# STA 278/BGT 208 GENE EXPRESSION ANALYSIS

#### Statistical Models, Methods & Computation

Mike West

Institute of Statistics & Decision Sciences

www.isds.duke.edu

Computational & Applied Genomics Program

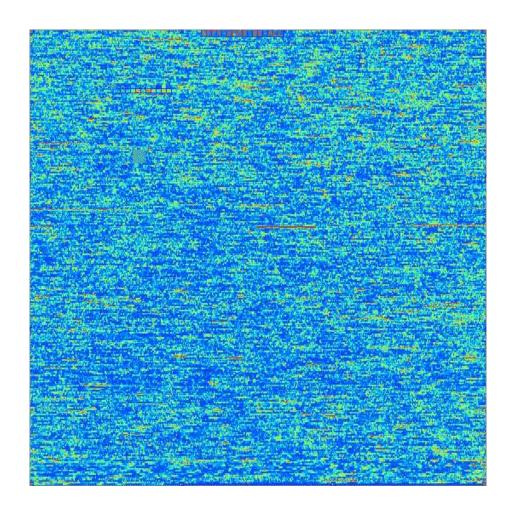
www.cagp.duke.edu

# Statistics in Genomics and Biological Profiling

- y clinical or physiological state, outcome
  - few dimensions
- $\bullet$  x molecular, clinical, biological data
  - DNA microarrays Gene expression: few-40,000 genes
  - Other molecular data, clinical data, ...
- Breast, ovarian cancer (risk groups, recurrence time outcomes)
- Cardiovascular disease (disease states)
- Biological response to environmental exposures
- Cell cycle patterns: common regulators of gene subsets
- Interrelationships: gene pathways and transcriptional control
- Gene discovery and prioritisation

#### **One Example Motivating Context**

#### Breast cancer discrimination & prediction: Binary/2-group problems


- e.g., ER+ versus ER-
- e.g., lymph node + versus lymph node -
- DNA microarray data: expression levels of 5-40,000 genes (sequences) in RNA from tumour, tumour location, time point, ...
- $n_1$  cases ER+ and  $n_0$  cases ER- (by design or observation)
- Discriminatory patterns of expression?
- Predictive classification of next patient/tumour?
- Which genes are implicated? Biology?
- Which tumours depart from general patterns? How?
- ... etc

## Expression array data

Microarray data: Affymetrix arrays

- 7 40,000 genes (sequences)
- Each represented by 15-20  $(\times 2)$  short oligonucleotide sequences
- Data issues:
  - management, manipulation, multiple formats
  - imaging: extraction, summary data production
  - data quality: experimental and processing errors
  - estimates of expression level by gene: multiple methods
- Statistical modelling, analysis and inference

# One Tumour Sample



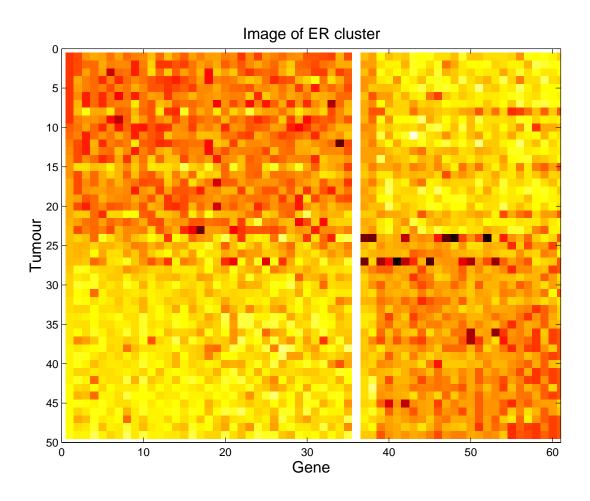
Older Affymetrix array: 7,000 genes

Current: 40,000 genes

#### **Key Statistical Themes**

#### Modelling high-dimensional distributions: p(x), p(y|x)

- $\bullet$  Understanding high-dimensional structure: x
  - management and exploration challenges
  - exploratory analysis subsets, clusters, visualization
  - parametric models
  - complex dependencies: collinearities
- Relating to prediction of outcomes: y
  - Regression and prediction models
  - Scale of parameters, number of observations
  - Variable selection: which xs? Multicollinearities, redundancies, ...
- Major role for statistical computation & visualisation


# Organising & Exploring Data Subsets: Clustering

- For gene & gene-gene relationship discovery
- To identify aggregate patterns, or "factors," within groups

#### Cluster analysis:

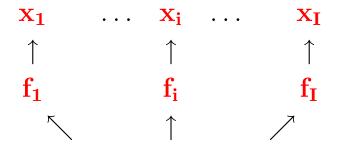
- grouping genes with related patterns over samples
- grouping samples with related patterns across gene subsets
- both ..
- Look at results ... interpretation?
- Selection of gene subsets for clustering?
- Clustering methods: k-means, hierarchical, ...
- Software

# Simple Cluster Display

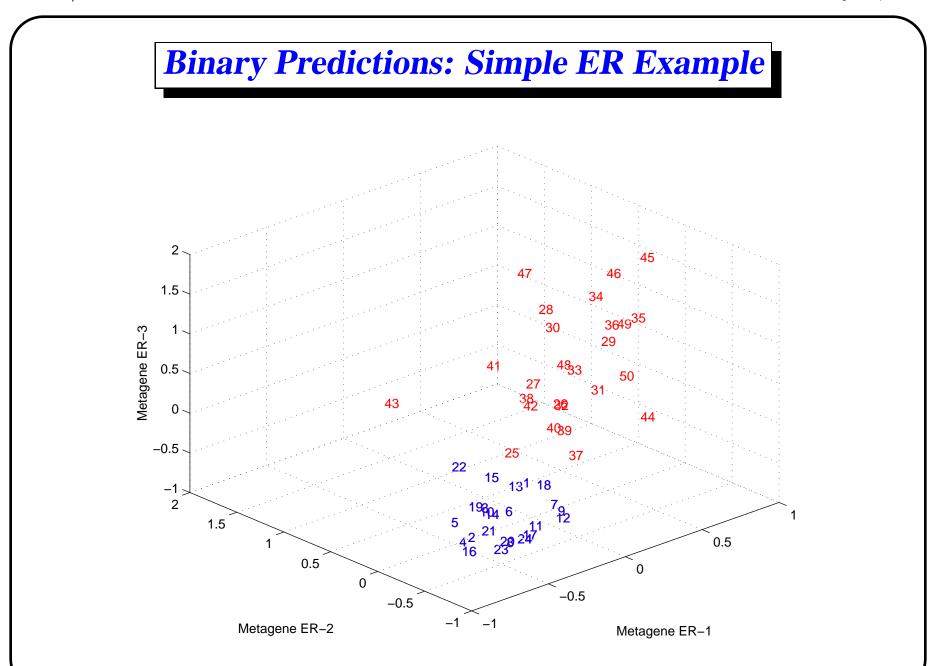


Genes selected via binary regression model analysis

#### **Statistical Factor Ideas**


#### Direct (empirical) data decompositions

- PCA, SVD
- (Several) other decomposition methods


#### **Factor Models:**

$$\mathbf{p}(\mathbf{x}) = \int \mathbf{p}(\mathbf{x}|\mathbf{f})\mathbf{p}(\mathbf{f})\mathbf{df}$$
 e.g.,  $\mathbf{x} = \mathbf{A}\mathbf{f} + \epsilon$ 

•  $\dim(x)=0.000s$ ,  $\dim(f)=0s-00s$ 



Common patterns across genes induced by "low dimensional" factors



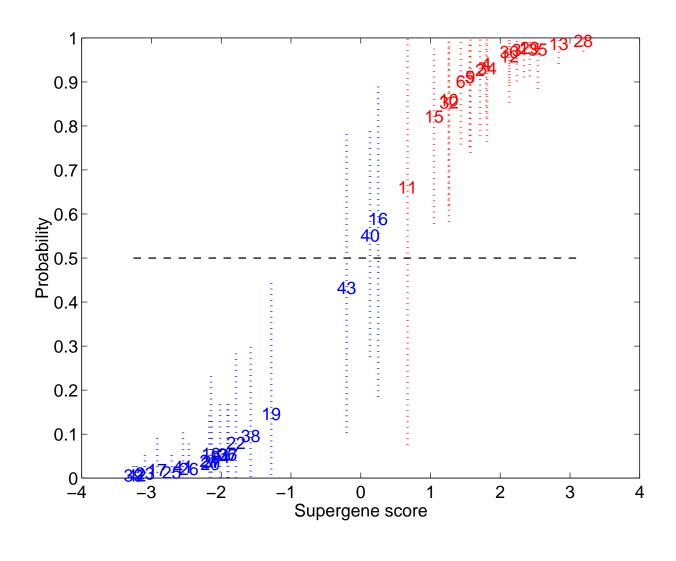
#### **Factor Models**

- Dimension reduction factors are latent, but "real" structure
- Prediction and regression factors may be predictors of y
- Links to cluster analysis: clustering by "common pattern" = "factor"
- Statistical & computational issues

#### Genomic applications:

- Underlying biological/gene pathways in genomic studies
- Finding models using factors to predict clinical states
- "Metagene" factors: characterise state

## Models and Methods for Regression and Prediction


```
eg., Linear regression: y = x'\beta + \epsilon
```

```
eg., Binary regression: Probability of ER+ is \pi(x) binary regression models: \pi(x) = \Phi(x'\beta)
```

#### General Statistical Issues:

- Estimate regression coefficients, uncertainty:  $\beta$
- Select genes (variables) subset of x
- Factors as predictors? Other non-genomic variables?
- Multicollinearities!
- $\bullet$  p >> n
- Deriving predictions

# Binary Predictions: Simple ER Example



## Likelihood & Bayesian Inference

Likelihood Inference: Maximise and summarise

$$L(\beta) = \prod_{i=1}^{n} p(y_i|\beta, x_i)$$

Requires identifiable model: p < n

Bayesian Inference: Explore, sample and summarise posterior density

$$p(\beta) \propto p(\beta) \prod_{i=1}^{n} p(y_i|\beta, x_i)$$

for chosen priors  $p(\beta)$ 

# Regression Models: Inference & Computation

#### Model Fitting, Search & Computation

- Bayesian analysis: Regularisation for prediction
- Search and optimisation methods to find MLEs, posterior modes
- Simulation-based computations unavoidable in non-linear models
- Large-scale model search: combinatorial search

#### Statistical Computation

#### Computation: Iterative methods for a given model

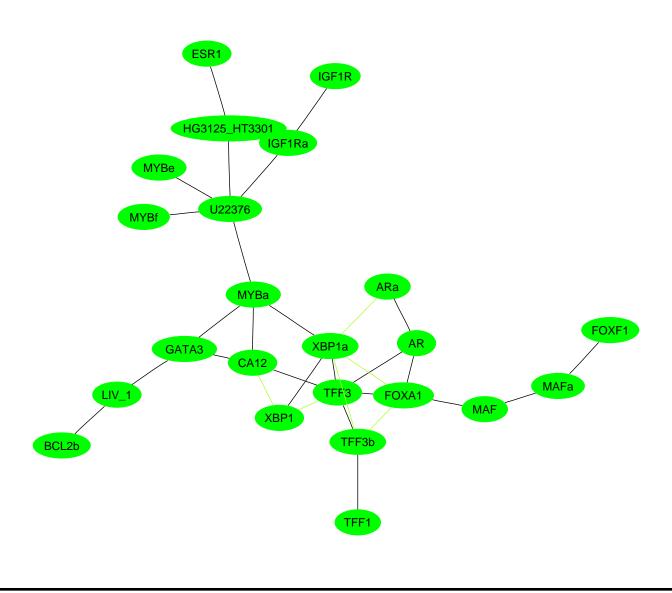
- Newton-Raphson search, gradient algorithms
- EM (Expectation-Maximisation) algorithm
- Simulation: e.g., Markov Chain Monte Carlo (MCMC)

#### Model/variable selection:

- Which genes go in x?
- Sequential search forward/backward variable selection
- Stochastic search
- $\bullet$  Combinatorics: k genes (or factors) from p

e.g., p = 100, k = 4: about 4m models. Tiny example.

### **Non-linear Regression**


- Non-linear regression models for binary, categorical outcomes
- Survival data modelling: recurrence of cancer
  - Non-Gaussian
  - Censored samples
  - Non-parametric data exploration, parametric models
- Non-linear association (correlation is linear)
- Recursive partitioning methods: Statistical Tree Models

# Statistical Exploration of Associations: Graphical Models

#### Bayesian Networks: Graphical Models

- High-dimensional distribution of x
- Graph representation:
  - Nodes are  $x_i$
  - Edges represent "dependencies"
  - Understanding dependencies, defining "cliques"
  - Relationships to factor models
- Role of graph theory; role of computation
- Links to biological networks in genomic applications
- Links and interfaces to text-based information systems





### Class Website

www.isds.duke.edu/courses/Spring04/sta278

- Outline, overview and topics
- Statistics and biology texts, other support materials, notes
- Computing, software and data sets

Course Goals, Projects & Research

# **Class Computing Orientation**

**COMPUTING:** ISDS Unix system: isds.duke.edu

- Student accounts: NetID and setup
- Matlab, R, C++, ...
- ssh remote login

**COMPUTING:** Other computers (Linux/FreeBSD, Windows, Mac)

- Matlab (OIT site license; Mathworks; Computer Store); toolboxes
- Other software (cluster, graphics, graph drawing, ...)
- R download sites; Bioconductor (later)
- Matlab and R tools google