- One Sample
 - Estimation of the population mean
 - Estimation of the population proportion
- Two Samples
 - Estimation of the difference between two population means
 (Independent samples, Paired samples)
 - Estimation of the difference between two population proportions

Sampling Distribution

A random sample y_1, y_2, \ldots, y_n is drawn from a distribution with mean μ and variance σ^2

sample mean
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 sample var $s^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}$

• By Central Limiting Theorem,

$$\frac{\bar{y} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

• If σ is unknown,

$$\frac{\bar{y}-\mu}{s/\sqrt{n}}\sim$$
 Student's t distribution

with (n-1) degree of freedom.

 \bullet When n is large,

$$\frac{\bar{y} - \mu}{s/\sqrt{n}} \sim N(0, 1)$$

Estimation of a Population Mean

Textbook: Section 8.5

Population Model : mean μ and variance σ^2

Estimator: $\hat{\mu} = \bar{y}$

Large Sample, $n \ge 30$

Pivotal stat : $z = \frac{\bar{y} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

Approximation: $\sigma \approx s$ when σ is unknown

CI: $\bar{y} \pm z_{\alpha/2}(\frac{s}{\sqrt{n}})$

Small Sample n < 30

Pivotal stat : $z = \frac{\bar{y} - \mu}{s/\sqrt{n}} \sim t_{n-1}$

CI: $\bar{y} \pm t_{\alpha/2,n-1}(\frac{s}{\sqrt{n}})$

Example 8.10: Want to estimate the difference between the mean starting salaries for recent graduates with mechanical engineering and civil engineering degrees.

- (1) Randomly choose 59 ME graduates and record their salaries
- (2) Randomly choose 30 CE graduates and record their salaries

. . .

Generally Setting: Let $\bar{y_1}$ and s_1^2 be the sample mean and sample variance, respectively, of n_1 obs randomly selected from a population with mean μ_1 and variance σ^2 . Similarly, define $\bar{y_2}$ and s_2^2 for an independent random sample of n_2 obs from another population with mean μ_2 and variance σ_2^2 .

How to estimate $\mu_1 - \mu_2$?

Difference Between Two Means $\mu_1 - \mu_2$

Textbook: Section 8.6

Population Models : one with mean μ_1 and variance σ_1^2

another with mean μ_2 and variance σ_2^2

Estimator: $\bar{y_1} - \bar{y_2}$

Independent Samples, Large Sample

Pivotal stat : $z=rac{ar{y_1}-ar{y_2}-(\mu_1-\mu_2)}{\sqrt{(rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2})}}\sim N(0,1)$

Approximation: $\sigma_1 \approx s_1$ and $\sigma_2 \approx s_2$

CI: $(\bar{y_1} - \bar{y_2}) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Independent Samples, Small Sample, $\sigma_1^2 = \sigma_2^2$

Pivotal stat : $z = \frac{\bar{y_1} - \bar{y_2} - (\mu_1 - \mu_2)}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim N(0, 1)$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

CI: $(\bar{y_1} - \bar{y_2}) \pm t_{\alpha/2,n_1+n_2-2} \sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}$

Independent Samples, Small Sample, $\sigma_1^2 \neq \sigma_2^2$

Example: (Cement mixes example from section 8.7) Suppose we want to compare two methods for drying concrete.

Experiment 1: randomly choose 10 cement mixes from among all available mixes and then randomly assign 5 to method 1 and 5 to method 2, ...

Experiment 2 (matched pairs): randomly choose 5 mixes; for each mix, assign one specimen to method 1 and one for method 2, ...

Generally Setting: In the experiment, we have n individuals or experimental objects, and two observations are made on each individual or object. So we have n independent selected pairs $(x_1, y_1), \ldots, (x_n, y_n)$. Let $d_i = x_i - y_i$ record the difference within pairs. Assume that the paired difference d_i 's are from some distribtion with mean μ_d and variance σ_d .

How to estimate the paired difference μ_d

Difference Between Two Means

Matched Pairs

Textbook: Section 8.7

Population Model : pairwise difference $d_1, \ldots d_n$ from a dist

with mean μ_d and variance σ_d^2

Estimator: \bar{d}

Matched Pairs, Large Sample

Pivotal stat : $z=rac{ar{d}-\mu_d}{\sigma_d}\sim N(0,1)$

Approximation: $\sigma_d \approx s_d$ when σ_d is unknown

CI: $ar{d} \pm z_{lpha/2}(rac{s_d}{\sqrt{n}})$

Matched Pairs, Small Sample

Pivotal stat : $z=rac{ar{d}-\mu_d}{s_d}\sim t_{n-1}$

CI: $\bar{d} \pm t_{\alpha/2,n-1}(\frac{s_d}{\sqrt{n}})$

Estimation of a Population Proportion

Example: A quality control inspector may be interested in the proportion of defective items produced on an assembly line...

Textbook: Section 8.8 Population Model : Binomial(n, p)

Estimator: $\hat{p} = y/n$

Large Sample

Pivotal stat : $z=rac{\widehat{p}-p}{\sqrt{pq/n}}\sim N(0,1)$

Approximation: $pq \approx \hat{p}\hat{q}$

CI: $\widehat{p}\pm z_{lpha/2}\sqrt{rac{\widehat{p}\widehat{q}}{n}}$

Difference Between Two Proportions

Example: A quality control inspector may be interested in comparing the proportion p_1 of defective items produced by machine 1 to the proportion p_2 of defective items produced by machine 2...

Textbook: Section 8.9

Population Models : $y_1 \sim \text{Bino}(n_1, p_1)$

 $y_2 \sim \mathsf{Bino}(n_2, p_2)$

Estimator: $\hat{p_1} - \hat{p_2} = y_1/n_1 - y_2/n_2$

Large Sample

Pivotal stat : $z = \frac{\hat{p_1} - \hat{p_2} - (p_1 - p_2)}{\sqrt{\frac{pq}{n_1} + \frac{pq}{n_2}}} \sim N(0, 1)$

Approximation: $p_i q_i \approx \hat{p}_i \hat{q}_i$ for i = 1, 2

CI: $(\widehat{p_1} - \widehat{p_2}) \pm z_{\alpha/2} \sqrt{\frac{\widehat{p}\widehat{q}}{n_1} + \frac{\widehat{p}\widehat{q}}{n_2}}$