Gene Expression Analysis Note 10: Gibbs Sampling in Binary Regression

A specific example of Gibbs sampling - canonical Markov chain Monte Carlo method for calculations in
Bayesian statistical models, as well as a key applied model class.

& Simulation of Posteriors

e For any statistical model, simulated values of posterior distributions are nowadays the standard in
statistical computation: summarise large samples of parameter values from a posterior distribution to
easily understand the information contained in that posterior about the parameters

e MCMC methods, such as Gibbs sampling, generate simulations sequentially using Markov chains

e Gibbs sampling represents an approach in which sets of coupled conditional posteriors derived from the
model are used for these simulations

e Here’s a key example

& Probit Model

e Expression level vector x; on array (tumor sample, etc) j =1,...,n
e Binary outcome: z; =0 or 1
e Probit probability model: 7; = Pr(z; = 1) (conditional on chosen predictor variables and model

parameters: in full, 7; = Pr(z; = 1|x;,0))

e Linear regression model based on regression function p; = x;ﬂ (perhaps x; is extended with a leading
1 to include an intercept term f)

e Probit regression:

T = ®(u )

where ® is standard normal cumulative distribution function

& Prior and Posterior

e Example: 8~ N(0, C_l) and we’ll take the precision as diagonal
e Posterior for regression parameters

n
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which can be evaluated, numerically optimized (it is unimodal) using standard NR routines,

o Exercise: Write code (in C/C++ or other) to implement a Newton-Raphson search for the mode of the
posterior density. As ALWAYS in such problems, work with the log-posterior, i.e., maximise the log of
the target function for numerical stability

e Under vague reference prior (C — 0) the posterior is the normalised likelihood function. The MLE and
related information can be computer using R/Splus glm functions, Matlab glmfit function, or (quite
easily) by user-written code as a special case

# Latent Variables and Data Augmentation

e For each sample, recognise an underlying latent variable y
e m; = Pr(y; >0) when y; ~ N(y;,1) = N(x3,1)
e z; =1if and only if y; >0
- e.g., latent variable is positive for ER+ cases, negative for ER— cases



- could precisely classify cases if we could observe the latent y;, but we do not; result is the binary
probability model
- MCMC calculations impute these “missing” values along with values of the parameters 3

& Conditional Posteriors

e p(Bly,z)

If y were known, we have a linear regression of the y; with regression variables x;, parameter 3 and error
variance 1. The actual value of z is at this point irrelevant — the information they contain is already
there in the (current, imputed or candidate) values of y : Formally, 3 is conditionally independent of z
given y. The posterior (see earlier notes) is multivariate normal
—1
Bly,z~ N(b,B™")

with B = C+ H'H and b = B~'H'y where H = X’ is the n x p design matrix.
For multivariate normals, use programmed functions (multivariate normal simulation is very standard
- e.g.. tMNorm.m or similar) or use direct Cholesky decomposition: e.g., by hand in matlab

b + chol(inv(B)) x randn(p, 1)

for a single draw

e p(y|B:2)

If B were known, then the y; are independent normals but subject to the information provided by the
zj - in each case, we just condition the initial normal on the information that y; must be positive (if
zj = 1) or negative (if z; = 0). The result may be written simply in terms of the posterior cumulative
distribution function, as

P(yjlz =1) = [(y; — pg) — (L = 7;)]/m;,  for y; >0,
and
P(yjlz; = 0) = ®(y; —p3) /(A —m5),  fory; <O
(check that you can derive this). Or, for any value of z; =0, 1,

P(yjlz;) = [®(y; — ng) — 2;(1 —m5)]/[z5m5 + (1 = 2) (1 — m5)].
Simulated values of the y; are then drawn, independently, via the inverse CDF approach: generate
uj ~ U(0,1) and solve for y; in P(y;|z;) = u;. It can be written trivially as

yj =15+ 2z (1 —m5) +u(z + (1 —m) (1 — 22))}

with @1 being the normal quantile function (inverse CDF - gnorm function).

& Including Additional Parameters

MCMUC neatly extends to include other parameters. Here’s a key example.

e Suppose C = diag(vo, M, - - -,Yp) With prior variances 2= o7 ! defining element-wise shrinkage param-
eters for the individual predictor variables. The above discussion all applied now explicitly conditional
on values of C, so that the simulation iterations can run with simulations of C coupled in too. That
requires priors on elements of C; if these are independent gamma priors, v; ~ Ga(k/2, h/2) for each j,
say, then the relevant conditional posteriors are also independent gammas, namely

v ~ Ga((k +1)/2, (h+ 37)/2).

This allows for learning on differential shrinkage parameters across variables.

e Exercise: Develop the MCMC with these priors.

e Think about choices of prior parameters: One general way to think about ranges of relevant parameter
values in binary regression models is to consider how variation in j; translates through to the probability
scale m;. Absolute values of p; bigger than 2 or so lead to probabilities that are already very extreme.
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