♠ Density and Parameters

- **x** is $p \times 1$ with mean vector **m** $(p \times 1)$ and variance (covariance) matrix **V** $(p \times p)$
- Precision (or concentration) matrix $\mathbf{K} = \mathbf{V}^{-1}$ (assume non-singular)
- Density function

$$p(x) = c \exp(-(\mathbf{x} - \mathbf{m})'\mathbf{K}(\mathbf{x} - \mathbf{m})/2)$$

with $c = |2\pi|^{p/2} |\mathbf{K}|^{1/2}$

• $\mathbf{x} \sim N(\mathbf{m}, \mathbf{V})$ or $\mathbf{x} \sim N(\mathbf{x} | \mathbf{m}, \mathbf{V})$

▲ Linear Transforms

- Any $k \times p$ matrix **G** and constant k-vector **a**, $\mathbf{y} = \mathbf{a} + \mathbf{G}\mathbf{x}$ is normal $\mathbf{y} \sim N(\mathbf{a} + \mathbf{G}\mathbf{m}, \mathbf{G}\mathbf{V}\mathbf{G}')$
- k < p: Dimension reduction
- k > p: Rank deficient (singular) distribution

♠ Key Properties: Marginal & Conditional Distributions

Partition \mathbf{x} as \mathbf{x}_1 and \mathbf{x}_2 and conformably partition \mathbf{m} and \mathbf{V} so that

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}, \qquad \mathbf{m} = \begin{pmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \end{pmatrix} \quad \& \quad \mathbf{V} = \begin{pmatrix} \mathbf{V}_1 & \mathbf{R} \\ \mathbf{R}' & \mathbf{V}_2 \end{pmatrix}$$

where $C(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{R}$ (and of course $C(\mathbf{x}_2, \mathbf{x}_1) = \mathbf{R}'$.) Dimensions are conformable – any subsetting of \mathbf{x} works

- $\mathbf{x}_1 \sim N(\mathbf{m}_1, \mathbf{V}_1)$ and $\mathbf{x}_2 \sim N(\mathbf{m}_2, \mathbf{V}_2)$
- Really critical to understanding regression are the conditional distributions: Here is $p(\mathbf{x}_1|\mathbf{x}_2)$ and the same general theory tells you what $p(\mathbf{x}_2|\mathbf{x}_1)$ is

$$(\mathbf{x}_1|\mathbf{x}_2) \sim N(\mathbf{a}_1 + \mathbf{B}_1\mathbf{x}_2, \mathbf{W}_1)$$

with

$$\mathbf{a}_1 = \mathbf{m}_1 - \mathbf{B}_1 \mathbf{m}_2, \quad \mathbf{B}_1 = \mathbf{R} \mathbf{V}_2^{-1} \quad \& \quad \mathbf{W}_1 = \mathbf{V}_1 - \mathbf{B}_1 \mathbf{R}'$$

Precision Matrix and Dependencies

Take $\mathbf{x}_1 = x_1$, the first element of \mathbf{x} so that \mathbf{x}_2 is all the rest. Another way of writing the conditional distribution above is in terms of the elements of the precision matrix \mathbf{K} instead of \mathbf{V} as follows (this is just based on standard linear algebra and representations of inverses of partitioned matrices).

• If $\mathbf{x}_1 = x_1$, then \mathbf{B}_1 is the (p-1) row vector with j^{th} element

$$b_{1,j} = -K_{1,j}/K_{1,1}$$

and \mathbf{W}_1 is the scalar variance $1/K_{1,1}$

- Shows the linear regression of x_1 (or any other x_i) on all other variables (genes)
- Note: Zeros in precision matrices corresponding to conditional independencies
- Underlies the major area of Gaussian graphical models

♦ Singular Normal

- $\bullet~{\bf V}$ is singular; distribution is singular
- rank deficient: $rank(\mathbf{V}) = k < p$ for some $k \times p$ matrix $\mathbf{G}, \mathbf{y} = \mathbf{G}\mathbf{x}$ has a non-singular distribution: variance matrix $\mathbf{G}\mathbf{V}\mathbf{G}'$ is non-singular.
- constrained linear combinations of p k elements of \mathbf{x} only k "free" dimensions
- density still has same form in terms of K where now $\mathbf{K} = \mathbf{V}^-$ is a generalised inverse of V (i.e., such that $\mathbf{K}\mathbf{V}\mathbf{K} = \mathbf{K}$ and $\mathbf{V}\mathbf{K}\mathbf{V} = \mathbf{V}$