STA244 1/29/2003

Homework 3

Due 2/5/2001

1. Recall from class that a non-central $\chi^2(m,\mu^2/2)$ can be represented as a Poisson mixture of independent central χ^2 random variables, where $N \sim P(\mu/2)$ and $X|N \sim \chi^2(m+2N,0)$. Show that a $\chi^2(m,\mu^2/2)$ is stochastically larger than a central $\chi^2(m,0)$, i.e. show

$$P(\chi^2(m,0) > x) \le P(\chi^2(m,\mu^2/2) > x)$$

2. A (single) non-central $F(m, n, \mu^2/2)$ is equal in distribution to

$$F \sim \frac{\chi^2(m, \mu^2/2)/m}{\chi^2(n, 0)/n}$$

where the numerator and denominator are independent independent χ^2 random variables. Use the Poisson representation to find the mean and variance of a (single) non-central F random variable with m and n degrees of freedom and non-centrality parameter $\mu^2/2$; assume n>4. Recall: Casella and Berger P. 624: the mean and variance of a central F(m,n) are n/(n-2) and $2(n/(n-2))^2(m+n-2)/(m(n-4))$ respectively.

- 3. Consider the linear model $Y = X\beta + \epsilon$ where X is $n \times p$ matrix and $\epsilon \sim N(0, \sigma^2 I_n)$
 - (a) Show that if X is of full rank r(X) = p, then $P_X = X(X'X)^{-1}X'$ is a rank p orthogonal projection onto the space spanned by the columns of X.
 - (b) Show that $Q_X \equiv I P_X$ is also an orthogonal projection on to the *orthogonal* complement of the span of X, $S(X)^{\perp}$ i.e. if $z \in S(X)^{\perp}$, $z \perp S(X)$. What is the rank of Q_X ?.
 - (c) Find the distribution of $||P_XY||^2/||Q_XY||^2$).
- 4. Show that the vectors $Z_1, \ldots X_p$ created by the Gram-Schmidt procedure form an orthonormal basis for the S(X), where the rank of X is p.

$$Y_1 = X_1/(X_1'X_1)^{1/2} (1)$$

$$W_j = W_j - \sum_{k=1}^{j-1} (X_j' Y_k) Y_k \tag{2}$$

$$Y_j = W_j / (W_j' W_j)^{1/2} (3)$$