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BROWNIAN MOTION AND RELATED PROCESSES

Karlin & Taylor, A First Course in Stochastic Processes, ch 7, 15

Brownian Motion: Definitions

Brownian motion can be defined and constructed in many ways. Some of these include:
1. A stochastic process Xt with independent, normally distributed increments Xt − Xs ∼

N(0, t − s), continuous paths, and initial value X0 = 0;
2. A Gaussian stochastic process with mean EXt = 0, covariance EXsXt = min(s, t), and

continuous paths;
3. A Markov process Xt with initial value X0 = 0, transition probability

P[Xt ∈ A | Xs = x] =

∫

A

e−(y−x)2/2(t−s) dy
√

2π(t − s)

and continuous paths;
4.∗A process Xt with (a.) independent and (b.) stationary increments (i.e., the random vari-

ables [Xti
− Xti−1

] are independent and have distributions depending only on (ti − ti−1)),
with (c.) continuous paths.

5. A martingale Xt such that X2
t − t is also a martingale, with initial value X0 = 0 and contin-

uous paths.
The only tricky part of constructing Xt is getting continuous paths; it’s pretty easy to get a
process with the right joint distribution for all times t. Note that definitions (4.) and (5.) don’t
even mention the normal distribution; that follows from the other requirements as a consequence
of the Central Limit Theorem.

Here’s one construction, for 0 ≤ t ≤ 1. The idea is to construct a sequence of piecewise-

linear approximations X
(n)
t to Xt, with exactly the correct distribution on all dyadic rationals of

degree n (those of the form i
2n ). The key computation about Brownian motion is that for any

0 ≤ a ≤ b ≤ c < ∞, the conditional distribution of Xb given Xa and Xc is normal with mean

µb = (c−b)Xa+(b−a)Xc

c−a (the linear interpolate) and variance σ2
b = (c−b)(b−a)

c−a ; for a = i
2n , c = i+1

2n ,

and b = a+c
2 = 2i+1

2n+1 , we have µb = 1/2[Xa + Xc] and σ2
b = (1/2)2+n.

Let zi be an iid sequence of N(0, 1) random variables and for each n define random variables
xn

i , 1 ≤ i ≤ 2n, by:
Even: x0

0 = 0 xn+1
2i = xn

i 0 ≤ i ≤ 2n

Odd: x0
1 = z1 xn+1

2i−1 = 1/2[x
n
i−1 + xn

i ] + (1/2)
1+n/2z2n+i 1 ≤ i ≤ 2n

Now define a sequence of processes X
(n)
t by linearly interpolating the X

(n)
i/2n = xn

i ’s:

X
(n)
t = (i − t2n)xn

i−1 + (1 − i + t2n)xn
i . i−1

2n < t ≤ i
2n

By construction X
(n)
t is a Gaussian process with continuous paths, initial value zero, and the

right probability distribution at each nth-order dyadic rational; it remains to show that the X
(n)
t

converge uniformly a.s. and that the limit is Brownian motion. We’ll turn to that next lecture.

∗ With this definition the process will have mean EXt = tµ and variance E(Xt − tµ)2 = tσ2

for some constants µ, σ2; the rescaled process [Xt − tµ]/σ has the usual normalization, µ = 0 and
σ2 = 1.

c©2003 Robert Wolpert, all rights reserved



May 02 STA 205: Probability R. Wolpert

Actually, constructing Brownian motion is in some sense very easy— if Yt is any square-
integrable mean-zero stochastic process starting at zero with independent increments, the func-

tion σ2
s = E[Y 2

s ] must be increasing since, for 0 ≤ s ≤ t, σ2
t = E[

(

Xs + (Xt − Xs)
)2

] =

σ2
s + E(Xt − Xs)

2 ≥ σ2
s . If σ2

s → ∞ as s → ∞, then for each n ≥ 1 and t ≥ 0 we can set

sn(t) = inf[s : σ2
s ≥ nt]

and define

X
(n)
t =

1√
n

Ysn(t); (∗)

for every n, X
(n)
t has independent increments with mean zero and approximately the right co-

variance (exactly the right covariance if σ2
s is strictly increasing). In the limit as n → ∞, the

covariance becomes exactly correct and moreover the Central Limit Theorem applies: for large n
each sn(t) becomes large, and for s < t the increment [Ysn(t) − Ysn(s)] can be thought of as the
sum of very many small and independent increments. Thus the time-change (∗) makes almost
any independent-increment process converge to Brownian motion, and in particular we can con-
struct Brownian Motion as a limit of random walks, Markov chains, or Poisson processes. For the
simple symmetric random walk starting at zero, sn = dnte and

X
(n)
t ≡ n−1/2Ydnte

converges to Brownian Motion; for the Poisson process take X
(n)
t ≡ (Ynt − nt)/

√
n.

Continuous Paths

Most things we might want to compute about any random variable X defined on some probabil-
ity space (Ω,F,P) don’t really depend on (Ω,F,P) at all, but only on the probability distribution,
the induced measure µX = P ◦ X−1 on the real line (R,B). The random variable ξ(ω) = ω on the
probability space (R,B, µX) has the same probability distribution as X, and so we can usually
study features of X without worrying about (Ω,F,P) by using this “canonical probability space”
(R,B, µX). If we have not one but several random variables X1, X2,..., Xn, the same idea works
in n-dimensional space: if µX denotes the joint probability distribution, the canonical space is
(Rn,Bn, µX) on which the random variables ξi(ω) = ωi have the same joint distribution as the
Xi.

What about infinitely many random variables, especially the uncountable infinity of random
variables Xt for Brownian Motion?

Consider the set Ω of continuous real-valued functions on the unit interval starting at zero:
Ω = {Continuous ωt : [0, 1] → R, ω0 = 0}. The supremum gives a natural notion of distance
from one ω to another in Ω, leading to the topological notion of open sets; let F be the smallest
σ-algebra (or Borel Field, BF) containing these open sets, i.e., containing for each ω0 ∈ Ω and
ε > 0 the set

[ω ∈ Ω : sup
0≤s≤1

|ω(s) − ω0(s)| ≤ ε].

(Don’t worry if this seems obscure). The distribution of Brownian Motion is just the probability
measure P on (Ω,F) such that ξt(ω) = ω(t) is a Brownian Motion on (Ω,F,P).

One way to construct P , and with it Brownian Motion, is to look at the distribution Pn in-
duced by the process X (n) defined earlier; if we can show that these measures converge, we can
define P to be their limit and verify that it has the right properties.
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PATH CONTINUITY AND NON-DIFFERENTIABILITY

Richard Durret, Brownian Motion and Martingales in Analysis, pp 1–7

Introduction

Last time we defined Brownian Motion in five ways, including
I. A stochastic process Xt with initial value X0 = 0 with

A. Stationary independent increments [Xt − Xs];
B. Normally distributed increments [Xt − Xs] ∼ N(0, t − s);
C. Continuous paths, almost surely.

Are these consistent? If a process Xt has independent increments, can they also have the speci-
fied Gaussian distributions? If they do, can the process also have continuous paths? If so, is path
continuity a consequence of a. and b.? As we will see, the answers are Yes, Yes, and No, respec-
tively. To clarify the issues let’s consider other SII processes satisfying a. above; three possibili-
ties are:

Brownian Motion Xt : P[Xt − Xs ∈ A] =

∫

A

e−x2/2(t−s) dx
√

2π(t − s)

Cauchy Process Ct : P[Ct − Cs ∈ A] =

∫

A

(t − s) dx

π[(t − s)2 + x2]

Poisson Process Nt : P[Nt − Ns ∈ A] =
∑

x∈A

e−(t−s) (t − s)x

x!

All three distributions are possible for SII processes; to see this it is only necessary to check that
for t1 < t2 < t3, the indicated distribution for [Xt3 − Xt1 ] is the same as that of the sum of in-
dependent random variables with the distributions indicated for [Xt2 − Xt1 ] and [Xt3 − Xt2 ]. It
turns out that this is equivalent to requiring that the characteristic function E[eiaXt ] be of the
form e−tφ(a); for these three distributions the characteristic functions are indeed of that form
with φ(a) = a2/2, |a|, and [1 − eia], respectively.

All three distributions are also almost-surely continuous at every point, in the sense that for
every fixed t, P[Xt = lims→t Xs] = P[Ct = lims→t Cs] = P[Nt = lims→t Ns] = 1. Note that the
Poisson process is constant except for jumps of size one, and so its paths are not continuous—
they are continuous at each fixed t, because the jump times have continuous distributions, but
any interval of length L will contain at least one jump with probability 1 − e−L and so the path
will not be a.s. continuous on that interval. There is no way to construct a Poisson process with
continuous paths; it turns out that there is no way to construct a Cauchy process with continu-
ous paths, either. What about Brownian Motion?

We have constructed Brownian Motion already on the dyadic rationals Q2 from an IID se-
quence zk of N(0, 1) random variables by setting X0 = 0 and X1 = z1 and, recursively, defining
Xt for t = 2i−1

2n+1 by Xt = 1/2[X(i−1)/2n + Xi/2n + zi+2n/
√

2n]. Can we extend the definition to all
0 ≤ t ≤ 1 by continuity, i.e., set Xt ≡ limQ23s→t Xs?

Any continuous function f(x) is uniformly continuous when restricted to a compact set like
[0, 1], and any uniformly continuous function g(x) defined on a set D can be extended to a uni-
formly continuous function on the closure D̄, but in general a function that is merely continuous
on a set D cannot be extended to be continuous on D̄. Pick an irrational ω ∈ (0, 1) (perhaps 1

π
)

and think about the function g(x) = 1[ω,1](x) defined on the dyadic rationals x ∈ Q2; g(x) is con-
tinuous at every rational x, since |g(y) − g(x)| < ε whenever |y − x| < δx = |x − ω|, but is not
uniformly continuous since no single δ will work for all x— and (not coindicentally) g(·) has no
continuous extension to [0, 1].

To extend Xs continuously to Q2 = [0, 1] we must show that Xs is almost surely uniformly

continuous on Q2, i.e., that for a.e. ω, ∀ε∃δω such that 0 ≤ s < t ≤ 1, (t − s) < δω ⇒ |Xt(ω) −
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Xs(ω)| < ε. Note that this is not true for the Poisson process, despite the almost-sure continuity
at each point. The argument for Brownian Motion hinges on the Borel-Cantelli lemma and the
routine calculation for normally-distributed random variables X ∼ N(0, σ2) and real numbers
p > −1,

E[|X|p] =

∫ ∞

−∞
|x|p e−x2/2σ2 dx√

2πσ2

=
2√
π

(

2σ2
)p/2

∫ ∞

0

( x2

2σ2

)p/2

e−x2/2σ2 dx√
2σ2

=
2√
π

(

2σ2
)p/2

∫ ∞

0

( x2

2σ2

)(p−1)/2

e−x2/2σ2 x dx

2σ2

=
Γ
(

p+1
2

)(

2σ2
)p/2

√
π

= cp(σ
2)p/2 (?)

and so, for any γ > 0 and δ > 0,

P

[

|Xj/2n − Xi/2n | >
( j − i

2n

)γ

for some 0 ≤ i < j ≤ 2n, (j − i) ≤ 2δn
]

≤
2n−1
∑

i=0

i+2nδ

∑

j=i+1

P

[

|Xj/2n − Xi/2n | >
( j − i

2n

)γ]

(by subadditivity)

≤
2n−1
∑

i=0

i+2nδ

∑

j=i+1

E[|Xj/2n − Xi/2n |p]
(

j−i
2n

)γp (by Chebychev)

=

2n−1
∑

i=0

i+2nδ

∑

j=i+1

cp

(

j
2n − i

2n

)p/2

(

j−i
2n

)γp (by (?))

= cp

2n−1
∑

i=0

i+2nδ

∑

j=i+1

( j − i

2n

)p(1/2−γ)

≤ cp2
n2nδ

(2nδ

2n

)p(1/2−γ)

= cp2
−nε

where ε = −(1 + δ) + (1 − δ)p( 1/2 − γ). For γ < 1/2 and δ < 1 we can insure ε > 0 by taking
p > 1+δ

(1/2−γ)(1−δ)
. By the Borel-Cantelli lemma, for a.e. ω ∃Nω ∀n ≥ Nω ∀q = i/2n, r = j/2n s.t.

|q − r| < 2−n(1−δ), |Xq − Xr| ≤ (q − r)γ . It follows (see Durrett) that there exists a number cω

such that ∀q, r ∈ Q2 ∩ [0, 1],
|Xq − Xr| ≤ cω(q − r)γ

i.e., that the restriction of Xt to Q2 is a.s. uniformly Hölder continuous of index γ for every γ <
1/2. In fact this is about the best we can do: Xt is a.s. not Hölder continuous of index 1/2 at any
point t, and in particular is not differentiable at any point t. In fact, one of the Laws of the Iter-
ated Logarithm gives

1 = lim sup
s→t

±(Xt − Xs)
√

2(t − s) log log 1/(t − s)
, so lim sup

s→t

|Xt − Xs|√
t − s

= +∞ a.s.
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BROWNIAN SCALING AND REFLECTION

Karlin & Taylor, A First Course in Stochastic Processes, pp 345–351

Introduction

We have just constructed a Brownian Motion process, i.e.,
II. A stochastic process Xt with initial value X0 = 0 with

A. Stationary independent increments [Xt − Xs];
B. Normally distributed increments [Xt − Xs] ∼ N(0, t − s);
C. Continuous paths, almost surely.

Now pick any c ∈ R, c 6= 0, and h > 0 and define four processes Xk(t) from Xt = X(t) as follows:
1. X1(t) = cX(t/c2);
2. X2(t) = tX(1/t) for t > 0, X2(0) = 0;
3. X3(t) = X(t + h) − X(h);
4. X4(t) = (t + 1)X

(

1
t+1

)

− X(1).
It is straightforward to verify that each of these is a Brownian motion satisfying a., b., c. above;
by the way, X4(t) only depends on X(s) for 0 < s ≤ 1, and yields a Brownian motion for all
times 0 ≤ t < ∞ from our earlier construction of Brownian motion only for 0 ≤ s ≤ 1.

It turns out that Property 3. above is true, not only for fixed h > 0, but also for random
τ = τ(ω) > 0 provided τ is a Markov time (a.k.a. stopping time); in particular, it holds for first
hitting times τa = inf[s > 0 : Xs = a]. Since a Brownian Motion has probability 1/2 of being
positive at any time t > 0, it follows that for any time t > 0 and level a ≥ 0,

P
(

[Xt > a]
)

= P
(

[Xt > a] ∩ [τa ≤ t]
)

= P
(

[τa ≤ t]
)

P
(

[Xt > a]
∣

∣[τa ≤ t]
)

= P
(

[τa ≤ t]
)(1

2

)

so, turning things around,

P
(

[τa ≤ t]
)

= 2P
(

[Xt > a]
)

= 2Φ
(−a√

t

)

Starting at X0 = 0, let’s find the probability that Xt = 0 for any t ∈ [t0, t1]. One way to
make this precise is to think about the Markov time τ = inf[t ≥ t0 : Xt = 0] and calculate
P[τ ≤ t1]. If we condition on the value a of Xt0 , this is just the probability that, in time t1 − t0,
the Brownian motion Xt+t0 − Xt0 ever reaches the value |a| in time [t1 − t0]: we just calculated

that this is P[τ ≤ t1 | Xt0 = a] = 2Φ
( −|a|√

t1−t0

)

. Thus the desired probability is

P[τ ≤ t1] = E
[

2Φ
( −|Xt0 |√

t1 − t0

)]

=

∫

2Φ
( −|z|√

t1 − t0

)

e−z2/2t0
dz√
2πt0

=
2

π
arccos

( t0
t1

)

(see text, p.348).

These are intended to illustrate that many features of Brownian motion are amenable to ana-
lytic treatment and exact calculation: this isn’t true for most other processes, but we can often
use calculations for Brownian motion as approximations for other processes. For example, Lévy
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showed that for any t > 0, the Lebesgue measure of the set of times s ≤ t at which Xs is positive
exactly satisfies, for 0 ≤ θ ≤ 1, the relation

P

[λ[s ≤ t | Xs > 0]

t
≤ θ
]

=
2

π
arcsin(θ);

Kakutani showed that the fraction of k ≤ n for which Sk > 0 has approximately that same
distribution, for any sum of i.i.d. rv’s with zero mean and finite variance.

Processes Related to Brownian Motion

1. Brownian Motion with Drift.

Let Xt be a Brownian motion and let x0 ∈ R, µ ∈ R, and σ2 > 0 be arbitrary; the process

X1(t) = x0 + µt + σXt

is called Brownian motion with drift. It has stationary independent increments (with the normal
N(µ(t − s), σ2(t − s)) distribution) and continuous paths starting at X1(0) = x0.

2. Geometric Brownian Motion.

Let X1(t) be a Brownian motion with drift and set

X2(t) = eX1(t) = ex0+µt+σXt .

This is called Geometric Brownian motion, and is useful in modeling positive quantities whose
fractional change is independent over different periods; it is often used in the mathematical the-
ory of finance, and in modeling reservoir levels and related phenomena.

3. Reflected Brownian Motion.

Let X(t) be a Brownian motion and set

X3(t) = |X(t)|

This is called Reflected Brownian motion. The process is positive and Markovian: in fact, for any
x > 0 and y > 0 and t > s > 0,

P[X3(t) ≤ y|X3(s) = x] = P
[

[|X(t)| ≤ y] ∩ [X(s) = x]|X3(s) = x]

+ P
[

[|X(t)| ≤ y] ∩ [X(s) = −x]|X3(s) = x]

= 1/2P
[

[|X(t)| ≤ y]|X(s) = x
]

+ 1/2P
[

[|X(t)| ≤ y]|X(s) = −x
]

= Φ
( y − x√

t − s

)

− Φ
(−y − x√

t − s

)

=

∫ y

0

pt−s(z|x) dz

where the conditional pdf is given by differentiation as

pu(y|x) =
1√
2πu

[

e−(x−y)2/2u + e−(x+y)2/2u
]

.
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THE BROWNIAN BRIDGE
Introduction

Let X be a Brownian Motion process and consider two processes defined as follows for 0 ≤ t ≤ 1:

X1(t) = X(t) − tX(1) X2(t) = (1 − t)X
( t

1 − t

)

.

Obviously each of these is a mean-zero Gaussian process, since X is; the finite-dimensional distri-
butions will be determined completely once we identify the covariance functions

E[X1(s)X1(t)] = E
[(

X(s) − sX(1)
)(

X(t) − tX(1)
)]

= E
[

X(s)X(t) − sX(1)X(t) − X(s)tX(1) + stX(1)X(1)
]

=
[

(s ∧ t) − s(1 ∧ t) − t(s ∧ 1) + st(1 ∧ 1)
]

= s ∧ t − st

E[X2(s)X2(t)] = (1 − s)(1 − t)E
[

X
( s

1 − s

)

X
( t

1 − t

)]

= (1 − s)(1 − t)
[( s

1 − s

)

∧
( t

1 − t

)]

= (1 − s)(1 − t)
( s

1 − s

)

if, say, s ≤ t

= s − st

= s ∧ t − st for any s, t.

Thus both processes have continuous sample paths and mean-zero Normal finite-dimensional dis-
tributions with covariance s ∧ t − st; such a process is called a Brownian Bridge, or sometimes
pinned Brownian motion. It can also be thought of as a Brownian motion conditioned on the
event X(1) = 0. It arises (as we’ll see below) in nonparametric statistical problems, and it can
be used in constructing Brownian motion and related processes. From the second definition it is
clear that X2 is a Markov process, but it does not have independent increments and it is not a
martingale: E[X2(t) − X2(s)|Fs] = − t−s

1−s
X2(s).

The Kolmogorov-Smirnov Statistic

Let Xi be independent and identically distributed from some unknown distribution µX with dis-
tribution function F (t) = P[Xi ≤ t] = µX

(

(−∞, t]
)

. If called upon to guess F (t) from observa-
tions of Xi we would no doubt consider the empirical distribution function

Fn(t) =
#[i ≤ n : Xi ≤ t]

n
=

n
∑

i=1

1(−∞,t](Xi),

a random function of t that starts at Fn(−∞) = 0 and jumps by 1/n at each observation Xi.
Kolmogorov and Smirnov studied the probability distribution of the quantity

Yn = sup
−∞<s<∞

√
n
∣

∣Fn(s) − F (s)
∣

∣,

the (normalized) largest deviation of the empirical distribution function from the true distribu-
tion function; it turns out that Yn has the same probability distribution for any continuous dis-
tribution F (t), and in particular is the same as that for uniformly distributed random variables
with F (t) = t. What is the limiting distribution, as n → ∞?
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Regarded as a stochastic process, Fn has mean and covariance functions

E[Fn(t)] = 1/n

n
∑

i=1

E1(−∞,t](Xi)

= 1/n

n
∑

i=1

P[Xi ≤ t]

= F (t)

E

[(

Fn(s) − F (s)
)(

Fn(t) − F (t)
)]

= E

[(

1/n

n
∑

i=1

(1(−∞,s](Xi) − F (s))
)(

1/n

n
∑

j=1

(1(−∞,t](Xj) − F (t))
)]

= n−2
n
∑

i=1

E

[

(

1(−∞,s](Xi) − F (s)
)(

1(−∞,t](Xi) − F (t)
)

]

= n−1
E

[

(1(−∞,s](X1) − F (s))(1(−∞,t](Xi) − F (t))
]

= n−1
E

[

1(−∞,s∧t](X1) − F (s)1(−∞,t](X1) − 1(−∞,s](X1)F (t) + F (s)F (t)
]

= n−1
[

F (s ∧ t) − F (s)F (t)
]

= n−1
[

F (s) ∧ F (t) − F (s)F (t)
]

Thus
√

n[Fn(t) − F (t)] has the same covariance function as X1(F (t)) for a Brownian Bridge
X1(s); by the Central Limit Theorem, the finite-dimensional distributions of

√
n[Fn(t) − F (t)]

converge weakly to the Normal distribution as n → ∞.

It would be nice to have something stronger— to be able to assert that any continuous func-
tional of

√
n[Fn(t) − F (t)] converges weakly to a similar functional of the Brownian bridge, and

in particular that the Kolmogorov-Smirnov statistic Yn converges to Y = sup0≤t≤1 |X1(t)| in dis-
tribution. For this we need to develop the concept of the distribution of a stochastic process, and
study weak convergence of these distributions.

Distributions

The distribution of an R
1-valued random variable X on some probability space (Ω,F,P) is just

the induced measure µX(B) = P[X ∈ B] = P ◦ X−1 on the Borel sets B of the real line; for

example, X has the N(µ, σ2) distribution if µX(B) = 1√
2πσ2

∫

B
e−(x−µ)2/2σ2

dx and the Poisson

distribution with mean λ if µX(B) =
∑

[e−λλx/x! : x ∈ B].

Similarly the (joint) distribution of n random variables X1, . . . , Xn is just the occupation
measure µX of the vector X ∈ Rn, µX(B) = P[X ∈ B] on the Borel sets Bn in Rn. But what
about stochastic processes, where n = ∞? What is the distribution of Brownian motion, or of the
Brownian bridge, or of the Poisson process or reflected Brownian motion?
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Path spaces

If a real-valued RV takes values in R and a random vector in Rn, then a real-valued stochastic
process Xt defined for t ∈ T = [0, 1] must take values in some set of paths Ω = [ω : T → R], and
the distribution of X must be a probability measure µX on some Borel Field F of subsets of Ω.
The simplest path space to consider is the set of all functions Ω1 = [ω : T → R], and the cylinder

sets F1 generated by the evaluation functionals– i.e., the smallest BF containing sets of the form
[ω : ω(t) ∈ B] for each t ∈ T and Borel set B.

This works, after a fashion: any consistent set of finite-dimensional distributions does deter-
mine a unique measure µX on F1, and the process X : Ω × T → R defined by X(ω, t) = ωt

does have the right probability distribution at each time t. Unfortunately some important sets
of paths E are missing from F1, making it impossible to calculate µX [E]; for example, [ω : t 7→
ωt is continuous] is not an event and even [ω : t 7→ ωt is Lebesgue measurable] is non-measurable.
We can evaluate ωt at fixed times t, but the quantity Y (ω) = sup0≤t≤1 |ωt| is not a random vari-
able (it’s not F1-measurable) and so we can’t calculate its probability distribution. Next time
we’ll look at some alternative path spaces.

Continuous Paths

For Brownian Motion and its relatives, the problem is solved by using the probability space of
continuous functions Ω2 = C = [ω : T → R, t 7→ ωt is continuous]. This is a metric space in the
supremum norm

δ(ω, ω′) = sup
0≤t≤1

|ωt − ω′
t|

and so has a Borel BF B = F2 generated by sets of the form [ω : δ(ω, ω′) < ε] for ε > 0 and
ω′ ∈ C. By the distribution of a path-continuous stochastic process X we will mean the measure
µX induced on (C,B).

PATH SPACES

If a real-valued RV takes values in R and a random vector in Rn, then a real-valued stochas-
tic process Xt defined for t ∈ T = [0, 1] must take values in some set of paths Ω = [ω : T → R],
and the distribution of X must be a probability measure µX on some Borel Field F of subsets of
Ω. Three possible path spaces to consider are:
1. Ω1 = [ω : T → R] The set of all functions T → R

F1 = σ[X−1
t (B)] the cylinder sets generated by the evaluation functionals;

2. Ω2 = C(T : R) the set of all continuous functions T → R

F2 = B
(

C(T : R)
)

the Borel sets generated by [ω′ ∈ C : sup0≤s≤1 |ωs − ω′
s| < ε]

3. Ω3 = D(T : R) the Skorohod space of all right-continuous functions T → R with left limits

F3 = B
(

D(T : R)
)

the Borel sets generated by Skorohod neighborhoods in D.
The simplest one to use is Ω1. This works, after a fashion: any consistent set of finite di-

mensional distributions does determine a unique probability measure µX on F1, and the pro-
cess X : Ω × T → R defined by X(ω, t) = ωt does have the right probability distribution at
each time t. Unfortunately some important sets of paths E are missing from F1, making it im-
possible to calculate µX [E]; for example, [ω : t 7→ ωt is continuous] is not an event and even
[ω : t 7→ ωt is Lebesgue measurable] is non-measurable. We can evaluate ωt at fixed times t, but
the quantity Y (ω) = sup0≤t≤1 |ωt| is not a random variable (it’s not F1-measurable) and so we
can’t calculate its probability distribution.
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Continuous Paths

For Brownian Motion and its relatives, the problem is solved by using the probability space of
continuous functions Ω2 = C = [ω : T → R, t 7→ ωt is continuous]. This is a metric space in the
supremum norm

δ(ω, ω′) = sup
0≤t≤1

|ωt − ω′
t|

and so has a Borel BF B = F2 generated by sets of the form [ω : δ(ω, ω′) < ε] for ε > 0 and ω′ ∈
C. By the distribution of a path-continuous stochastic process X we will mean the measure µX

induced on (C,B). The space Ω3 is suitable for processes with discontinuous paths including the
Poisson process, generalized Poisson process, birth/death processes, Markov chains, the Cauchy
process, and others.

Tightness and Weak Convergence

Any infinite sequence αn ⊂ [0, 1] has a limit point α∞ in [0, 1], and a subsequence αnk
→ α∞;

the proof is the so-called diagonal argument. Start with i = 0, [a0, b0] = [0, 1], and n0j = j;
note that [ai, bi] contains all of the infinite sequence nij. For each i let [ai+1, bi+1] be [ai,

ai+bi

2
] if

that contains infinitely-many of the nij , and otherwise let [ai+1, bi+1] be [ai+bi

2
, bi]; let ni=1,j be

the subsequence of nij which lie in [ai+1, bi+1]. Now the diagonal sequence nii must lie in each
[aj , bj ] for i ≥ j, and so must be a Cauchy sequence converging to the limit α∞ = ∩[ai, bi] in
[0, 1].

In R
n any closed and bounded set K has the property that every infinite sequence αn ⊂ K

has a limit point α∞ ∈ K; such a set K is said to be (sequentially) compact. A set A like (0, 1]
whose closure is compact is sometimes called precompact or conditionally compact; every infinite
sequence αn ⊂ A has a limit point α∞, but it is possible that α∞ /∈ A. In Rn every bounded set
is precompact, but in other metric spaces simple boundedness may not be enough; for example
the functions fn(x) = sin(nπx) are all elements of the space C = Cb(T ) of continuous bounded
functions on T = [0, 1] are all bounded by 1, but no subsequence converges uniformly on T =
[0, 1]. The Arzelà-Ascoli theorem asserts that a set A ⊂ C of continuous functions is precompact
if and only if the elements ω ∈ A are uniformly bounded and equicontinuous, i.e., if and only if:

D. For some B < ∞, |ω(0)| < B for all ω ∈ A;
E. For all ε > 0 there is a δ > 0 such that ∀ω ∈ A, ∀s, t ∈ T , |s − t| < δ ⇒ |ω(s) − ω(t)| < ε.

Now let µn be a sequence of probability measures on the Borel sets B of (0, 1]; the numbers
αn = µn((0, 1/2]) all lie in [0, 1], so along some subsequence n1i the numbers αn1i

converge. Along
a further subsequence n2i the numbers µn((0, 1/4]) and µn((1/2, 3/4]) also converge; along subse-

quence subsequences nki we can insure that µn(A) converges for each interval A = ( j
2k , j′

2k ]. Fi-
nally, along the diagonal sequence µnii

(A) converges for every interval with dyadic-rational end-
points. Is the limit µ∞ a probability measure?

The surprising answer is, maybe not. Think about a sequence µn of measures each giving
probability one to the single point 2−n; the limit ought to give probability one to the limit point
0, but 0 /∈ (0, 1]— and in fact the limit is µ(A) = 0 for all A ⊂ (0, 1]. This is the only thing that
can go wrong, however:

Theorem (Prohorov). Let µn be a sequence of probability measures on the Borel sets F of a

complete separable metric space Ω. Then some subsequence µnk
converges weakly to a subprob-

ability measure µ∞ on F satisfying 0 ≤ µ∞(Ω) ≤ 1. If for each ε > 0 there is a compact set

Kε ⊂ Ω satisfying µn(Kε) ≥ 1 − ε for every n, the sequence µn is said to be tight and necessar-

ily µ∞(Ω) = 1. If every convergent subsequence converges to the same limit point µ∞, then the

entire sequence converges.

Theorem. A family Pn of probability measures on (C,B) is tight if and only if
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F. For each η > 0 there is a B < ∞ such that ∀n, Pn[ω : |ω(0)| > B] < η;

G. For all ε > 0 and η > 0 there is a δ > 0 such that ∀n,

Pn[ω : sup
|s−t|<δ

|ω(s) − ω(t)| > ε] < η.

Corollary (Kolmogorov). A family Pn of probability measures on (C,B) is tight if there exist

numbers α > 0, β > 0, B < ∞, and C < ∞ such that ∀n,

F. En|ω(0)|β ≤ B;

G. En|ω(s) − ω(t)|β ≤ C|t − s|1+α.

Continuous Stochastic Processes

For each finite set J ⊂ T let µJ be a probability measure on |J |-dimensional Euclidean space RJ

such that, for J ⊂ J ′, the measure µJ is the marginal for µJ ′ ; call such a collection of measures a
“consistent finite dimensional distribution.” For example, if m(t) is any function on T and γ(s, t)
is a (positive definite) covariance function, i.e., satisfies

∑

i,j≤n ziz̄jγ(ti, tj) > 0 for every integer
n, complex z1, . . . , zn, and times ti ∈ T , then we can construct a unique consistent finite dimen-
sional distribution such that for each s, t ∈ T , µ{s,t} is bivariate Normal with mean vector and
covariance matrix

(

m(s)
m(t)

) (

γ(s, s) γ(s, t)
γ(t, s) γ(t, t)

)

.

Obviously any measure µ on (Ω1,F1) or on (C,B) induces a consistent family of finite dimen-
sional distributions. Any consistent finite dimensional distribution induces a unique measure on
(Ω1,F1), but it’s harder to induce a measure on (C,B); the Poisson distributions won’t work, for
example, because Poisson sample-paths aren’t continuous. By Kolmogorov’s Corollary above,

Theorem. Let {µJ} be a consistent family of finite dimensional distributions. If there exist pos-

itive constants α > 0, β > 0, and C > 0 such that E|X(s) − X(t)|β ≤ C|t − s|1+α, then {µJ}
induces a unique probability measure on (C,B) and, moreover,

[ω ∈ C : t 7→ ωt is Hölder continuous of index
α

β
− ε]

has µ-measure one for each ε > 0.

In particular, a Gaussian distribution satisfies this condition (with β = 2α) if m(t) is Hölder
continuous of index 1/2 and if |γ(t, s)| ≤ C ′|t − s|; this condition is satisfied by Brownian motion
(with or without drift) and the Brownian bridge.
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THE BROWNIAN BRIDGE REVISITED

Introduction

Last time we presented Kolmogorov’s Theorem, a corollary to a theorem of Prohorov:

Theorem(Kolmogorov). A family µn of probability measures on (C,B) is tight if there exist

numbers α > 0, β > 0, B < ∞, and C < ∞ such that ∀n,

F.
∫

|ω(0)|β dµn ≤ B;

G.
∫

|ω(s)−ω(t)|β dµn ≤ C|t− s|1+α. In this case any limit point µ of {µn} is a probability

measure giving probability one to the set of Hölder continuous functions of index α
β
.

Today we will use this theorem to present another construction of the Brownian Bridge; the
method is quite general, and is an important tool in constructing and studying stochastic pro-
cesses.

Let zn be an iid sequence of standard N(0, 1) random variables and define x0
0 = x0

1 = 0. For
n ≥ 0 and 0 ≤ i < 2n define

xn+1
2i = xn

i

xn+1
2i+1 = 1/2

(

xn
i + xn

i+1 + 2−n/2z2n+i

)

0 ≤ i < 2n

It’s easy to verify that, with this specification, the processes

Xn
t = xn

i + (2nt − i)(xn
i+1 − xn

i ) i
2n ≤ t < i+1

2n

have the Brownian Bridge covariance Γst = (s ∧ t) − st for s, t ∈ 2nN, inducing the Gaussian

measures

µn(B) = P[Xn ∈ B]

on the Borel sets B ∈ B on C.

For s, t not dyadic rationals in 2nN, the covariance of Xn (or µn) may not quite be Γst; a
tedious but straightforward calculation from the definitions shows that EXn

s Xn
t = Γst = (s∧t)−st

if the integer parts of 2s and 2nt differ (b2nsc 6= b2ntc), for example, if |s − t| > 21−n, while if
b2nsc = b2ntc = j, EXn

s Xn
t = (s∧ t)− st− 2−n(1− (2nt− j))(2ns− j) differs from Γst by no more

than 2−n. It follows that E[(Xt+ε − Xt)] = 0 and , for small enough ε, that E[(Xt+ε − Xt)
2] =

ε(1 − ε)(1 − 2−n); in particular, E[|Xt − Xs|β ] ≤ cβ |t − s|β/2 for every β > 0 and Kolmogorov’s
criteria are satisfied.

Let µ be any limit point of the family {µn}; for any 0 ≤ s ≤ t ≤ 1 the function φ(ω) =
eiaωs+ibωt is continuous and bounded on C, so

∫

C φ(ω) dµn converges to
∫

C φ(ω) dµ; this is just
the joint characteristic function of Xs and Xt, which have the bivariate Normal distribution with

mean
( 0
0

)

and covariance
( s s
s t

)

, so

∫

C
eiaωs+ibωt dµn →

∫

C
eiaωs+ibωt dµ

= e−
1/2[a2s(1−s)+2abs(1−t)+b2t(1−t)]

and under µ, Xt(ω) = ωt is a stochastic process with
F. continuous-paths;
G. normal distribution;
H. mean zero;
I. covariance Γst = (s ∧ t) − st.
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This uniquely determines µ as the Brownian Bridge distribution; since {µn} has a unique
limit point, necessarily µn ⇒ µ. We have succeeded in constructing the Brownian Bridge. By the
way, we can now construct a Brownian Motion (or Wiener process) for all time 0 ≤ t < ∞ by the
formula

Wt = (1 + t)X
( t

1 + t

)

.

The technique used in this construction of the Brownian Bridge is quite powerful; the only
features we used of the Brownian bridge were:

J. It has continuous-paths (otherwise, use Skorohod space D);
K. We know how to approximate it by a sequence of processes (2.);
L. It has normally-distributed paths whose increments have mean zero (any Hölder contin-

uous mean function would have been OK) and variance E[(Xt − Xs)
2] = O(|t − s|);

M. We can identify the limit point: it is characterized by its covariance function, in this
case.

The same technique works for many other processes (even for infinite-dimensional ones)
whenever we can verify tightness and recognize the weak limit.

Gaussian Conditional Expectations

Let X be a multivariate Gaussian random vector with expectation vector µ and covariance ma-
trix Σ. For each subset I of indices denote by XI the random vector with components Xi, i ∈ I,

by µI the expectation E[XI ], and by ΣIJ the covariance matrix ΣIJ = E[(XI −µI)(XJ −µJ )T]. If
ΣJJ is nonsingular, a straightforward calculation yields

E[XI |XJ ] = µI + ΣIJΣ
−1
JJ [XJ − µJ ]

V[XI |XJ ] = ΣII − ΣIJΣ
−1
JJΣJI

(in fact, the same formulas work even for singular ΣJJ if we interpret Σ
−1
JJ as the Moore-Penrose

generalized inverse). For mean-zero one-dimensional jointly normal random variables x and y, we
have E[y|x] = (E[xy]/E[x2])x and V[y|x] = E[y2] − E[xy]2/E[x2].

From these formulas we can compute the Brownian Bridge’s conditional expectation for s ≤
t ≤ u as

E[Xt|Xs] =
1 − t

1 − s
Xs

V[Xt|Xs] =
(1 − t)(t − s)

1 − s

E[Xt|Xs, Xu] =
u − t

u − s
Xs +

t − s

u − s
Xu

V[Xt|Xs, Xu] =
(u − t)(t − s)

u − s
and, consequently,

E[(Xt+ε − Xt)|Ft] =
−ε

1 − t
Xt

V[(Xt+ε − Xt)|Ft] = ε − ε2

1 − t

= ε + O(ε2)

E[(Xt+ε − Xt)
2|Ft] = ε − ε2

1 − t
+ [

−ε

1 − t
Xt]

2

= ε + O(ε2)
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Semimartingales

From this calculation E[Xt+ε|Ft] = Xt − ε
1−tXt +O(ε2) it follows that Xt is not a martingale, but

that the process

Wt = Xt +

∫ t

0

Xs

1 − s
ds

is a martingale, with continuous paths and a Gaussian distribution. The covariance function
turns out to be s ∧ t, so Wt is just Brownian motion and we have the curious representation

Xt = X0 +

∫ t

0

−Xs

1 − s
ds + Wt

of Xt as a semimartingale, the sum of a bounded-variation process (here X0 +
∫ t

0
−Xs

1−s ds) and a
martingale. This is our first example of a diffusion and of a stochastic integral.

INTRODUCTION TO STOCHASTIC INTEGRATION

Avner Friedman, Stochastic Differential Equations and Applications, pp. . 55—72

Introduction to Stochastic Integral Equations

Last time we constructed the distribution µ of the Brownian Bridge as a measure on the canoni-
cal space (C,B), and the B.B. itself as the canonical process Xt(ω) = ωt on (C,B, µ). Using nor-
mal distribution theory we calculated the conditional expectations E[Xt+ε|Xt] = Xt − ε

1−tXt and

V[Xt+ε|Xt] = ε − ε2

1−t ; since Xt is Markov, these are the same as the conditional expectations
given the Borel Field generated by the entire past of the process up to time t, Ft = σ[Xs : s ≤ t].

This led to the recognition that Wt = Xt −
∫ t

0
Xs

1−s
ds is a continuous-path Gaussian martingale.

We calculated that the covariance function is EWsWt = s ∧ t and so recognized Wt as the Wiener
process, leading to the representation

Xt =

∫ t

0

−Xs

1 − s
ds + Wt. (∗)

This is our first example of a Stochastic Integral Equation (SIE); given a Brownian Motion
Wt, we can try to “solve” (∗) for the unknown process Xt. One way to proceed is to define a se-
quence of processes by X0

t ≡ 0 and

Xn+1
t =

∫ t

0

−Xn
s

1 − s
ds + Wt;

upon subtracting,

Xn+1
t − Xn

t =

∫ t

0

Xn−1
s − Xn

s

1 − s
ds

so γn
t = sups≤t |Xn+1

s − Xn
s | satisfies γ0

t = sups≤t |Ws| and, for t ≤ 1 − ε,

γn
t ≤

∫ t

0

γn−1
s

1 − s
ds

≤ ε−1

∫ t

0

γn−1
s ds

≤ ε−2

∫ t

0

(t − s)γn−2
s ds

c©2003 Robert Wolpert, all rights reserved



May 02 STA 205: Probability R. Wolpert

≤ ε−3

∫ t

0

(t − s)2

2
γn−3

s ds

≤ ε−n

∫ t

0

(t − s)n−1

(n − 1)!
γ0

s ds.

≤ tn

εnn!
γ0
1 .

Since et/ε sups≤1 |Ws| =
∑∞

n=0
tn

εnn!
γ0
1 < ∞, γn

t → 0 uniformly on t ≤ 1 − ε and Xn
t converges

uniformly on compact sets to a limit Xt satisfying (∗).
Since it’s so easy to construct the Brownian Bridge by solving (∗), and since all we used was

the conditional mean and variance of the infinitesimal increment E[Xt+ε − Xt], maybe we can
use a similar technique for other processes once we know the so-called infinitesimal mean and
variance,

E
[

(Xt+ε − Xt)|Ft

]

= αtε + o(ε) E
[

(Xt+ε − Xt)
2|Ft

]

= βtε + o(ε).

Stochastic Integrals

Stieltjes Integrals

Any finite measure µ on (0, 1] is determined uniquely by its distribution measure G(t) = µ
(

(0, t]
)

,

since the Borel sets are generated by the half-open intervals and µ
(

(a, b]
)

= G(b) − G(a). For any
bounded and continuous function f ,

∫ t

0

f(s)µ(ds) = lim
n→∞

2−n
2nt−1
∑

j=0

f
( j

2n

)[

G
( j + 1

2n

)

− G
( j

2n

)]

,

justifying the (18th-century) Stieltjes notation
∫ t

0
f(s) dG(ds). If G(t) =

∫ t

0
G′(s) ds, this is

∫ t

0

f(s) dG(ds) = lim
n→∞

2−n
2nt−1
∑

j=0

f
( j

2n

)[ 1

2n
G′( j

2n

)

+ o(
1

2n

]

=

∫ t

0

f(s)G′(s) ds;

whether or not G(t) is differentiable, the integration-by-parts formula holds for continuously dif-

ferentiable functions f (note G(0) = 0):
∫ t

0

f(s) dG(ds) = f(t)G(t) −
∫ t

0

f ′(s)G(s) ds.

For step functions f(t) with a constant value bi on each of n intervals (ti, ti+1], the integral is

just
∫ t

0

f(s) dG(ds) =

n−1
∑

i=0

bi

[

G(t ∧ ti+1) − G(t ∧ ti)
]

.
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Wiener Integrals

Now let f(t) be a measurable real-valued function and consider the problem of defining the

Stieltjes-like integral Mt =
∫ t

0
f(s) dWs for Brownian Motion Ws; since Ws is not differentiable,

we can’t use the representation Mt =
∫ t

0
f(s)W ′

s ds as we did for differentiable functions G(t)
above. The other two alternatives do work, however; for continuously differentiable f(t) we can
define

∫ t

0

f(s) dWs = f(t)Wt −
∫ t

0

f ′(s)Ws ds,

or for step functions we can define
∫ t

0

f(s) dWs =

n−1
∑

i=0

bi[Wt∧ti+1
− Wt∧ti

].

In either case
∫ t

0
f(s) dWs is a continuous-path Gaussian martingale with mean zero and variance

E
[

(

∫ 1

0

f(s) dWs)
2
]

= E
[

(
n−1
∑

i=0

bi[Wti+1
− Wti

])(
n−1
∑

j=0

bj [Wtj+1
− Wtj

])
]

=

n−1
∑

i=0

b2
i E[(Wti+1

− Wti
)2] (by independent increments)

=

n−1
∑

i=0

b2
i [ti+1 − ti], and hence covariance

E
[

(

∫ s

0

f(u) dWu)(

∫ t

0

g(u) dWu)
]

=

∫ s∧t

0

f(u)g(u) du.

ITÔ STOCHASTIC INTEGRALS AND DIFFUSIONS

Avner Friedman, Stochastic Differential Equations and Applications, pp. . 55—72

Properties of Stochastic Integrals

Last time we constructed the so-called Wiener stochastic integral process Mt =
∫ t

0
f(s) dWs

for nonrandom square-integrable functions f(s). We defined the integral first for step functions

f(t) =
∑

i bi1(ti ,ti+1] as Mt =
∫ t

0
f(s) dWs =

∑

i bi

[

Wt∧ti+1
− Wt∧ti

]

, then extended by L2

continuity. For continuously differentiable functions f(t) we also defined the integral by parts as

Mt =
∫ t

0
f(s) dWs = f(t)Wt −

∫ t

0
f ′(s)Ws ds. For continuous functions f(t) we have the L2-

convergent formula

Mt =

∫ t

0

f(s) dWs = lim
n→∞

1

2n

2nt−1
∑

j=0

f
( j

2n

)[

W(j+1)/2n − Wj/2n

]

(∗)

which makes it easy to see why the increments Mt − Ms have Gaussian distributions with mean
zero and variance E[(Mt − Ms)

2] =
∫ t

s
f2(u) du.

It was Kyoshi Itô’s observation that the same construction would also work for random inte-
grands f(t), provided that always f(t) is square-integrable and independent of [Wt+ε − Wt]; since
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Wt has independent increments, we can assure that independence by requiring that f(t) be Ft-
measurable for each t. The function ft = Wt satisfies this condition, as does the Brownian Bridge
Xt =

∫ t

0
−Xs

1−s ds + Wt and any function βt = bt(Xt) of t and Xt.
Call a stochastic process βt (such as Wt or bt(Xt)) adapted to the family {Ft} of BF’s if βt is

Ft-measurable for every t, i.e., if [ω : βt(ω) ≤ r] ∈ Ft for each t ≥ 0 and r ∈ R, and let L2
w be

the metric space of adapted processes satisfying E[
∫ 1

0
β2

t dt] < ∞. Any such process βs ∈ L2
2 can

be approximated by an adapted simple function, with a constant Fti
-measurable value bi(ω) on

the interval (ti, ti+1], for which it is easy to calculate the stochastic integral Mt =
∫ t

0
βs dWs =

∑

i bi[Wt∧ti+1
− Wt∧ti

]; the mean and variance of the (usually non-Gaussian) Itô integral M1 are:

E[M1] = E

[

∑

i

bi[Wti+1
− Wti

]
]

=
∑

i

E
[

bi[Wti+1
− Wti

]
]

= 0

V[M1] = E

[

(

∑

i

bi[Wti+1
− Wti

]
)2
]

=
∑

i

E
[

b2
i [Wti+1

− Wti
]2
]

=
∑

i

E[b2
i ][ti+1 − ti]

=

∫ 1

0

E[β2
s ] ds

and, more generally, E[Mt] = 0 and V[Mt] = E[M2
t ] =

∫ t

0
E[β2

s ] ds. Possibly more revealing is the

conditional variance; for continuous βs this is

V[Mt+ε|Ft] =

∫ t+ε

t

E[β2
s |Ft] ds = εβ2

t + o(ε),

so εβ2
t is just the conditional variance of [Mt+ε − Mt], to first order in ε.

If αt ∈ L1
w is a integrable adapted process the indefinite integral

∫ t

0
αs ds is defined in the

usual (Lebesgue or Riemann) way; for any F0-measurable random variable X0, the sum

Xt = X0 +

∫ t

0

αs ds +

∫ t

0

βs dWs

is a continuous-path adapted process whose increments have conditional mean and variance

E[Xt+ε − Xt|Ft] =

∫ t+ε

t

E[αs|Ft] ds

= εαt + o(ε),

V[Xt+ε − Xt|Ft] = εβ2
t + o(ε).

If we restrict our attention to Markov processes Xt, then the conditional mean and vari-
ance εαt and εβ2

t must be not only Ft-measurable, but σ(Xt)-measurable— so, for some functions
at(x) and bt(x), αt = at(Xt) and βt = bt(Xt). This class of functions is called diffusions:

Xt = X0 +

∫ t

0

as(Xs) ds +

∫ t

0

bs(Xs) dWs.
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We have already met several examples, including:
Brownian Bridge: X0 = 0, at(x) = −x

1−t , and bt(x) = 1.
Brownian Motion with Drift: X0 = x0, at(x) = µ, and bt(x) = σ.

Geometric Brownian Motion: X0 = ex0 , at(x) = x(µ + σ2

2
), and bt(x) = xσ.

Reflected Brownian Motion: X0 = 0, as(x) = δ(x), and bs(x) = 1. Here δ(x) denotes
Dirac’s delta function, the (formal) derivative of the function 1[0,∞)(x); reflected Brownian mo-
tion is properly called a diffusion with boundary, and is more complicated to study than the other
processes mentioned.

The remarkable and deep fact is that all continuous-path strong Markov processes are dif-
fusions; see Karlin & Taylor, A Second Course in Stochastic Processes, chapter 15, or Stroock &
Varadhan, Multi-dimension Diffusion Processes, or Itô & McKean, Diffusion Processes and their

Sample Paths (among others).

Itô’s Formula

For any φt(x) ∈ C1+2(R+ × R), Taylor’s formula gives

φt+ε(x + ξ) = φt(x) + ε
∂φ

∂t
+ ξ

∂φ

∂x
+

ξ2

2

∂2φ

∂x2
+ o(ε) + o(ξ2),

and in particular Yt = φt(Xt) satisfies

Yt+ε − Yt = ε
∂φ

∂t
+
(

at(Xt)ε + bt(Xt)[Wt+ε − Wt]
)∂φ

∂x
+ ε

b2
t (Xt)

2

∂2φ

∂x2
+ o(ε),

so Yt = φt(Xt) is itself a diffusion with starting point Y0 = φ0(X0) and diffusion coefficients

ãt(x) =
∂φ

∂t
+ at(x)

∂φ

∂x
+

b2
t (x)

2

∂2φ

∂x2
and b̃t(x) = bt(x)

∂φ

∂x
.

There is a close connection between the diffusion Xt and the differential operator

Lφ ≡ at(x)
∂φ

∂x
+ 1/2b

2
t (x)

∂2φ

∂x2
,

called the Generator of the process; we have just seen that ãt(x) = ∂
∂t

φt(x)+Lφt(x), for example,
so for any φt(x),

Mt = φt(Xt) −
∫ t

0

[∂φ

∂s
+ as(Ys)

∂φ

∂x
+ 1/2b

2
s(Ys)

∂2φ

∂x2

]

ds

is a martingale. This, in fact, is the modern definition of the Diffusion Process with coefficients
as(x) and bs(x). Note that Yt = φt(Xt) is itself a martingale if φ satisfies the parabolic partial
differential equation ∂φ/∂t = −Lφ, i.e.,

0 ≡
[∂φt(x)

∂t
+ at(x)

∂φt(x)

∂x
+ 1/2b

2
t (x)

∂2φt(x)

∂x2

]

.
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Examples

For example, let φt(x) = x2; then Lφ(x) = 2at(x)x + b2
t (x), so Itô’s formula gives

Xt
2 = X0

2 +

∫ t

0

(

2as(Xs)Xs + bs(Xs)
2
)

ds +

∫ t

0

2Xs bs(X)s dWs.

An interesting formula for every diffusion process Xt follows from this:

∫ t

0

2Xs dXs =

∫ t

0

2Xs as(Xs) ds +

∫ t

0

2Xs bs(Xs) dWs

=

∫ t

0

2Xs as(Xs) ds + Xt
2 − X0

2 −
∫ t

0

(

2as(Xs)Xs + bs(Xs)
2
)

ds

= Xt
2 − X0

2 −
∫ t

0

bs(Xs)
2 ds; (∗)

for ordinary integrals we have, of course,
∫ t

0
2f(s) df(s) = f(t)2 − f(0)2, but for stochastic inte-

grals there is an additional term.

Inference

Suppose we observe Xs for 0 ≤ s ≤ t, and believe that Xt is a diffusion process; of course
we can observe the initial value X0, but what can we infer about the coefficients as(x) and bs(x)?
First let’s consider the diffusion coefficient bs(x). There is no hope of inferring anything about
bs(x) away from the observed path (unless we make additional assumptions about the form of
bs(x), but if we know as(x) and bs(x) to be sufficiently smooth in both s and x, then for small
ε > 0 the quadratic variation between s and s+ε is

Qs+ε
s (X) = lim

n→∞

n−1
∑

i=0

(

Xs+(i+1) ε
n
− Xs+i ε

n

)2

= lim
n→∞

n−1
∑

i=0

(

as(Xs)(
ε

n
) + bs(Xs)(Ws+(i+1) ε

n
− Ws+i ε

n
)
)2

+ o(ε)

= bs(Xs)
2 lim

n→∞

n−1
∑

i=0

(Ws+(i+1) ε
n
− Ws+i ε

n
)2 + o(ε)

= bs(Xs)
2 lim

n→∞

n−1
∑

i=0

(
ε

n
)χ2

1 + o(ε) = εbs(Xs)
2 lim

n→∞
χ2

n/n + o(ε)

= εbs(Xs)
2 + o(ε),

so bs(Xs)
2 is observable as limε→0 Qs+ε

s (X)/ε. Since bs(x) is observable, consider diffusions with
constant diffusion coefficient:

Xt = X0 +

∫ t

0

as(Xs) ds + σWt.

What can we learn from the path on 0 ≤ s ≤ t about as(x)? Let’s try to compute the likelihood

for a. For large n set ε = t/n and note that

X(i+1)ε = Xiε + εaiε + σ
(

W(i+1)ε − Wiε

)

+ o(ε).
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The log likelihood for a upon observing only Xiε, i = 0, . . . , n, is

`n(a) = cn − n

2
log(2πεσ2) − 1

2εσ2

∑

0≤i<n

(

X(i+1)ε − Xiε − εaiε(Xiε)
)2

+ o(ε),

for any constant cn; it’s convenient to choose cn so that `n(0) = 0, i.e., cn = n
2 log(2πεσ2) +

1
2εσ2

∑

0≤i<n

(

X(i+1)ε − Xiε

)2
, whereupon

`n(a) =
1

2εσ2

∑

0≤i<n

(

(

X(i+1)ε − Xiε

)2 −
(

X(i+1)ε − Xiε − εaiε(Xiε)
)2
)

+ o(ε)

=
1

2εσ2

∑

0≤i<n

(

2ε
(

X(i+1)ε − Xiε

)

aiε(Xiε) − ε2aiε(Xiε)
2
)

+ o(ε)

= σ−2

∫ t

0

as(Xs) dXs −
1

2σ2

∫ t

0

as(Xs)
2 ds + o(ε)

Now we pass to the limit n → ∞ (and ε → 0), `(a) = σ−2
( ∫ t

0
as(Xs) dXs − 1/2

∫ t

0
as(Xs)

2 ds
)

.

Example 1: Wiener Process

For example, if Xt = X0 + µt + σWt is Brownian motion with constant drift µ and diffusion rate
σ2, then as(x) ≡ µ and the log likelihood becomes

`(µ) = µ(Xt − X0)/σ
2 − µ2t/2σ2;

the MLE estimate is µ̂ = (Xt − X0)/t, while the Bayesian posterior distribution for a flat prior is

µ
∣

∣{Xs : 0 ≤ s ≤ t} ∼ N

(

Xt − X0

t
,
σ2

t

)

.

Example 2: Ornstein-Uhlenbeck

Now if Xt = X0 − β
∫ t

0
Xs ds + σWt, or dXt = −βXt dt + σdWt, then as(x) ≡ −βx and

`(β) = − β

σ2

∫ t

0

Xs dXs −
β2

2σ2

∫ t

0

(Xs)
2 ds

= − β

2σ2

(

Xt
2 − X0

2 − t
)

− β2

2σ2

∫ t

0

(Xs)
2 ds, (by (∗))

so for a uniform prior we would have

β
∣

∣{Xs : 0 ≤ s ≤ t} ∼ N

(

Xt
2 − X0

2 − t

2
∫ t

0
(Xs)2 ds

,
σ2

∫ t

0
(Xs)2 ds

)

.

Testing Hypotheses

The likelihood function provides the basis for testing hypotheses like H0 : Xt is Browian mo-
tion (with no drift) against alternatives like H1 : Xt is a Wiener process (with constant drift)
or H2 : Xt is an O-U process (with linear drift), by finding either P -values or posterior proba-
bilities.
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RANDOM MEASURES

Nonparametric Statistics and Random Measures

Let (X,B) be a measurable space and (Ω,F,P) a probability space; denote by M = M(X,B)
the vector space of σ-finite signed measures on (X,B). If we observe a random variable X ∈ X,
what can we say about its probability distribution µX ∈ M? The fundamental problem of statis-
tics is making inference about µX on the basis of observation of X. In a parametric analysis we
postulate that µX lies in a small family of distributions µX ∈ {Pθ : θ ∈ Θ} (e.g., if X = Rn,
we might postulate that µX lies in the multivariate normal family with constant mean vector
and covariance matrix Σ = σ2I) indexed by a parameter θ lying in a low-dimensional space Θ
(e.g., Θ = {(µ, σ2)} ⊂ R2). If some σ-finite measure ν(dx) dominates all the Pθ(dx), then the
Radon-Nikodym derivative (or density) L(θ, x) = Pθ(dx)/ν(dx) is called the likelihood function

and inference often proceeds either by

1. seeking the value of θ ∈ Θ that maximizes L(θ,X), and studying its properties (the Frequen-
tist approach); or by

2. specifying a “prior” probability measure π(dθ) on Θ, calculating the conditional “posterior”
distribution π(dθ|X), and studying its properties (the Bayesian approach).

In the nonparametric approach no finite-dimensional Θ is postulated: all probability measures
µ ∈ M are regarded as possible distributions for X, and analysis proceeds either by

1. seeking the value of µ ∈ M that maximizes some analogue of the likelihood like µ(dx)/ν(dx)
for a reference measure ν on X, and studying its properties (the Frequentist approach); or by

2. specifying a “prior” probability measure on the possible distributions µ ∈ M, calculating
the conditional “posterior” distribution, and studying its properties (the Bayesian approach).
We can think of µ as a “random measure,” first under a prior distribution and later under a
posterior. We now turn to the study of random measures.

A random measure can be thought of in at least three different ways:
1. A function µ : B × Ω → R, mapping (B,ω) 7→ µ(B,ω) ∈ R;

2. A function µ : Ω → M, mapping ω 7→ µ(·, ω) ∈ M;

3. A function µ : B → L1(Ω,F,P), mapping B 7→ µ(B, ·) ∈ L1(Ω,F,P).

We omit the ω and denote the value by µ(B) in all three cases. The second perspective repre-
sents µ simply as a random variable, taking values in some abstract space M; sometimes that’s
useful in technical arguments, but it is usually easier to think about random measures from the
third perspective, as a family of ordinary random variables indexed by the Borel sets B ∈ B.

Examples

Example 1: Wiener Measure

For any set T , any mean function µ : T → R, and any real positive-definite covariance function
ρ : T × T → R, there exists a probability space (Ω,F,P) and a Gaussian process Xt indexed by
t ∈ T with E[Xt] = µt and E[(Xs − µs)(Xt − µt)] = ρst. In particular we can take T = B, the
Borel sets in X = R+; µB = 0 for all B ∈ B; and ρAB = λ(A ∩ B), the Lebesgue measure of the
intersection. In this case the “cumulative distribution function” (or Stieltjes function) W (t) =
µ
(

(0, t]
)

associated with the random measure µ is just the standard Wiener process, and integrals
∫

f(t)µ(dt) of simple or even L2 functions are just the same as Wiener integrals
∫

f(t) dWt. The
construction is not limited to R1, however, and just as easily leads to n-dimensional Gaussian
measures and Wiener integrals, and the n-parameter analogue of the Wiener process sometimes
called the “Brownian Sheet.”
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Example 2: Brownian Bridge

If we now take T = B((0, 1]), the Borel sets in the unit interval X = (0, 1]; µB = 0 for all B ∈ B;
and ρAB = λ(A ∩ B) − λ(A)λ(B), the cumulative distribution function B(t) = µ

(

(0, t]
)

is just
the standard Brownian Bridge process, and integrals of simple or L2 functions can be written
in terms of Wiener integrals as

∫

f(t)µ(dt) =
∫

f(t) dWt − W1

∫

f(t) dt for any Wiener process
Wt = Bt + tZ, Z ∼ N(0, 1) independent of Bt.

Example 3: The Gamma Process

Preliminaries: Gamma, Beta, and Dirichlet Distributions

If X ∼ Ga(α, 1) and Y ∼ Ga(β, 1) are independent Gamma random variables, then X and Y
have joint density function

f(x, y) dx dy =
xα−1e−x

Γ(α)

yβ−1e−y

Γ(β)
1R+

(x) 1R+
(y) dx dy

so W = X + Y and Z = X
X+Y have joint distribution

f(w, z) dw dz =
(zw)α−1e−zw

Γ(α)

((1 − z)w)β−1e−(1−z)w

Γ(β)
1R+

(w)w dw 1[0,1](z) dz

=
Γ(α + β)

Γ(α)Γ(β)
(z)α−1(1 − z)β−1 1[0,1](z) dz

wα+β−1e−w

Γ(α + β)
1R+

(w) dw

It follows that W and Z are independent with Ga(α + β, 1) and Be(α, β) distributions, respec-
tively; thus the conditional distribution of X, given X + Y = W , is that of W times an indepen-
dent Be(α, β) variable. We will need this for α = β = 1/2n.

The Construction

Let α be a σ-finite nonnegative measure on the space (X,B), and let (Ω,F,P) be a probability
space; the Gamma Process with mean α is a random measure ν : B × Ω → R which assigns inde-
pendent Gamma random variables ν(Λi) ∼ Γ(αi, 1) to disjoint sets Λi ∈ B with finite measures
α(Λi) = αi < ∞. Here is an explicit construction of ν for X = R+:

Let zn
i be a doubly-indexed independent family of random variables with the Beta distribu-

tion Be( 1
2n , 1

2n ); the z0
i are independent with uniform distributions, the z1

i have the Be(1/2, 1/2),
etc. Define a stochastic process Xt at integer times t ∈ N by Xt = x0

t where

x0
t =

t
∑

i=1

− log(z0
i ),

so Xt has independent increments [Xt − Xs] with the Γ(t − s, 1) distribution for integers s, t. For

successive n define Xt at dyadic rational times recursively by Xt = xn
i , t = i/2n, where

xn+1
2i = xn

i

xn+1
2i+1 = xn

i + (xn
i+1 − xn

i )zn+1
i

This defines Xt for all dyadic rational t; by our preliminary observation above, the incre-
ments [Xt−Xs] are independent with the Ga(t−s, 1) distribution. The process Xt is nonnega-
tive and nondecreasing, so we can extend the definition to all of R+ by requiring right-continuity:
Xt = inf[xn

i : t ≤ i/2n]. We will see below that right-continuity is the best we can hope for, i.e.,
that the process Xt does not have continuous sample paths (in fact, it has infinitely many jumps
in every open interval (t, t + ε) almost surely!) For both rational and irrational s < t, the incre-
ments [Xt − Xs] are independent with the Gamma Γ

(

(t − s), 1
)

distributions, and hence with
finite means E[Xt − Xs] = (t − s) and variances V[Xt − Xs] = (t − s).
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Given any σ-finite measure α on R+, define a right-continuous function A(x) = α
(

(0, x]
)

and
a random measure ν by:

ν
(

(s, t]
)

= XA(t) − XA(s)

for the standard Gamma process Xt defined above; we extend by additivity to the field generated
by the half-open intervals (s, t], and by continuity to the Borel sets with finite α-measure, upon
noting that

Eν
(

(s, t]
)

= [A(t) − A(s)] = α
(

(s, t]
)

Vν
(

(s, t]
)

= [A(t) − A(s)] = α
(

(s, t]
)

,

so (by L2 continuity) E[ν(B)] = V[ν(B)] = α(B) for all B ∈ B. We will see below that, almost
surely, ν is a discrete measure concentrated on a (random) countable set of points τi(ω).

Example 4: The Dirichlet Process

Now let α be a finite nonnegative measure on (X,B) and let ν(dx) be a Gamma process random
measure with mean E[ν(dx)] = α(dx); since α(R+) < ∞, ν(R+) is a well-defined random variable
and we can construct

µ(A) =
ν(A)

ν(R+)

for all A ∈ B. Each random variable µ(A) has a Beta Be(α(A), α(Ac)) distribution, and for any
partition Λi of X into n disjoint sets, the n-variate random variables Xi = µ(Λi) have the Dirich-
let D(α1, · · · , αn) distribution with parameters αi = α(Λi). Just as the Gamma process ν was
almost-surely concentrated on a countable set of points τi, so too is the Dirichlet process µ... in
fact, it is the same set {τi}! The Dirichlet process is, almost surely, a discrete distribution.

The Dirichlet Process is an important example, because of its use in nonparametric Bayesian
statistics. The principal result is this:

Theorem. Let µ ∼ Dir(αo) for some finite measure αo and let X1, X2, . . . , Xn be independent

observations all with distribution µω. Then, conditional on X1, . . . , Xn, µ ∼ Dir(αn) for the mea-

sure αn(dx) = αo(dx)+
∑n

i=1 δ(x−Xi) dx equal to αo(dx) plus a unit point mass at each observed

Xi.

Corollary. Under the same conditions, the predictive distribution for Xn+1 assigns mass 1
n+α(R)

to x = Xi for each 1 ≤ i ≤ n and the rest of the mass
α(R)

n+α(R)
to the prior mean,

α(dx)
α(R)

.

Note that, from the corollary, the probability of a tie among the first n variables is

1 −
n−1
∏

i=0

(

α(R)

α(R) + i

)

= 1 − α(R)nΓ
(

α(R)
)

Γ
(

α(R) + n
) ,

arbitrarily close to 1 for large enough n; if the Xi “really” come from any continuous distribu-
tion, no ties will be observed no matter how large n might be. If f(x) is any density at all and
ε > 0, the posterior for a Bayesian prior giving probability ε to µX(dx) = f(x) dx and 1−ε to
µ ∼ Dir(αo) will eventually be concentrated on f(x). This proves that Bayesian analysis can be
inconsistent. See me for more references if you’re interested in this point.

c©2003 Robert Wolpert, all rights reserved



May 02 STA 205: Probability R. Wolpert

Path Discontinuity and SII Processes

A celebrated theorem of Lévy and Khinchine asserts that every stationary, independent incre-
ment (SII) process Xt has a log characteristic function of the form:

log E[eiλXt ] = iλx0 + itλm − t
σ2λ2

2
+ t

∫

R

(

eiλu − 1
)

ν(du)

for some initial value x0, drift m, diffusion constant σ2, and jump rate (“Lévy”) measure ν. If
ν(du) ≡ 0 then Xt is simply Brownian motion with drift, Xt = x0 + mt + σWt; ν(E) is the
rate at which the process jumps by amounts u ∈ E. The total jump rate ν(R) need not be finite,
but ν must satisfy

∫

[1 ∧ |u|]ν(du) < ∞; it’s OK to have infinitely many tiny jumps if they’re
small enough to have a finite sum, almost surely. If µ(R) < ∞ then we can interpret the pro-
cess as one with exponentially distributed waiting times (with means 1/µ(R)) between successive
jumps, which are randomly distributed with distribution µ(du)/µ(R). With a little more work
it’s possible to make sense of processes with jump measures satisfying only the weaker condition
∫

[1 ∧ u2]ν(du) < ∞, but the argument gets more subtle. Ask if you need references.
A standard Poisson process N(t), for example, has characteristic function

E[eiλXt ] =

∞
∑

k=0

e−t t
k

k!
eiλk

= et(eiλ−1),

corresponding to x0 = 0, m = 0, σ2 = 0, and ν(du) = δ(u−1) du. A generalized Poisson process is
a sum Xt =

∑

i uiNi(rit) of re-scaled independent Poissons, which takes jumps of size ui at rate
ri; it has measure ν(du) =

∑

i riδ(ui − u) du. Any SII process can be approximated by the sum
of Brownian motion with drift and a generalized Poisson Process. In particular, its paths will be
continuous if and only if it is Brownian, and if not we can find the rate of jumps by identifying
the Lévy measure ν.

For example, the characteristic function of the standard Gamma Process Xt ∼ Ga(t, 1) is
E[eiλXt ] = (1 − iλ)−t; it has no drift or diffusion part, and has Lévy measure ν(du) satisfying

−t log(1 − iλ) = t

∫

R

(

eiuλ − 1
)

ν(du)

or, after differentiating with respect to λ,

it

1 − iλ
= t

∫

R

iueiuλ ν(du)

But it
∫∞
0

e−u(1−iλ)du = it(1 − iλ)−1, so

ite−u1(0,∞)(u) du = tiu ν(du)

ν(du) = u−1e−u du (u > 0).

This is not a finite measure, so the Gamma process jumps infinitely often in every time interval;
the rate of jumps bigger than ε is

∫∞
ε

e−u/u du, finite for every ε > 0, and the mean sum of all

jumps in time t is t
∫∞
0

ue−u/u du = t.
As interesting exercises, try to find:

1. The Lévy measure ν(du) for the Cauchy process with characteristic function E[eiλXt ] =
e−t|λ|;

2. The joint distribution for the largest jump of the Gamma process Xt ∼ Ga(α
(

dt)
)

in the
time interval (0, t] and the time τ at which it occurs (hint: do α(dt) = dt first);

3. The joint distribution for the largest jump of the Dirichlet process Xt ∼ Dir(α
(

dt)
)

in the
time interval (0, t], and the time τ at which it occurs.
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