/dw.
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Example: y ~ N(u,02). Find the distribution for
w = ay + b where a and b are constants.

Answer: w ~ N(ap + b,a%0?), that is, a linear transfor-

mation of a normal r.v. is still a normal r.v.
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E le 74 x,y~U(0,1 ind dent). Find th - C N
xample y ~ U(0,1) (independent). Find the Distribution for CDF F(y)]

density function for the sum w =z 4+ v.
e What's the range of w?

e What's the joint density function for (z,y)7?

e Use CDF method. First find F(wp) = P(w < wp).

e When wo <1

e When wg >1

Let y be a continuous r.v. with density function f(y)
and CDF F(y).

Q: What's the distribution for w = F(y)?
A: w ~ Uniform(0,1).
Using CDF method:

e There is a one-to-one correspondence between y
values and w values.

w<ws ==y < Yo

e The CDF for w is
P(w < wo) = P(y < yo) = F(yo) = wo.
Therefore the CDF for w is equal to
F(w) = w.

o f(w)=dF(w)/dw=1for0<w<1.
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Example: Height of Plants

Without an automated irrigation system, the
height of plants two weeks after germination
is normally distributed with a mean of 2.5 cen-
timeters and a standard deviation of 0.5 cen-
timeters.

It is reasonable to assume that with an auto-
mated irrigation system, the height of plants
two weeks after germination is also normally
distributed.

How to guess the mean?

14

A statistic is any guantity whose value can
be calculated from sample data. For exam-
ple, sample mean.

A statistic is random variable.

A statistic’s distribution is often called sam-
pling distribution to emphasize that it de-
scribes how the staistic varies in value across
all samples.

The standard error of a statistic is the
standard deviation of its sampling distribu-
tion.
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Some Facts of Normal]

e Linear transformation of a normal is still a
normal: If y ~ N(u,c2), then

ay + b ~ N(apu + b,a°0?).

e Linear combination of normals is still a nor-
mal: If y; ~ N(,u,z',ag), then

a1y1 + aoy2 - - - amym ~ N(u, 02)
where

B = aipi +axus +...ampm

o’ = a%a% + a%a% +... a?na?n
+ > 2a;a5cov(y;, ;)
i
e Ify1,yo,...,ym are independently drawn from

N(u,02), what's the distribution of the sam-
ple mean y7
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'Simulation

Example 7.6&7.7 Simulate the distribution
of sample mean

vi+y2+ys+uvya+ys
5
where y;'s are independently distributed as (1)
Norm(0,1); (2) Unif(0,1); (3) Exp(1).

g:

How to Approximate a distribution by sim-
ulation

(1) generate data from the distribution

(2) draw histogram with height equal to (rel-
ative freq / bin width)

(3) the histogram can be used to approximate
the density

17



function f=sdist(data, bin) Distribution of a random sample of 100 sample
n = length(data); . . .
binsize = range(data)/bin; mean from a Norm(0,1) distribution.
edg= min(data) :binsize:max(data);
[count, junk] = histc(data, edg);

h = bar(edg, count./(n*binsize), ’histc’);
0.8 0.8
m=5; n=1000; 0.6 0.6
y =unifrnd(0,1,n,m)
0.5126 0.6116 0.5014 0.9178 0.1305 04 04
0.2317 0.4498 0.7678 0.0448 0.6383 02 02
0.3946 0.4529 0.4626 0.9537 0.6609
0.3848 0.3681 0.8608 0.3324 0.6767 W =2 0 2 4 YW =2 0 2 4
3 3
mean(y,2) 25 25
0.5348
0.4265 2 2
0.5849 15 15
0.5246 1 1
----- 05 05
sdist (mean(y,2), 25); % os 0 o5 1 % os 0 05 1

18 19



Distribution of a random sample of 100 sample
mean from a Unif(0,1) distribution.
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Distribution of a random sample of 100 sample
mean from a Exp(1) distribution.
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Central Limit Theorem

® y1,...yn are drawn from a distribution in-
dependently with finite mean p and vari-
ance o2, then

Ej =p, Var(y)=o?/n.

e Central Limit Theorem When n is suffi-
ciently large, y can be approximated by a
normal distribution with mean p and vari-
ance o2/n, i.e.,

y—u

o/v/n

~ N(0,1)

e The sampling distribution of a sum of ran-
dom variables

R Y — np
2

~ N(0,1)

no
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