Midterm Exam: Statistical Inference

Due: Thu Mar 9 2:15pm

1. For $\theta > 0$ set

$$f(x \mid \theta) = \theta \, x^{\theta - 1}, \qquad 0 < x < 1 \tag{1}$$

and answer the following questions.

- a. Is this an exponential family? If so, write $f(x \mid \theta)$ in standard form $h(x) \exp \left[\eta(\theta) \cdot T(x) - c(\theta)\right]$ for suitable h(x), $c(\theta)$, k, and $\eta(\theta)$, $T(x) \in \mathbb{R}^k$; if not, explain why.
- b. Find the maximum likelihood estimator $\hat{\theta}_n$ for *n* observations.
- c. For a gamma $Ga(\alpha, \lambda)$ prior distribution find the posterior mean (Bayes estimator) $\bar{\theta}_n = \mathsf{E}[\theta \mid x_n].$
- d. Find the Jeffreys prior $\pi_J(\theta)$ and its posterior mean $T_J(x_n)$.
- e. Find a consistent Method of Moments estimator $T_M(x_n)$ based on \bar{x}_n . Show that it is consistent in probability, i.e., show that $T_M(x_n) \to \theta$ as $n \to \infty$.
- f. In a paragraph or so at most, which of these estimators would you recommend, and why?
- 2. Let $x_j \sim No(\theta, 1)$ be independent Normal random variables with unit variance for $1 \le j \le n$.
 - a. For a normal No(ξ, τ^2) prior distribution find the posterior mean (Bayes estimate) $\bar{\theta}_n = \mathsf{E}[\theta \mid x]$ based on $x = \{x_1, ..., x_n\}$.
 - b. Find and plot the risk functions $R(\hat{\theta}_n, \theta)$ and $R(\bar{\theta}_n, \theta)$ for n = 5 with $\xi = \tau^2 = 1$. For which θ is $R(\bar{\theta}_n, \theta) < R(\hat{\theta}_n, \theta)$?
 - c. Find the Jeffreys prior $\pi_J(\theta)$ and its posterior mean $T_J(x_n)$.
 - d. Which estimator would you recommend, T_J or $\bar{\theta}_n$? Why? If the question does not give enough information for you to give a recommendation, explain what else you would need to know.

3. Let T be the natural statistic in a one-dimensional exponential family

$$f(x \mid \eta) = h(x) e^{\eta T(x) - c(\eta)}$$

with natural parameter η . Show (in detail) that T is *minimal* sufficient.

- 4. For $\theta > 0$ let $X_i \sim Un(0, \theta)$ be independent uniforms.
 - a. Find the maximum likelihood estimator, $\hat{\theta}_n(x)$, for a sample $x = \{x_1, ..., x_n\} \in \mathbb{R}^n_+$ (Warning: this is not a "regular" problem in the sense that $f_n(x \mid \theta)$ is not differentiable).
 - b. Is $\hat{\theta}_n(x)$ unbiased or not? Find $\beta_n(\hat{\theta}, \theta) = \{\mathsf{E}[\hat{\theta}_n \mid \theta] \theta\}.$
 - c. Is $\hat{\theta}_n(x)$ efficient? Find the risk function $R(\hat{\theta}_n, \theta) = \mathsf{E}[(\hat{\theta}_n \theta)^2 | \theta]$ and the limit $\lim_{n \to \infty} [n R(\hat{\theta}_n, \theta)]$; discuss the implications.
 - d. Find an *exact* 95% equal-tails **confidence** interval $[L_x, R_x]$ for θ , based on $\hat{\theta}_n$ for example, we must have $\mathsf{P}[\theta < L_x \mid \theta] = 0.025$. How long is your interval, on average?
 - e. A common choice for "noninformative" prior distribution for this model would be $\pi(\theta) = \theta^{-1}, \ \theta > 0$. Using this prior, find an exact 95% equal-tails **credible** interval for θ for example, we must have $\mathsf{P}[\theta < L_x \mid x] = 0.025$.
 - f. Find the Bayesian posterior mean $\bar{\theta}_n(x) = \mathsf{E}[\theta \mid x]$ for this prior, and compute its risk function $R(\bar{\theta}_n, \theta) = \mathsf{E}[(\bar{\theta}_n - \theta)^2 \mid \theta]$.
 - g. Show that $T_n(x) = 2\bar{x}_n$ is a consistent unbiased estimator of θ , and compute its risk function $R(T_n, \theta)$.
 - h. Find an approximate 95% confidence interval for θ based on $T_n(x)$ (Hint: what is the asymptotic *distribution* of T_n ?). Is it better or worse than the interval you found in (d.) above? Why?
 - i. Which is the best estimator for θ : $\hat{\theta}_n$, $\bar{\theta}_n$, or $T_n(x)$? Why?