Distributions of Functions of r.v. Methods for finding the density function for a function of one or more random variables: ### (1) The CDF method - ullet Let w be a function of random variables. - Find the probability $P(w \le w_0)$, which is (dropping the subscript 0) is equal to F(w). - $f_w(w) = dF(w)/dw$. **Example 7.3** Suppose the r.v. y has a density function $$f_y(y) = \frac{e^{-y/\beta}}{\beta}, \quad 0 \le y < \infty$$ and let $w(y) = y^2$. Find the density function for w. #### (2) The transformation method The density for r.v. y is known to be $f_y(y)$. Let w be a function (one-to-one) of y, i.e $$w = h(y)$$ $y = h^{-1}(w) = g(w)$ Then, the density for w is equal to $$f_w(w) = f_y(g(w)) \left| \frac{dg(w)}{dw} \right|.$$ #### Why? **Example 7.3** Suppose the r.v. y has a density function $$f_y(y) = \frac{e^{-y/\beta}}{\beta}, \quad 0 \le y < \infty$$ and let $w(y) = y^2$. Find the density function for w. # **Example 7.4** $x, y \sim U(0, 1)$. Find the density function for the sum w = x + y. - What's the range of w? -[0,2] - Find the conditional density $f(w \mid x = x_0)$. $$w = y + x_0 \rightarrow y = w - x_0$$ $f_y(y) = 1_{\{0 \le y \le 1\}}$ $f(w \mid x_0) = 1_{\{0 \le w - x_0 \le 1\}}$ That is, $f(w \mid x) = 1_{\{x \le w \le x+1\}}$. • Find the joint distribution for (w, x). $$f(w,x) = f(w \mid x)f(x) = 1_{\{x < w < x+1\}} 1_{\{0 < x < 1\}}$$ ullet Find the marginal density for w. $$f(w) = \int f(w, x) dx$$ When $w \in [0, 1]$, $$f(w) = \int_0^w dx = w;$$ When $w \in (1,2]$, $$f(w) = \int_{w-1}^{1} dx = 2 - w.$$ # **Distribution for CDF** F(y) Let y be a continuous r.v. with density function f(y) and CDF F(y). Q: What's the distribution for w = F(y)? A: $w \sim \text{Uniform}(0,1)$. Using CDF method: # Simulation - How to generate random data? - Approximate a sampling distribution by simulation - (1) generate data from certain distribution - (2) draw histogram with height equal to (relative freq / bin width) - (3) the histogram can be used to approximate the density • Monte Carlo Integration $$\int h(t)f(t)dt = ?$$ Suppose $f(\cdot)$ is a density function, then $$\int h(t)f(t)dt = \mathbb{E}h(y)$$ where $y \sim f(y)$. Then the expectation can be approximated by $$\frac{1}{n} \sum_{i=1}^{n} h(y_i)$$ where y_1, y_2, \dots, y_n are random samples from the distribution f(y). **Example**: $\int_0^1 \sin(\frac{1}{x})^2 dx = ?$ #### • Mathematica – ans = 0.6735 #### Matlab Code: ``` n=100000; x = unifrnd(0, 1, n,1); mean(sin(1./x).^ 2) Outputs: n=5000, ans = .6769 n=10000, ans = .6813 n=50000, ans= .6730 ``` n=100000, ans = .6738 ## **Sampling Distributions** **Theorem 7.3** A linear combination of normally distributed random variables (even those that are correlated and have different means and variances), is normal distributed. **Example 7.8** Suppose we select independent random samples from two normal populations, n_1 from population 1 and n_2 from population 2. If the means and variances for populations 1 and 2 are (μ_1, σ_1^2) and (μ_2, σ_2^2) , respectively, and if \bar{y}_1 and \bar{y}_2 are the corresponding means. What's the distribution of the difference $\bar{y}_1 - \bar{y}_2$. • $y_1, \ldots y_n$ are drawn from a distribution independently with finite mean μ and variance σ^2 , then $$\mathbb{E}\bar{y} = \mu$$, $\operatorname{Var}(\bar{y}) = \sigma^2/n$. #### • Central Limit Theorem When n is sufficiently large, \bar{y} can be approximated by a normal distribution with mean μ and variance σ^2/n , i.e., $$rac{ar{y}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$ The sampling distribution of a sum of random variables $$\sum_{i=1}^{n} y_i \sim N(n\mu, n\sigma^2)$$ ## Barplot for Binomial Distribution ### Normal Approximation to Binomial • $y \sim \text{Bi}(n, p)$, i.e. $$y = \sum_{i=1}^{n} y_i, \quad y_i = 0, 1 \sim \text{Bernoulli}(p)$$ - $\mathbb{E}y = np$, Var(y) = npq - By Central Limiting Theorem, $$\frac{y-np}{\sqrt{npq}} \sim N(0,1)$$ $$P(y > np + x\sqrt{npq}) \approx \int_{\infty}^{x} \frac{\exp(-t^2/2)}{\sqrt{2\pi}} dt$$ • The approximation will be good if both $np \ge 4$ and $nq \ge 4$. # Continuity Correction for the Normal Approximation to a Binomial Probability Let y be a Bin(n,p) and let $z=(y-np)/\sqrt{npq}$. Then $$P(y \le a) \approx P(z < \frac{a + 0.5 - np}{\sqrt{npq}})$$ $$P(y \ge a) \approx P(z > \frac{a - 0.5 - np}{\sqrt{npq}})$$ $$P(a \le y \le b)$$ $$\approx P(\frac{a - 0.5 - np}{\sqrt{npq}} < z < \frac{b + 0.5 - np}{\sqrt{npq}})$$ ### Sampling Dist Related to Normal A random sample y_1, y_2, \dots, y_n is drawn from $N(\mu, \sigma^2)$. sample mean $$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$ sample var $s^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}$ • $\chi^2 = (n-1)s^2/\sigma^2$ has a chi-square distribution with (n-1) degrees of freedom. Why? • If χ_1^2 and χ_2^2 are **independent** chi-square distribution with v_1 and v_2 degrees of freedom, then $\chi_1^2 + \chi_2^2$ has a chi-square distribution with $(v_1 + v_2)$ degrees of freedom. Why? • Let x be a standard normal and χ^2 be a chi-square with v degrees of freedom. If x and z are independent, then $$t = \frac{z}{\sqrt{\chi^2/v}}$$ has a **Student's t distribution** with v degree of freedom. • Let χ_1^2 and χ_2^2 be independent chi-square distribution with v_1 and v_2 degrees of freedom respectively, then $$F = \frac{\chi_1^2 / v_1}{\chi_2^2 / v_2}$$ has an **F** distribution with v_1 numerator degrees of freedom and v_2 denominator degrees of freedom.