Example : In the development of a new
receiver for the transmission of digital infor-
mation, each received bit is rated as accept-
able, suspect or unacceptable, depending on
the quality of the received signal, with prob-
abilities 0.9, 0.08 and 0.02, respectively. As-
sume that the ratings of each bit are indepen-
dent.

In the first four bits transmitted, let
x denote the number of acceptable bits
y denote the number of suspect bits
Q: What are the distributions for x and y?
A: x~ Bi(4,0.9) and y ~ Bi(4,0.08).
Q: Are z and y independent?
A: No.

Q: What is the distribution for (z,y)7



Find the Joint Probability Distribution of the pair of
random variables (z,v).

e For example, what is
p(2,1)=P(x=2,y=1)7
e p(2,1) is the probability of having 2 acceptable bits
and 1 suspect bit out of 4.

Q: How many bits are unacceptable?
Al

Q: What's the probability for simple event AASU
A: (0.9)%(0.08)(0.02)

Q: What's the probability for simple event ASUA?

Q: How many simple events are included in event
{x =2,y =1}7

A: 41/(211111)

| |
__P(AASU) = —
211111 211111

p(2,1) = (0.9)2(0.08)(0.02)

e (X,Y)~ MN(4,{0.9,0.08,0.02})



(Bivariate Distribution]

e T he joint probability distribution for two
discrete random variables, x and y—called a
bivariate distribution, is a function p(z,y)
for which

— 0 < p(x,y) <1 for all values of z and y
— Yaz2yb(z,y) =1
e p(xzg,yp) is equal to the probability of

the event {x = 29 AND y = yp}

e The range of the joint distribution is the
collection of all possible values of both =z
and y.



(Marginal Distribution)

e We can recover the (univariate) distribu-
tion of z and y by summing the joint dis-
tribution over the other variable:

P(zx = zg) = ) _p(z0,y) = pz(z0)
Y
and

P(y = yo) = > _p(z,y0) = py(yo)

e There are called marginal (unconditional)
probability distributions of =z and y, be-
cause if we represent p(x,y) as a table,
then these distributions would be row and
column sums, which one might put in the
margins of the table.

e We use the subscript = (as in pz) when we
refer to the marginal probability distribu-
tion of random variable z. Same for py.
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(Conditional Distribution]

e What if I knew that there were 3 acceptable bits
(x = 3), and I was interested in p,(y) given this
information?

e The random variables (x,y) are now known to be
(3,y), i.e., we are only interested in one column in
the table of the bivariate distribution.

Q: How to turn this column into a probability dis-
tribution?

A: Normalize it to sum to 1.

\% p(37y) py|a:(y | 3)
0 .0583 .200

1 2333 .800
p(x) .2916

e Recall that the probability of a bit being suspect is
4 times the probability of a bit being unacceptable.
So this conditional probability distribution makes
sense.



(Conditional Distribution (Cont’d)]

e \We just derived the distribution of y given
x = 3. This is a function of y, which we
denote by

Pyl |3) =Py |z =3)

e If we condition on z taking on any values
for which pz(x) > 0, then we have a func-
tion of two variables, a conditional prob-
ability distribution:

p(z,y) _  pz,y)
py(y)  Xap(z,y)

pm|y($ | y) —

e Note that for any value of y,

> plz|y) =1



(Bivariate Probability Density|

A function of two variables f(z,y) is a bivari-
ate joint probability density function for two
continuous random variables x and vy, if

e f(x,y) > 0 for all values of x and y.

o [0S fz,y)dedy =1

o P((z,y) € R) = [[p f(z,y)dzdy where R is
any region in the (z,y) plane. Specially

d rb
Pla<z<bec<y<d) =// £, y)dady
C a

for all constants a,b,c and d.



(Marginal and Conditional Densities]

e \We can define marginal and conditional den-
sities just as we did for discrete random
variables

e Marginal Densities :
©.@)
fz(x) =/ f(z,y)dy

L) = [ @ y)da

e Conditional Densities :

fy) _  flz,y)
fyy)  JZ% f(z,y)dz
flay) _  f(&y)
fo(z) 25, f(z,y)dy

faly(@ | y)

Fyle( | )
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Independence of Events (Revisit)]

e T he conditional probability that event A
occurs given that event B occurs is defined
to be

P(ANB)

P(A|B) ==

where P(B) > 0.

e Events A and B are independent, if
P(A| B) = P(A)
which is equivalent to

P(AN B) = P(A)P(B)

e Note that if P(A),P(B) > 0, A and B are
mutually exclusive (i.e AN B = ), then
A and B are NOT independent.



(Independence of Random Variables)

e The random variables x and y are inde-
pendent if and only if for all values of x
and y

p(z,y) = pz(z)py(y) = and y are discrete

f(z,y) = fa(x) fy(y) « and y are continuous

e That is, the following are equivalent to the
random variables x and y being indepen-
dent:

o) = fw)

Same for discrete probability functions.

e If x and y are independent, then
E(zy) = E(z)E(y)
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(Expectation)

The expected value of a function of random
variable x and vy, g(z,vy), is defined to be

Elg(z, y)] = zy:;g(w, y)p(z,y)
Elg(z, )] = [[ (e, 9)f(2,y) dady
o B(c) =c
o Elcg(z,y)] = cElg(z, y)]

o Elg1(z,y)+g2(z,y)] = Elg1(z,y)]+El[go(z,y)]
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Q: What's the expectation of a linear combi-
nation of random variables, a1x1 +asxo+-- -+
anxn, Where x; are random variables and a; are
constants?

A

a1E(z1) + -+ + cnE(2n)
aipl + -+ anpn

=
|

Q: What's the variance?

A
2 = E(aiz1 + -+ anzn — ,U)Q
Ela1(z1 — p1) + -+ an(zn — Mn)]Q
= Y aiaE(z; — p)(zj — py)
',j—l
— ZCLQJQ + Z aza]]E(wz Ni)(xj — Nj)
7]

p— Z a,202 —+ Z a;Q; COV(.’JJZ, SCJ)
7

9
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(Covariance|

It is sometimes useful to say something
about how two random variables vary to-
gether.

The covariance is defined as
Cov(z,y) = E[(z — pe)(y — py)]

Note that if x = y, this reduces to the

variance o2

An equivalent expression for covariance

Cov(z,y) Elzy — p2y — pyT + paopy]
E(zy) — papy — pyba + paopy

E(zy) — Mty

If £ and y are independent, then

Cov(zx,y) = 0.
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(Correlation|

e It turns out that when the covariance is
normalized by dividing by the product of
or and oy, then its value will always be in
the interval [—1, 1],

Cov(z,vy) <

—1< 1

O'mO'y

e [ his “normalized covariance” is called the
coefficient of correlation, and usually de-
noted by p:

Cov(z,vy)

P

O'xO'y

e p=1and p = —1 imply deterministic linear
relationships between x and y, the former
with a positive slope and the latter with
a negative slope. p = 0 implies no linear
relationship between z and y.
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(Independent vs Uncorrelated)

e Independence implies p = 0: if x and y are
independent, then

El(z — pe)(y — My)]
E(z — p)E(y — ,UJy)
0

Cov(z,y)

e Uncorrelated random variables are NOT nec-
essarily independent. But if they are un-
correlated and normal, then they are in-

dependent.
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Example: Suppose z,z ~ N(0,1). Define

y=pz+4\/1—p°z
What is the joint distribution for (z,y)?

e ): What's the expectation and variance of y7

A
Ey = pE(z)+1/1—p°E(z)
= 0
Var(y) = E(pz + /1 —p°2)?

P E(z?) + (1 — p*)E(2?)
1

e Q: What's the conditional distribution f,.(y | z)?
A

Ply<b|z) = P(z<

e % 2dy

(b—pz)/\/1-p?
- /_oo \ 2m

(y — px)? 1

1
Foe(y | @) = EQXD{—QH — pQ)}m

e Q: What's the bivariate density function f(x,y)?
15




A:

1 —1

ex
1= 2 PLa 2

where —oco < x,y < oo with parameter —1 < p < 1.

(22 — 2pzy + y2)}

e : What's the marginal density for y7
A:

-1

fy(y)

2(1—p?)

exp{ (z* — 2pzy + y°) }dw

1
/271'\/1—;)2
1
N /27n/1—p2><

exp{ 1
2(1 - p?)
. 1 e_y2/2 %

NoT
—1

27
/ 1 expq

V2r(1 = p?) 2(1 - p?)
. 1 e_y2/2

V2r

[(z — py)® + (1 — p?)y°]}da

(z — py)*}da




(Bivariate Normal Distribution]

Two random variables x and y have a bivariate
normal distribution if the joint density of x

and y is
fo1) eX[){Q(l_—_po)(u2 — 2puv + v2)}
L,Y) —
2mozoyy\/ 1 — p2
where
u T e
Ox
— Y — Ky
Ty
and
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(Properties of Bivariate Normal)

e The mean of (z,y) is (uz, ty)
e The variance of (z,y) is (02,07)
e T he correlation of z and y is p.

e The marginal distribution of x is normal

with mean p; and variance o2

e The marginal distribution of y is normal

with mean y, and variance o2

e The conditional distributions of y | x and
x | y are both normal

e r and y are independent if p = 0.
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Bivariate normal density function and contour
plot with p =20
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Bivariate normal density function and contour
plot with p = 0.8
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Bivariate normal density function and contour
plot with p = —0.9
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