Homework 2

Due 1/22/2003

1. Write the following two way analysis of variance (AOV) model with interactions

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

with i = 1, 2, 3, j = 1, 2, k = 1, 2 in matrix notation.

2. Suppose we have a $k \times k$ matrix S partitioned as

$$S = \left[\begin{array}{cc} S_{11} & S_{12} \\ S_{21} & S_{22} \end{array} \right]$$

where S_{11} is $p \times p$, S_{22} is $q \times q$, $S_{12} = S'_{21}$ and k = p + q.

(a) If S is non-singular, show that

$$S^{-1} = \begin{bmatrix} S_{11}^{-1} + BS_{22,1}^{-1}B' & -BS_{22,1}^{-1} \\ -S_{22,1}^{-1}B' & S_{22,1}^{-1} \end{bmatrix}$$

where $S_{22,1} = S_{22} - S_{21}S_{11}^{-1}S_{12}$ and $B = S_{11}^{-1}S_{12}$.

(b) Let W denote the $n \times k$ partitioned matrix

 $W = [\mathbf{1}_n | X]$

with $\mathbf{1}_n$ denoting the $n \times 1$ column ones and X denoting the remaining $n \times p$ matrix of regressors. Find the partitions (blocks) of W'W in terms of n, the vector of sample means \bar{x} , and X'X.

- (c) Find $(W'W)^{-1}$ using the result from (a). Simplify the expression in terms of the $p \times p$ corrected sum of squares matrix $(X 1_n \bar{x}^t)'(X 1_n \bar{x}^t))$.
- (d) If $\mathcal{W} = [\mathbf{1}_n | \mathcal{X}]$ with $\mathcal{X} = (X \mathbf{1}_n \bar{x}^t)$, the matrix of centered regressors, find $(\mathcal{W}'\mathcal{W})^{-1}$.