♦ Conjugate Priors on Regression Parameters

• Model in matrix form:

$$\mathbf{y} = \mathbf{X}' \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

• Use notation $\mathbf{H} = \mathbf{X}'$ for comparability with traditional statistics notation: \mathbf{H} is $n \times p$ design matrix

$$\mathbf{y} = \mathbf{H}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N(0, \sigma^2 \mathbf{I}) = N(0, \phi^{-1} \mathbf{I})$$

♦ LSE formulæ:

•

$$\hat{\boldsymbol{\beta}} = \mathbf{V}\mathbf{H}'\mathbf{y}$$
 and $\mathbf{V}^{-1} = \mathbf{H}'\mathbf{H}$

♠ (Simple) Standard Shrinkage Priors

- Conjugate normal prior centred at zero: shrinkage towards zero
- Genes centred: zero is canonical "null" hypothesis of no (partial) association
- Scale: scale of gene expression, standardised scales

$$\boldsymbol{\beta} | \boldsymbol{\phi} \sim N(0, \tau \boldsymbol{\phi}^{-1} \mathbf{I})$$

• Intercept: include in β - different status: different scale?

$$\boldsymbol{\beta} | \boldsymbol{\phi} \sim N(0, \boldsymbol{\phi}^{-1} \mathbf{C}^{-1})$$

- Prior precision matrix C (up to constant ϕ) is diagonal common value τ^{-1} for genes, possibly different (larger) for intercept
- Prior on residual variance/precision: $\phi \sim Ga(a/2, b/2)$ with prior variance estimate b/a and degree of fredom a. Vague reference prior is special case $a, b \to 0$

♠ Features of Posterior Under Shrinkage Prior

- $\beta | \phi, \mathbf{y} \sim N(\mathbf{b}, \phi^{-1} \mathbf{B}^{-1})$
- $\mathbf{B} = \mathbf{C} + \mathbf{H}'\mathbf{H}$ and $\mathbf{b} = \mathbf{B}^{-1}\mathbf{H}'\mathbf{y}$
- Special limiting cases: vague prior (zero precision) $\mathbf{B} = \mathbf{H}'\mathbf{H}$ and $\mathbf{b} = \hat{\boldsymbol{\beta}}$
- Otherwise, shrinkage towards zero induced by prior: $||\mathbf{b}|| < ||\hat{\boldsymbol{\beta}}||$
- Decision Theory: Bayes's estimates improve expected performance in estimating $\boldsymbol{\beta}$
 - quadratic (or other convex) loss functions
 - Bayesian and frequentist measures of risk in estimation
- In practical terms, shrinkage generally stabilises/regularises estimation and improves robustness in predictions
- Large p questions: LSE/likelihood methods inapplicable need for regularisation
- Log posterior (conditional on ϕ) = log likelihood + log prior: a constant plus a term proportional to

$$(\mathbf{y} - \mathbf{H}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{H}\boldsymbol{\beta}) + \boldsymbol{\beta}'\mathbf{C}\boldsymbol{\beta}$$

• Posterior mean/mode b represents shrunken/regularised MLE (=LSE)

\blacklozenge Marginal Posteriors for b and ϕ

- $\phi|\mathbf{y} \sim Ga(a'/2, b'/2)$ with a' = a + n and b' = b + q where q > 0 can be written in one of several useful forms:
 - simplest for computation: $q = \mathbf{y}' \mathbf{e}$ where $\mathbf{e} = \mathbf{y} \mathbf{H} \mathbf{b}$ is the estimated residual vector
 - quadratic form representation: $q = \mathbf{y}' \mathbf{P}' \mathbf{y}$ where $\mathbf{P} = \mathbf{I} \mathbf{H} \mathbf{B}^{-1} \mathbf{H}'$
 - interesting limiting case of vague reference prior: we know $\mathbf{b} \to \hat{\boldsymbol{\beta}}$ and now also $q \to$ usual residual sum of squares in LSE regression with $\mathbf{P} \to \mathbf{H}(\mathbf{H}'\mathbf{H})^{-1}\mathbf{H}'$
- Common point estimate of $\sigma^2 = \phi^{-1}$ is reciprocal of posterior mean of ϕ , namely s = b'/a'
- $\beta |\mathbf{y} \sim T_{a'}(\mathbf{b}, s\mathbf{B}^{-1})$
 - credible intervals for elements of β are derived from Student T distribution on a' degrees of freedom
- (see matlab code: mregbayes)
- Role of **C**, Key example:
 - $C_{1,1}$ =large (intercept term, vague prior)
 - $C_{i,i} = \tau^{-1}$ otherwise common precision for (common scale) genes
 - Marginal likelihood function for τ (see matlab code, examples) to assess τ . Can be shown that marginal likelihood $p(\mathbf{y}|\tau)$ implies

 $\log(p(\mathbf{y}|\tau)) = \text{constant} + 0.5 \log(|\mathbf{C}|/|\mathbf{B}|) - 0.5n \log(\mathbf{y'e})$

♦ Shrinkage Priors More Generally: Considerations

- Different degrees of shrinkage across variables (genes) via different diagonal elements in C
- General question of learning from data about shrinkage parameters: inference on \mathbf{C} generally
- Orthogonal designs: e.g., Factor regressions and other models: design is orthogonal (by design!)
 - $\mathbf{H'H}$ is diagonal
 - so that \mathbf{B} is diagonal when \mathbf{C} is
 - elements of β are uncorrelated under the posterior as well as the prior (dependent only through scale ϕ)