Central Limit Theorem

Normal Approximation to Binomial

® y1,...yn are drawn from a distribution in-
dependently with finite mean p and vari-
ance o2, then

n
Ey = u, Var(y) =o2/n. y= z; vi, Y; = 0,1~ Bernoulli(p)

y ~ Bi(n,p), i.e.

e Central Limit Theorem When n is suffi- o Ey =np, Var(y) = npq
ciently large, y can be approximated by a
normal distribution with mean p and vari-
ance o2/n, i.e.,

By Central Limiting Theorem,

_ Yy—np

x —t2/2
PGy > np+ o) ~ [ 222

e The sampling distribution of a sum of ran-
dom variables

YR Y — np
2

The approximation will be good if both
np > 4 and nqg > 4.
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Continuity Correction for the Normal Approxima-
tion to a Binomial Probability

Let y be a Bin(n,p) and let z = (y —np)//npq. Then
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Example: Height of Plants

Without an automated irrigation system, the
height of plants two weeks after germination
is normally distributed with a mean of 2.5 cen-
timeters and a standard deviation of 0.5 cen-
timeters.

It is reasonable to assume that with an auto-
mated irrigation system, the height of plants
two weeks after germination is also normally
distributed.

How to guess the mean? (parameter estima-
tion)

Does the automated irrigation system have ef-
fects on the heights of plants? (hypothesis
testing)



Concepts of Point Estimate

A point estimate of some population pa-
rameter 6 is a numerical value calculated
from the sample.

A point estimator is a formula or rule that
tells us how to calculate a numerical esti-
mate, denoted by 8(y1,yo,...,yn).

The bias B of an estimator 8 is equal to

B=FE() -6

An estimator f is unbiased if E(9) = 4, i.e.,
B = 0.

e The mean squared error of a point esti-
mator is equal to

E[(9 — E(8) + E@) — 6)?]

Var(8) + B2 why?

E[(6 - 6)?]

e The minimum variance unbiased esti-
mate (MVUE) is the unbiased estimator
0 that has the smallest variance of all un-
biased estimators.



Examples:

Method of Moment]|

e (example 8.1 on page 341) Suppose y1,¥2, ...y, be
a random sample from some distribution with mean
p and variance 02. Show that the sample mean 7
and sample variance s2 are unbiased estimators of

' and o2 e Let y1,yo,...,yn represent a random sam-
ple of size n from some distribution.
kth population moment: E(y*)
kth sample moment.:
e (Exercise 8.3) Suppose y has a binomial distribution k k o k
with parameter n and p. (1) Show that 5 = y/n mk = ity + + Yn
is an unbiased estimator of p; (2) Find the mean n

square error of the estimator p.

e Supose the population distribution has pa-
rameters 64,...,0m. Then the moment
_ _ estimators, 64, ...,0,,, are obtained by equat-
" (Ererdss 8.6) Suppose g~ U2, <L) Shon ing the fist m sample moments to the
bias; (2) Show that 2(y; — 1) is an unbiased esti- corresponding first m population moments
mator of 6. and solving the resulting equations for the
unknown parameters.



Examples: Find the moment estimators. Method of Maximum Likelihood

® Y1L,Y2,- -, Yn ~ ExP(B). (B=19) e Suppose we randomly select a sample of n

observations, yi1,...,yn from a distribution
® Y1,Yo,...,yn ~ Poisson(N\). (A =7) p(y | 6), where 6 is an unknown parameter.

Then the likelihood of the sample is

® y1,¥2,...,yn ~ Gamma(a, §). (see example L) =p(y1]6) -p(y2 | 6) - plyn | )
8.3 on page 346) Note:

® Y1,¥2,- -, yn ~ N(p,02). e The Iikelih(ood is thT ej)oint probability
_ function p(y1,...-,yn when y;'s are

n . 2 I I 7

pi=17 &°= Xiz1 (i —¥) . discrete r.v.

n

Note: The moment estimator of o2 is not e The likelihood is the joint density func-

an unbiased estimator. tion f(y1,---,yn | ) when y;’s are con-
tinuous r.v.

e Once we have observed y;’s, the likeli-
hood function is a function of only the
unknown parameter 6.



How to Find MLE

e Ronald A. Fisher (1890-1962): e MLE 6§ = argmaxy L(6).
One should choose as an estimate of 6 the
value of § that maximizes the likelihood * Solve L Loa L
L(0). P _0 or %% ¢
do dé
and check that the resulting solution is a
e MLE 8 = argmaxy L(6) maximum.

e MLE § = argmaxy log L(6) e Examples:

n (1) (example 8.4) Find the MLE of Exp(83).
L) = ]I p(yil6)

=1
n

log L(0) = log p(y; | )
=1

(2) (example 8.5) Find the MLE of Normal(u, o2).



Complications in Using MLE

e Maximum occurs at a discontinuous point.

Example: Suppose yl,...,y, ~ Unif(0,0). Find
the MLE of 6.

e Close-form solution does not exist

Example: Suppose yl,...,yn» ~ Gamma(a,3).
Find the MLE.
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