This measure on \mathscr{F} is the required extension, because by (3.7) it agrees with P on \mathscr{F}_0 .

Uniqueness and the π - λ Theorem

To prove the extension in Theorem 3.1 is unique requires some auxiliary concepts. A class \mathscr{D} of subsets of Ω is a π -system if it is closed under the formation of finite intersections:

$$(\pi)$$
 $A, B \in \mathscr{P}$ implies $A \cap B \in \mathscr{P}$.

A class \mathcal{L} is a λ -system if it contains Ω and is closed under the formation of complements and of finite and countable *disjoint* unions:

- (λ_1) $\Omega \in \mathscr{S}$;
- (λ_2) $A \in \mathcal{L}$ implies $A^c \in \mathcal{L}$;
- (λ_3) $A_1, A_2, \ldots, \in \mathscr{S}$ and $A_n \cap A_m = \emptyset$ for $m \neq n$ imply $\bigcup_n A_n \in \mathscr{S}$.

Because of the disjointness condition in (λ_3) , the definition of λ -system is weaker (more inclusive) than that of σ -field. In the presence of (λ_1) and (λ_2) , which imply $\emptyset \in \mathcal{L}$, the countably infinite case of (λ_3) implies the finite one.

In the presence of (λ_1) and (λ_3) , (λ_2) is equivalent to the condition that \mathcal{L} is closed under the formation of proper differences:

$$(\lambda', A, B \in \mathcal{L} \text{ and } A \subseteq B \text{ imply } B - A \in \mathcal{L}.$$

Suppose, in fact, that \mathscr{L} satisfies (λ_2) and (λ_3) . If $A, B \in \mathscr{L}$ and $A \subseteq B$, then \mathscr{L} contains B^c , the disjoint union $A \cup B^c$, and its complement $(A \cup B^c)^c = B - A$. Hence (λ_2) . On the other hand, if \mathscr{L} satisfies (λ_1) and (λ_2) , then $A \in \mathscr{L}$ implies $A^c = \Omega - A \in \mathscr{L}$. Hence (λ_2) .

Although a σ -field is a λ -system, the reverse is not true (in a four-point space take \mathscr{L} to consist of \varnothing , Ω , and the six two-point sets). But the connection is close:

Lemma 6. A class that is both a π -system and a λ -system is a σ -field.

PROOF. The class contains Ω by (λ_1) and is closed under the formation of complements and finite intersections by (λ_2) and (π) . It is therefore a field. It is a σ -field because if it contains sets A_n , then it also contains the disjoint sets $B_n = A_n \cap A_1^c \cap \cdots \cap A_{n-1}^c$ and by (λ_3) contains $\bigcup_n A_n = \bigcup_n B_n$.

Many uniqueness arguments depend on *Dynkin's* π - λ theorem:

Theorem 3.2. If \mathscr{P} is a π -system and \mathscr{L} is a λ -system, then $\mathscr{P} \subset \mathscr{L}$ implies $\sigma(\mathscr{P}) \subset \mathscr{L}$.

PROOF. Let \mathcal{L}_0 be the λ -system generated by \mathscr{P} —that is, the intersection of all λ -systems containing \mathscr{P} . It is a λ -system, it contains \mathscr{P} , and it is contained in every λ -system that contains \mathscr{P} (see the construction of generated σ -fields, p. 21). Thus $\mathscr{P} \subset \mathcal{L}_0 \subset \mathcal{L}$. If it can be shown that \mathcal{L}_0 is also a π -system, then it will follow by Lemma 6 that it is a σ -field. From the minimality of $\sigma(\mathscr{P})$ it will then follow that $\sigma(\mathscr{P}) \subset \mathcal{L}_0$, so that $\mathscr{P} \subset \sigma(\mathscr{P}) \subset \mathcal{L}_0 \subset \mathscr{L}$. Therefore, it suffices to show that \mathcal{L}_0 is a π -system.

For each A, let \mathcal{L}_A be the class of sets B such that $A \cap B \in \mathcal{L}_0$. If A is assumed to lie in \mathcal{P} , or even if A is merely assumed to lie in \mathcal{L}_0 , then \mathcal{L}_A is a λ -system: Since $A \cap \Omega = A \in \mathcal{L}_0$ by the assumption, \mathcal{L}_A satisfies (λ_1) . If $B_1, B_2 \in \mathcal{L}_A$ and $B_1 \subset B_2$, then the λ -system \mathcal{L}_0 contains $A \cap B_1$ and $A \cap B_2$ and hence contains the proper difference $(A \cap B_2) - (A \cap B_1) = A \cap (B_2 - B_1)$, so that \mathcal{L}_A contains $B_2 - B_1$: \mathcal{L}_A satisfies (λ'_2) . If B_n are disjoint \mathcal{L}_A -sets, then \mathcal{L}_0 contains the disjoint sets $A \cap B_n$ and hence contains their union $A \cap (\bigcup_n B_n)$: \mathcal{L}_A satisfies (λ_3) .

If $A \in \mathcal{P}$ and $B \in \mathcal{P}$, then $(\mathcal{P} \text{ is a } \pi\text{-system})$ $A \cap B \in \mathcal{P} \subset \mathcal{L}_0$, or $B \in \mathcal{L}_A$. Thus $A \in \mathcal{P}$ implies $\mathcal{P} \subset \mathcal{L}_A$, and since \mathcal{L}_A is a λ -system, minimality gives $\mathcal{L}_0 \subset \mathcal{L}_A$.

Thus $A \in \mathcal{P}$ implies $\mathcal{L}_0 \subset \mathcal{L}_A$, or, to put it another way, $A \in \mathcal{P}$ and $B \in \mathcal{L}_0$ together imply that $B \in \mathcal{L}_A$ and hence $A \in \mathcal{L}_B$. (The key to the proof is that $B \in \mathcal{L}_A$ if and only if $A \in \mathcal{L}_B$.) This last implication means that $B \in \mathcal{L}_0$ implies $\mathcal{P} \subset \mathcal{L}_B$. Since \mathcal{L}_B is a λ -system, it follows by minimality once again that $B \in \mathcal{L}_0$ implies $\mathcal{L}_0 \subset \mathcal{L}_B$. Finally, $B \in \mathcal{L}_0$ and $C \in \mathcal{L}_0$ together imply $C \in \mathcal{L}_B$, or $B \cap C \in \mathcal{L}_0$. Therefore, \mathcal{L}_0 is indeed a π -system.

Since a field is certainly a π -system, the uniqueness asserted in Theorem 3.1 is a consequence of this result:

Theorem 3.3. Suppose that P_1 and P_2 are probability measures on $\sigma(\mathcal{P})$, where \mathcal{P} is a π -system. If P_1 and P_2 agree on \mathcal{P} , then they agree on $\sigma(\mathcal{P})$.

PROOF. Let \mathscr{L} be the class of sets A in $\sigma(\mathscr{P})$ such that $P_1(A) = P_2(A)$. Clearly $\Omega \in \mathscr{L}$. If $A \in \mathscr{L}$, then $P_1(A^c) = 1 - P_1(A) = 1 - P_2(A) = P_2(A^c)$, and hence $A^c \in \mathscr{L}$. If A_n are disjoint sets in \mathscr{L} , then $P_1(\bigcup_n A_n) = \sum_n P_1(A_n) = \sum_n P_2(A_n) = P_2(\bigcup_n A_n)$, and hence $\bigcup_n A_n \in \mathscr{L}$. Therefore \mathscr{L} is a λ -system. Since by hypothesis $\mathscr{P} \subset \mathscr{L}$ and \mathscr{P} is a π -system, the π - λ theorem gives $\sigma(\mathscr{P}) \subset \mathscr{L}$, as required.

Note that the π - λ theorem and the concept of λ -system are exactly what are needed to make this proof work: The essential property of probability measures is countable additivity, and this is a condition on countable *disjoint* unions, the only kind involved in the requirement (λ_3) in the definition of λ -system. In this, as in many applications of the π - λ theorem, $\mathcal{L} \subset \sigma(\mathcal{P})$ and therefore $\sigma(\mathcal{P}) = \mathcal{L}$, even though the relation $\sigma(\mathcal{P}) \subset \mathcal{L}$ itself suffices for the conclusion of the theorem.

Monotone Classes

A class \mathcal{M} of subsets of Ω is *monotone* if it is closed under the formation of monotone unions and intersections:

- (i) $A_1, A_2, \ldots \in \mathcal{M}$ and $A_n \uparrow A$ imply $A \in \mathcal{M}$;
- (ii) $A_1, A_2, \ldots \in \mathcal{M}$ and $A_n \downarrow A$ imply $A \in \mathcal{M}$.

Halmos's monotone class theorem is a close relative of the π - λ theorem but will be less frequently used in this book.

Theorem 3.4. If \mathcal{F}_0 is a field and \mathscr{M} is a monotone class, then $\mathcal{F}_0 \subset \mathscr{M}$ implies $\sigma(\mathcal{F}_0) \subset \mathscr{M}$.

PROOF. Let $m(\mathcal{F}_0)$ be the minimal monotone class over \mathcal{F}_0 —the intersection of all monotone classes containing \mathcal{F}_0 . It is enough to prove $\sigma(\mathcal{F}_0) \subset m(\mathcal{F}_0)$; this will follow if $m(\mathcal{F}_0)$ is shown to be a field, because a monotone field is a σ -field.

Consider the class $\mathscr{G} = [A: A^c \in m(\mathscr{F}_0)]$. Since $m(\mathscr{F}_0)$ is monotone, so is \mathscr{G} . Since \mathscr{F}_0 is a field, $\mathscr{F}_0 \subset \mathscr{G}$, and so $m(\mathscr{F}_0) \subset \mathscr{G}$. Hence $m(\mathscr{F}_0)$ is closed under complementation.

Define \mathscr{G}_1 as the class of A such that $A \cup B \in m(\mathscr{F}_0)$ for all $B \in \mathscr{F}_0$. Then \mathscr{G}_1 is a monotone class and $\mathscr{F}_0 \subset \mathscr{G}_1$; from the minimality of $m(\mathscr{F}_0)$ follows $m(\mathscr{F}_0) \subset \mathscr{G}_1$. Define \mathscr{G}_2 as the class of B such that $A \cup B \in m(\mathscr{F}_0)$ for all $A \in m(\mathscr{F}_0)$. Then \mathscr{G}_2 is a monotone class. Now from $m(\mathscr{F}_0) \subset \mathscr{G}_1$ it follows that $A \in m(\mathscr{F}_0)$ and $B \in \mathscr{F}_0$ together imply that $A \cup B \in m(\mathscr{F}_0)$; in other words, $B \in \mathscr{F}_0$ implies that $B \in \mathscr{G}_2$. Thus $\mathscr{F}_0 \subset \mathscr{G}_2$; by minimality, $m(\mathscr{F}_0) \subset \mathscr{G}_2$, and hence $A, B \in m(\mathscr{F}_0)$ implies that $A \cup B \in m(\mathscr{F}_0)$.

Lebesgue Measure on the Unit Interval

Consider once again the unit interval (0, 1] together with the field \mathcal{B}_0 of finite disjoint unions of subintervals (Example 2.2) and the σ -field $\mathcal{B} = \sigma(\mathcal{B}_0)$ of Borel sets in (0, 1]. According to Theorem 2.2, (2.12) defines a probability measure λ on \mathcal{B}_0 . By Theorem 3.1, λ extends to \mathcal{B} , the extended λ being Lebesgue measure. The probability space $((0, 1], \mathcal{B}, \lambda)$ will be the basis for much of the probability theory in the remaining sections of this chapter. A few geometric properties of λ will be considered here. Since the intervals in (0, 1] form a π -system generating \mathcal{B} , λ is the only probability measure on \mathcal{B} that assigns to each interval its length as its measure.