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This measure on .% is the required extension, because by (3.7) it agrees with
P on %,. n

Uniqueness and the -\ Theorem

To prove the extension in Thcorem 3.1 is unique requires some auxiliary
concepts. A class 77 of subsets of ) is a m-svstem if it is closed under the
formation of finite intersections:

(m) A, Be & implics ANBe ..

A class .2 i1s a A-svstemn 1f 1t contains € and is closed under the formation of
complements and of finite and countable disjoint unions:

(A) Qe
(Ay) A€/ implics A €./
(Ay) A, As,...,eand A,NA, = tor m=#=n imply U, 4, € /.

Because of the disjointness condition in (A,), the definition of A-system is
weaker (more inclusive) than that of o-field. In the presence of (A,) and (A5),
which imply @ € _#, the countably infinite casc of (A,) implies the finite onc.

In the presence of (A}) and (A5), (A,) is equivalent to the condition that ./
1s closed under the formation of proper differences:

(X)) A, Be_/and ACB imply B—Aec_/.

Suppose. in fact, that ./ satisties (A5) and (Ay). It A.B€ /" and 4 CB.
then ./ contains B¢, the disjoint union A4 U B, and its complement (A U
B) =B —A. Hence (X,). On the other hand, if ./ satisfies (A,) and (X)),
then 4 €./ implics A“=Q —A4 ./ Hence (A5).

Although a o-ficld 1s a A-system, the reverse is not true (in a four-point
space take 7 to consist of &, ), and the six two-point sets). But the
connection 1s close:

Lemma 6. A class that is both a w-svstem and a A-svstem is a o-field.

Proor.  The class contains € by (A,) and is closed under the formation
of complements and finite intersections by (A,) and (7). It is therefore a
field. It is a o-ficld because if it contains scts A, then it also contains the
disjoint sets B, =A, N AN -~ NAS_, and by (A;) contains U, 4, = U, B,.

B
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Many unigueness arguments depend on Dynkin's m-A theorem:

Theorem 3.2. [If # is a w-system and -2 is a A-system, then PcC ./’
implies o(F2)C 2.

Proor. Let _#,, bec the A-system generated by “H—that 1s, the intersec-
tion of all A-systems containing &2. It 1s a A-system, it contains &2, and it is
contained in cvery A-system that contains & (sec the construction of gener-
ated o-ficlds, p. 21). Thus #2c /, €. If it can be shown that 7, isalso a
m-system. then it will follow by Lemma 6 that it is a o-field. From the
minimality of (&) it will then follow that ¢(#2) €./, so that A< a(HF) C
/€.~ Therefore, it suffices to show that Z 1s a m-system.

For cach A, let ./, be the class of sets B such that ANB es,. I Ais
assumed to lie in 2. or even if A is merely assumed to lic in ./, then ./
is a A-system: Since AN Q =A€7, by the assumption, 77, satisfies (A)).
If B,,B,e-/, and B, CB,, then the A-system 7, contains A N B, and
AN B, and hence contains the proper difference (AN B,) —(ANB) =
AN(B, - B)), so that =, contains B, —B: 7 satisfics (X5). If B, arc
disjoint #,-sets, then -, contains the disjoint sets ANB, and hence
contains their union A N (U, B,): ./, satisfies (A).

If Ae? and Be P, then (£ is a m-system) ANB e AT, or
Be ./, Thus A € & implics #C.7, and since /), is a A-system, minimal-
ity gives ./, €./ .

Thus A € & implics -/, ./, or. to put it another way, A &€& and
B €./, together imply that B €./, and hence A €./ (The key to the
proof is that B €./, if and only if A € .7,.) This last implication means that
B e/, implies #C. /. Since /) 18 a A-system, it follows by minimality
once again that B €./, implics £, C£,. Finally, Be.7, and Ce.”/,
together imply C €./, or BN C €/, Therefore, /7y 1s indced a -
system. |

Since a field is certainly a m-system, the uniquencss asserted in Theorem
3.1 is a consequence of this result:

Theorem 3.3. Suppose that P, and P, are probability measures on a(A),
where P is a mw-system. If P, and P, agree on P, then they agree on o (A).

Proob. Let - be the class of sets A4 in o(&#) such that P (A) = P,(A).
Clearly Qe /. If A€/, then P(A)=1-P(A)=1-P(A)= PL(AY),
and hence A€/, If A, arc disjoint scts in ./, then P(U, A,)=
v P(A,)=1L, P(A,)="P,(U, A, and hence U, 4, €./ Therefore .7 is
a A-system. Since by hypothesis L. and P is a m-system, the m-A
theorem gives o(2) €./, as required. [ |
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Note that the 7-A theorem and the concept of A-system are exactly what
arc nceded to make this proof work: The essential property of probability
measures 1s countable additivity, and this is a condition on countable disjoint
unions, the only kind involved in the requirement (A) in the definition of
A-system. In this, as in many applications of the 7-A theorem, /'C ¢(#2) and
therefore o () =7, even though the relation o(&£2) c ./ itself suffices for
the conclusion of the theorem.

Monotone Classes

A class .7 of subscts of Q is monotone if it is closed under the formation of
monotone unions and intersections:

(1) A As....€7and A, 1 A imply 4 €.4:
) A, As,...€.# and A, | A imply A €.#.

Halmos’s monotone class theorem is a close relative of the 7-A thecorem but will be
less frequently used in this book.

Theorem 3.4. If &, is a field and .7 is a monotone class, then S, C.# implics
a(&F)c.z.

Proor.  Let m(.%) be the minimal monotone class over % —the intersection of
all monotone classes containing 5. It is enough to prove o( %) © m(,): this will
follow if m(.%#,) is shown to be a ficld, because a monotone field is a o-ficld.

Consider the class Z=[A4: A€ m(F))]. Since m(5,) is monotone. so is .¢. Since
Sy s aficld, F) <. and so m(&F)) € £ Henee m(.%) is closed under complemen-
tation.

Detine &) as the class of A such that AU B e m(%) for all B € %, Then £ s
a monotone class and &, C.£}; from the minimality of m(.5) follows m(.%)) c £,
Define ¢, as the class of B such that AU B e m(5) for all A €m(S,). Then £,
is a4 monotone class. Now from m(.,) .2} it follows that A € m(%,) and B € .4,
together imply that A4 U B € m(5)): in other words, B e %, implics that B € £,
Thus %, c £, by minimality, m(.%)) C.¢,5, and hence A, B € m(.%)) impiics that
AUBem(F). [

Lebesgue Measure on the Unit Interval

Consider once again the unit interval (0, 1] together with the ficld A, of
finite disjoint unions of subintervals (Example 2.2) and the o-ficld % = o (4,)
of Borel sets in (0, 1]. According to Theorem 2.2, (2.12) defines a probability
measure A on 4. By Theorem 3.1, A extends to 4, the extended A being
Lebesgue measure. The probability space ((0, 1], &, A) will be the basis for
much of the probability theory in the remaining sections of this chapter. A
few geometric propertics of A will be considered here. Since the intervals in
(0. 1] form a m-system generating %4, A is the only probability mcasure on %
that assigns to each interval its length as its measure.



