
Example : Chris, an Environmental Engineer, wants
to know the Hg concentration of fish in the Eno river.
She takes a rod and reel to a spot in Duke Forest to
try to catch some fish. From past experience she knows
that the average number of fishes she catches per hour
is λ = 6. Let y denote the number of fish she catches
in one hour of fishing. What is the distribution for y?

Divide the time interval (an hour) into n subintervals
(small enough, say, a second) and assume

• the probability of catching more than one fish in a
subinterval is (almost) zero

• the probability of catching a fish is the same for all
subintervals

• the number of fish caught in each subinterval is
independent of other subintervals

Then y has approximately a binomial distribution with
mean µ = n p = λ (Why?), so the probability of catch-
ing a fish in one subinterval must be p = λ/n and the
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probability distribution for y must be approximately
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y!
e−λ for y = 0,1, ... as n → ∞,

the Poisson distribution with mean parameter λ = 6.

Let yt denote the number of fishes she catches in t hours.

Q: What’s the distribution for yt?

A: Poisson with mean parameter λt.

Q: What’s the probability she catches exactly one fish

in twenty minutes?

A: 2e−2 ≈ 0.2707 (λt = 6 ∗ 1/3 = 2; remember units!).



Let z1 denote the waiting time (in hours) be-
fore Chris catches the first fish.

What is the distribution of z1?

• Note that the waiting time is shorter than
any number t if and only if Chris catches
at least one fish in the first t hours... so

F (t) = P (z1 ≤ t)

= P (yt ≥ 1)

= 1 − P (yt = 0)

= 1 − (λt)0

0!
e−λt

= 1 − e−λt, t ≥ 0.

The density function is:

f(t) = F ′(dt)

= λe−λt, t ≥ 0.

This is called the exponential distribution.

2

Let zα denote the waiting time (in hours) be-

fore Chris catches the αth fish, for α = 1,2, ...

What is the distribution of zα?

• Note that the waiting time does not exceed

any number t if and only if Chris catches

at least α fish in the first t hours... so

F (t) = P (yt ≥ α)

=
∞
∑

j=α

(λt)j

j!
e−λt, t ≥ 0

= gammainc(l ∗ t, a) in MatLab.

Differentiating term-by-term leads to some

cancellation (try it!), with:

f(t) = F ′(dt)

=
λαtα−1

Γ(α)
e−λt, t ≥ 0.

This is called the gamma distribution.
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Aside on the Gamma Function

The Gamma distribution is named after the

function Γ(α) in the numerator,

Γ(α) =
∫ ∞

0
tα−1e−t dt

= gamma(a) in MatLab

Γ(α) =

∫ ∞

0
(α − 1)tα−2e−t dt (integrate by pts)

= (α − 1)Γ(α − 1)

= (α − 1)(α − 2)Γ(α − 2)

= (α − 1)(α − 2) · · ·3 · 2 · 1 · Γ(1)

= (α − 1)! for positive integers α

Γ(1) = 0! = 1 = 100,

Γ(10) = 9! = 362880 ≈ 3.6 × 105,

Γ(100) ≈ 10156,

Γ(1000) ≈ 102565,

Γ(α) ≈ αα e−α
√

2π/α (Stirling’s Approx)

lnΓ(α) = gammaln(a) in MatLab

(otherwise it gets HUGE!)
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Exponential and Gamma Distributions

The Exponential distribution is the special case

of the Gamma distribution, with α = 1. Both

distributions are sometimes parametrized by

β = 1/λ, the average time-per-event, and some-

times by λ = 1/β, the average rate of events.

The mean and variance for the exponential

distribution are

µ =

∫ ∞

0
tλe−λt dt

= λ−1 = β (Why?)

σ2 =

∫ ∞

0
(t − λ−1)2λe−λt dt

= λ−2 = β2.
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and, for the gamma distribution,

µ =

∫ ∞

0
t
λαtα−1

Γ(α)
e−λt dt

= αλ−1 = αβ (Why?)

σ2 =

∫ ∞

0
(t − λ−1)2

λαtα−1

Γ(α)
e−λt dt

= αλ−2 = αβ2.

Recall that the Standard Normal Distribu-

tion has mean µ = 0, variance σ2 = 1, and

density function

f(z) =
1√
2π

e−z2/2

It turns out (we’ll see why later) that the square

of a standard normal y = z2 has a gamma dis-

tribution with α = 1/2 and β = 2. This turns

out to be important in statistics when we con-

sider the sum of squared errors in regression.

Chi-Square Distribution

• A chi-square (χ2) random variable is a

gamma-type random variable with α = ν/2
and β = 2 (or λ = 1/2)

f(χ2) = c (χ2)(ν/2)−1 e−χ2/2 χ2 ≥ 0

where

c =
1

2ν/2Γ(ν
2)

• Mean and Variance

µ = ν σ2 = 2ν

• The parameter ν is called the number of

degrees of freedom for the chi-square dis-

tribution.

• Important in statistics: χ2 = z1
1+ ...+zν

2,

each zi a standard normal distribution.
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Failure Time Distributions

• The reliability of a product is the proba-

bility that the product will meet a set of

specifications for a given period of time.

• The failure time of a product is the length

of time that the product performs accord-

ing to specifications.

• The failure time distribution for a prod-

uct is the density function of the failure

time t, denoted by f(t).

• Called survival time in medical applica-

tions (e.g. clinical trials).
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• The probability that the product (or sub-

ject) will fail before any fixed time t0 is

F (t0) =

∫ t0

0
f(t) dt

• Call a product reliable if it survives until

time t0. Then the reliability of the product

(i.e., the probability that it will survive at

least time t0) is

R(t0) = 1 − F (t0),

also called the Survival function S(t0).



Hazard Rates

Given that a product has lasted at least time

t, what is the probability that it will fail in

the next short time period of length dt? Does

this failure rate increase over time, decrease,

or stay the same? What does it look like for

human lifetimes? For computer chips? For

automobile bearings?

• Consider the two events

A : Item fails in the interval (t, t + dt]

B : Item survives until t

P (A |B) =
P (A ∩ B)

P (B)
=

P (A)

P (B)

≈ f(t)dt

1 − F (t)
=

f(t)dt

R(t)
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• The hazard rate for a product is defined

to be

h(t) =
f(t)

1 − F (t)
=

f(t)

R(t)

where f(t) is the density function of the

product’s failure time distribution.

• Note h(t) = −[ln
(

1 − F (t)
)

]′ (chain rule),

so

F (t) = 1 − e−
∫ t
0 h(s) ds, t > 0

and we may recover the distribution func-

tion from the hazard function.

• Example: If h(t) ≡ λ for all t > 0, then

F (t) = 1 − e−
∫ t
0 λ ds = 1 − e−λt, t > 0

the Exponential Distribution with rate λ

(or mean β = 1/λ).



• Example 17.1 The exponential distribution is of-
ten used in industry to model the failure time dis-
tribution of a product.

Find the hazard rate for the exponential distribu-
tion.

F(t) =

∫ t

−∞
f(y) dy =

∫ t

0

λe−λy dy = 1 − e−λt, t > 0.

Then the hazard rate is

h(t) =
f(t)

1 − F(t)
=

λe−λt

1 − (1 − e−λt)
= λ.

• Constant hazard rate implies that the product does
not wear out, that is, it is just as likely to survive one
more hour at any age (Lack of Memory Property)

• In some applications the failure rate may increase
(why?) or decrease (how is that possible?).

• The Weibull distribution allows h(t) ∝ tα−1 for
α > 1 (increasing), α < 1 (decreasing), or a = 1
(exponential).
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Weibull Distribution

• Density Function

f(y) = αλyα−1e−λyα
, y > 0

Two parameters:α, λ > 0

• Mean and Variance

µ = λ−1/αΓ(
α + 1

α
)

σ2 = λ−2/α
[

Γ(
α + 2

α
) − Γ(

α + 1

α
)2

]

• Reliability and Hazard Rate

CDF F (t) =

∫ t

0
αλyα−1e−λyα

dy

= 1 − e−λtα, t > 0

Reliability R(t) = 1 − F (t) = e−λtα

Hazard Rate h(t) =
f(t)

R(t)
= αλtα−1
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Hazard Rate for Weibull Distribution

h(t) =
f(t)

R(t)
= αλtα−1, t > 0

Weibull distribution provides a great deal of

flexibility to model the system when the hazard

rate

• increases with time (bearing wear): α > 1

• decreases with time (semiconductors): α <

1

• constant with time (failures caused by ex-

ternal shocks): α = 1

Note x has the Weibull distribution if and only

if xα has the exponential distribution with rate

λ.
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Plotting of Weibull distribution’s hazard rates and den-

sity functions with β = 1 and various α values.
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Beta Distribution

• The probability density function for a beta-

type random variable is given by

f(y) =
yα−1(1 − y)β−1

B(α, β)
, 0 < y < 1

for parameters α, β > 0 where

B(α, β) =

∫ 1

0
yα−1(1 − y)β−1 dy =

Γ(α)Γ(β)

Γ(α + β)

= beta(a, b) in MatLab

• Recall that

Γ(α) =
∫ ∞

0
yα−1e−y dy

and Γ(α) = (α − 1)! when α is a positive

integer.

• Mean and Variance are

µ =
α

α + β
σ2 =

αβ

(α + β)2(α + β + 1)
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The cumulative distribution function (CDF) of

the beta distribution is called incomplete beta

function.

F (p) =
∫ p

0

yα−1(1 − y)β−1

B(α, β)
dy

= betainc(p, a, b) in MatLab

=
n

∑

j=α

p(j) if α and β are integers,

where p(j) is a binomial probability distribution

with parameters p and n = (α + β − 1).
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Discrete Distributions

Bi(p): Bernoulli: Independent zero-one values with

same probability p of success.

Bi(n, p): Binomial: Number of successes in a fixed

number n of independent trials with the

same probability p of success; also number

of successes when sampling a population

with replacement.

HG(n, A, B): Hypergeometric: Number of successes in

a fixed number n of samples without re-

placement from a finite population of A

successes, B failures.

MN(n, ~p): Multinomial: Numbers of each of k pos-

sible outcomes in a fixed number n of in-

dependent trials with the same outcome

probability vector ~p = {pi}.
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Ge(p): Geometric: Number of independent trials

needed for one success.

NB(p, α): Negative Binomial: Number of indepen-

dent trials needed for α successes.

Po(λ): Poisson: Number of events in a fixed pe-

riod if events in different periods are inde-

pendent with constant rate λ.

Un(n): Uniform: Finite number n of equally-likely

outcomes.



Continuous Distributions

Un(S): Uniform: Density function constant on some

set S.

No(µ, σ2): Normal: Sum or average of large number

of independent quantities.

Ex(β): Exponential: Failure time if hazard is con-

stant 1/β; time-to-first-event distribution

for Poisson with rate λ = 1/β.

We(α, λ): Weibull: Failure time if hazard is power

α − 1.

Ga(α, β): Gamma: Time-to-αth-event distribution for

Poisson with rate λ = 1/β.

Be(α, β): Beta: Order statitics: αth largest (= βth

smallest) of n = α+β −1 indep. uniforms.
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