Gene Expression Analysis Note 9: Multivariate Normal Distribution Theory

& Density and Parameters

x is p x 1 with mean vector m (p x 1) and variance (covariance) matrix V (p x p)
Precision (or concentration) matrix K = V! (assume non-singular)
Density function

p(x) = cexp(—(x — m)'K(x —m)/2)

with ¢ = [27|P/2|K|'/?
x ~ N(m,V) or x ~ N(x|m, V)

& Linear Transforms

e Any k x p matrix G and constant k—vector a, y = a + Gx is normal y ~ N(a+ Gm, GVG’)
e k < p: Dimension reduction
e k> p: Rank deficient (singular) distribution

# Key Properties: Marginal & Conditional Distributions

Partition x as x; and x2 and conformably partition m and V so that

X1 m; V1 R
=) =) e v-(r )
where C(x1,%2) = R (and of course C(x2,x;) = R'.) Dimensions are conformable — any subsetting of x
works
® X v N(ml,Vl) and X9 ~ N(mQ,VQ)
e Really critical to understanding regression are the conditional distributions: Here is p(x1|x2) and the
same general theory tells you what p(x2|x1) is

(x1]x2) ~ N(a; + B1x2, Wy)

with
a; = my 7B1m27 B1 :RV;l & W1 :V1 7B1R/

# Precision Matrix and Dependencies

Take x; = x1, the first element of x so that x5 is all the rest. Another way of writing the conditional
distribution above is in terms of the elements of the precision matrix K instead of V as follows (this is just
based on standard linear algebra and representations of inverses of partitioned matrices).

e If x; = x1, then By is the (p — 1) row vector with j*" element

bi; =—Ki,;/Kiq

and W1 is the scalar variance 1/Kj 4
e Shows the linear regression of 1 (or any other ;) on all other variables (genes)
e Note: Zeros in precision matrices corresponding to conditional independencies
e Underlies the major area of Gaussian graphical models



# Singular Normal

e V is singular; distribution is singular

e rank deficient: rank(V) =k < p — for some k x p matrix G, y = Gx has a non-singular distribution:
variance matrix GVG’ is non-singular.

e constrained linear combinations of p — k elements of x — only k “free” dimensions

e density still has same form in terms of K where now K = V™ is a generalised inverse of V (i.e., such
that KVK = K and VKV =V
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