Concepts of Point Estimate

A point estimate of some population parameter 6
is a numerical value calculated from the sample.

A point estimator is a formula or rule that tells us
how to calculate a numerical estimate, denoted by

é(ylay2; e ;yn)
The bias B of an estimator 8 is equal to

B=E() -6
An estimator 4 is unbiased if E(d) = 6, i.e., B=0.

The mean squared error of a point estimator is
equal to
E[(6 —6)’] = E[( —E(9) + E(9) - 6)°]
= Var(d) 4+ B?

Method of Moment]|

e Let y1,yo,...,yn represent a random sam-

ple of size n from some distribution.

kth population moment: ]E(yk)

kth sample moment.:
mk — y’f-i—y’g“-i-----l-yli
n

Suppose the population distribution has pa-
rameters 64,...,0m. Then the moment

estimators, 04, ...,0,,, are obtained by equat-

ing the first m sample moments to the
corresponding first m population moments
and solving the resulting equations for the
unknown parameters.



Examples: Find the moment estimators. Method of Maximum Likelihood

® Y1,Y2,-- -, Yn ~ Exp(B). (B=19) e Suppose we randomly select a sample of n

observations, yi1,...,yn from a distribution
® Y1,Yo,...,yn ~ Poisson(N\). (A =17) p(y | 6), where 6 is an unknown parameter.

Then the likelihood of the sample is

® y1,¥2,...,yn ~ Gamma(a, §). (see example L) =p(y1]6) -p(y2 | 6) - plyn | 6)
8.3 on page 346) Note:

® Y1,¥2,-- > yn ~ N(p,02). e The Iikelih(ood is thT ej)oint probability
_ function p(y1,...-,yn when y;'s are

n . 2 I I 7

pi=17y o&°= Xiz1 (i —Y) . discrete r.v.

n

Note: The moment estimator of o2 is not e The likelihood is the joint density func-

an unbiased estimator. tion f(y1,---,yn | ) when y;’s are con-
tinuous r.v.

e Once we have observed y;’s, the likeli-
hood is a function of only the unknown
parameter 6.



How to Find MLE

e Ronald A. Fisher (1890-1962): e MLE § = argmaxy L(6).
One should choose as an estimate of 6 the
value of § that maximizes the likelihood * Solve i Loa 1
L(0). P _o or 9% ¢
do dé
and check that the resulting solution is a
e MLE 8 = argmaxy L(6) maximum.

e MLE § = argmaxy log L(6) e Examples:

n (1) (example 8.4) Find the MLE of Exp(8).
L) = ]I p(yil6)

=1
n

log L(0) = log p(y; | )
=1

(2) (example 8.5) Find the MLE of Normal(u, o2).



Confidence Interval

Complications in Using MLE

e Aim: How to use the sample to calculate

e Maximum occurs at a discontinuous point. two numbers that define an interval that

Example:  Suppose yl,...,y, ~ Unif(0,8). Find will enclose the unknown parameter with
the MLE of 6. certain probability (confidence).

e The resulting random interval is called a
confidence interval.

e The probability that the interval contains

E I S 1 G (e, 6) the unknown parameter is called its confi-
xample: sy Yn ~ ,B). . -

Find tr?e MLE. HPPOSE Y amma(e, 5 dence coefficient.

e Close-form solution does not exist

P(LCLLH<UCL)=1-a

LCL(y1,...,yn): lower confidence limit

UCL(y1,...,yn): upper confidence limit
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Case 1: Normal with Known Variance

Suppose i ~ N(u,c?) with 02 known. Define

c=HE"HF _N(@,1).
g

Locate values z, 5 and —z, /> that place a prob-
ability of a/2 in each tail of N(0,1). For ex-
ample, z o5 = 1.96.

i —p
P20y <Pt < 200)
P(_za/Qa S /3“ — K S za/QG)
Pji = 2000 < 1 < i+ 2420)

1—0{ = P(—Za/2S2,’<Za/2)

Theorem 8.2 Let i ~ N(u,062). Then a (1 —
a)100% confidence interval for p is

ﬁ,—za/za to ﬁ+za/20

Example : ASTM Standard E23 defines standard test
methods for notched bar impact testing of metallic ma-
terials. The Charpy V-notch(CVN) technique measures
impact energy and is often used to determine whether
or not a material experiences a ductile-to-brittle transi-
tion with decreasing temperature. Ten measurements
of impact energy (J) on specimens of A238 steel cut at
60°C are as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3,
64.6, 64.8, 64.2 and 64.3. Assume that impact energy
is normally distributed with o = 1J.

Find a 95% CI for u, the mean impact energy.
=7~ N(p,o0°/n)
1

n = 107 o =1, aa/2 = 225% = 1.96

Y— 20205 < o S Y+ 24/205

1
64.46 —1.96—— < < 64.46 + 1.96
V10 — Ho=
63.84 < u < 65.08

1
v 10

How many specimens must be tested to ensure that the
95% CI of u has a length of at most 1.0J7
(1.96)1

n= [y ]2 = 15.37.



Interpreting a CI|

Can we conclude: The true mean p is within the
interval (63.84, 65.08) with probability 0.957 — NO

The statement 63.84 < u
rect (true with probability 1)
probability 1).

< 65.08 is either cor-
or incorrect (false with

Remember that a CI is a random interval and the
correct interpretation of a 100(1 — a)% CI should
depend on the relative frequency view of probability.

We conclude:

If we were to repeatedly collect a sample
of size n and construct a 95% CI for each
sample, then we expect 95% of the intervals
to enclose the true parameter pu.
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m=20; n=10;
y = normrnd(0, 0.5, m,n);
y_mean = mean(y,2);

e = norminv(0.95)*0.5/sqrt (n)*ones(m,1)

errorbar(l:m, y_mean, e);
h = 1line([1, ml, [0, O]);
set(h, ’color’, [1 0 01);

LCL = y_mean - e;
UCL = y_mean + e;

sum(LCL > 0) + sum(UCL < 0)

ans =
2

0.2

T T
— 90% ClI

0151

01f
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e If y is the sample mean of a random sample
of size n from N(u,c2?), the (1 — a)100%

Clis Sampling Dist Related to Normal
Y= 2a)20/Vn < p <Y+ 24/20/Vn

A random sample y1,y2,...,ys is drawn from N(u,o?).
e The length of the CI is equal to 2za/20/\/ﬁ. sample mean § = 1 Yi
ni:l
2 __ 2?21(2’/@'_9)2
e What's the relationship between the length sample var &% = n—1
of a CI and

e Recall that x?(v) = 22 + 22 4+ --- 4+ 22, where each
. .. Zi N(07 1)
e the confidence coefficient (1 —a)100%7
o (n—1)s%/0% ~x?(n—1)
e the sample size n?
e Let z be a standard normal and x? be a chi-square

Q: How many sample size we should with v degrees of freedom. If z and x2 are indepen-
choose in order to have the length of CI dent, then
less than [g. =~
VX2 /v
2z4/00/vn <o has a Student’s t distribution with v degree of
freedom.
2, )50\ D
n> ( /2 )
lo/2
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Case 2: Normal with Unknown Variance
(Example 8.6) Let 7 and s2 be the sample
mean and variance based on a random Sam-
ple of n normal(u,o2) observations

Define
_ Y—p
p = YTH _ a//n
_ 2
s/Vn \/—(” D=1
~ Student’s t distribution
11—«

- P(_ta/Q,n—l <t< ta/? n—1)
L
= P(- ta/2n 1<S/\/—§ta/2n—1)

= P(y- taj2,n— 1(\/5></~L<y+ta/2n 1(\(/95))

Take a look of Example 8.7
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