Midterm Exam: Statistical Inference

Due: Wed Mar 6 3:50pm

For $\theta \in \Theta = \mathbb{R}_+ = (0, \infty)$ and $x \in \mathbb{N} = \{0, 1, ...\}$ set

$$f(x \mid \theta) = \frac{\theta^x e^{-\theta}}{x!} \tag{1}$$

and answer the following questions about this $Po(\theta)$ distribution.

- 1. Let X be a single observation from $f(x \mid \theta)$.
 - a. Is this an exponential family? If so, write $f(x \mid \theta)$ in standard form

$$f(x \mid \theta) = e^{\eta(\theta) \cdot T(x) - B(\theta)} h(x)$$

for suitable $q \in \mathbb{N}$, $\eta(\theta) \in \mathbb{R}^q$, $T(x) \in \mathbb{R}^q$, $B(\theta) \in \mathbb{R}$, and $h(x) \ge 0$ (you must specify q, η, T, B , and h); if not, explain why.

- b. Find the Fisher Information $I(\theta)$.
- 2. Let \vec{x}_n be a random sample $\vec{x}_n = (x_1, ..., x_n)$ of $n \in \mathbb{N}$ independent observations.
 - a. Find a one-dimensional sufficient statistic $S(\vec{x}_n)$. Verify that your S is sufficient. Find its mean and variance, as functions of θ .
 - b. Find the *observed* information $i(\theta, \vec{x}_n)$. Does it depend on \vec{x}_n at all? If so, only through your sufficient statistic?
- 3. Again with a random sample $\vec{x}_n = (x_1, ..., x_n)$ from $f(x \mid \theta)$,
 - a. Find the maximum likelihood estimator $\hat{\theta}_n(\vec{x}_n)$.
 - b. Find the squared-error risk function

$$R(\theta, \hat{\theta}_n) = \mathsf{E} \big[|\hat{\theta}_n - \theta|^2 | \theta \big].$$

Is $\hat{\theta}_n$ consistent? Why? Plot $R(\theta, \hat{\theta}_4)$.

c. Find the (absolute) efficiency

$$\operatorname{Eff}(\theta_n) = n I(\theta) R(\theta, \theta_n)$$

for each $n \in \mathbb{N}$ and $\theta \in \Theta$. Is $\hat{\theta}_n$ asymptotically efficient?

- STA 215
 - d. For n = 4 find an exact 90% equal-tail confidence interval $[L(\vec{x}_4), R(\vec{x}_4)]$, *i.e.*, find statistics L and R with the properties

 $\mathsf{P}[\theta < L(\vec{x}_4) \mid \theta] \le 0.05 \qquad \mathsf{P}[\theta > R(\vec{x}_4) \mid \theta] \le 0.05$

Evaluate your interval, first for the data set $\vec{x}_4 = (25, 35, 22, 18)$ and then for $\vec{x}_4 = (0, 0, 0, 0)$.

- 4. Now let's adopt a Bayesian perspective.
 - a. For a gamma prior distribution $\pi \sim \mathsf{Ga}(\alpha, \lambda), i.e.,$

$$\pi(\theta) = \frac{\lambda^{\alpha} \, \theta^{\alpha-1}}{\Gamma(\alpha)} \, e^{-\lambda\theta}, \qquad \theta > 0$$

find the posterior distribution $\pi(\theta \mid \vec{x}_n)$ for a sample of size *n* and the posterior mean (Bayes estimator) $\bar{\theta}_n^{\pi}(\vec{x}_n) = \mathsf{E}[\theta \mid \vec{x}_n].$

b. Find the squared-error risk function

$$R(\theta, \bar{\theta}_n^{\pi}) = \mathsf{E} \big[\, |\bar{\theta}_n^{\pi} - \theta|^2 \mid \theta \, \big].$$

Is $\bar{\theta}_n^{\pi}$ consistent? Why? Plot $R(\theta, \bar{\theta}_4^{\pi})$ for $\alpha = 1, \lambda = 1$.

c. Find the efficiency

$$\operatorname{Eff}(\bar{\theta}_n^{\pi}) = n I(\theta) R(\theta, \bar{\theta}_n^{\pi})$$

for each $n \in \mathbb{N}$, $\theta \in \Theta$, $\alpha > 0$, and $\lambda \ge 0$. Is $\bar{\theta}_n^{\pi}$ asymptotically efficient? Why?

- d. Find the Jeffreys prior $\pi_J(\theta)$, the posterior distribution $\pi_J(\theta \mid \vec{x}_n)$, and the posterior mean $\bar{\theta}_n^J(\vec{x}_n) = \mathsf{E}^J[\theta \mid \vec{x}_n]$. Does the Jeffreys posterior distribution coincide with any of the gamma posteriors from part a. above? Which?
- e. For n = 4 find an exact 90% equal-tail credible interval $[L(\vec{x}_4), R(\vec{x}_4)]$ for the Jeffreys prior distribution, *i.e.*, find statistics L and R with the properties

$$\mathsf{P}^{J}[\theta < L(\vec{x}_{4}) \mid \vec{x}_{4}] \le 0.05 \qquad \mathsf{P}^{J}[\theta > R(\vec{x}_{4}) \mid \vec{x}_{4}] \le 0.05$$

Evaluate your interval for the data sets $\vec{x}_4 = (25, 35, 22, 18)$ and $\vec{x}_4 = (0, 0, 0, 0)$.

- 5. Let \vec{x}_n be a random sample and let \bar{x}_n be the sample mean.
 - a. Find a Method of Moments estimator $T_n^M(\vec{x}_n)$ of θ based on the sample mean \bar{x}_n .
 - b. Show that it is consistent in probability, *i.e.*, show that

$$\mathsf{P}\big[|T_n^M(\vec{X}_n) - \theta| > \epsilon\big] \to 0$$

as $n \to \infty$ for any $\epsilon > 0$.

- c. Does T_n^M coincide with the MLE $\hat{\theta}_n$, or with the Bayes estimator $\bar{\theta}_n^{\pi}$ for any Gamma prior $\pi \sim \mathsf{Ga}(\alpha, \lambda)$, or with the limit of such Bayes estimators as α or λ tend to extremes? If so, which? If not, evaluate the risk function $R(\theta, T_n^M)$ for each $n \in \mathbb{N}$ and $\theta \in \Theta$.
- 6. In the past three problems you have computed four estimators for θ above $(\hat{\theta}_n, \bar{\theta}_n^{\pi}, \bar{\theta}_n^J, T_n^M)$ and their risk functions $R(\theta, \cdot)$. Let n = 4.
 - a. For which θ is T_J better than $\hat{\theta}$? For which θ is $\bar{\theta}_n^{\pi}$ better than $\hat{\theta}$, for $\alpha = 1$ and $\lambda = 1$? For which θ is T_n^M better than $\hat{\theta}$?
 - b. In a **brief** paragraph or so, how would you choose among these estimators for a particular problem? Which would you recommend, and why? If any features of the problem would be relevant, identify them and explain.
- 7. a. Does the MLE $\hat{\theta}_n$ have an asymptotically normal distribution for this distribution? If so, find the mean $\mu_n(\theta)$ and variance $\sigma_n^2(\theta)$ of $\hat{\theta}_n$ and give statistics $\hat{\mu}_n(\vec{x}_n)$ and $\hat{\sigma}_n^2(\hat{x}_n)$ that estimate μ_n and σ_n^2 .
 - b. Assuming asymptotic normality find an asymptotic 90% equaltail confidence interval based on these estimators, *i.e.*, find **statistics** $L_n(X)$, $R_n(X)$ satisfying $\mathsf{P}[\theta \in [L_n, R_n]] \approx 0.90$ because

$$\mathsf{P}[\theta < L_n(\vec{x}_n) \mid \theta] \approx 0.05 \qquad \mathsf{P}[\theta > R_n(\vec{x}_n) \mid \theta] \approx 0.05$$

for large enough n.

- c. Calculate the interval and comment on its properties for the n = 4 data set $\vec{x}_4 = (25, 35, 22, 18)$. Is [L, R] reasonable?
- d. Calculate the interval and comment on its properties for the n = 4 data set $\vec{x}_4 = (0, 0, 0, 0)$. Is [L, R] reasonable?

Summary of some S-Plus Commands

S-Plus provides a suite of functions for each of the commonly used probability distributions. For example, for the Poisson distribution

$$X \sim \mathsf{Po}(\lambda):$$
 $\mathsf{P}[X \in A] = \sum_{x \in A \cap \mathbb{N}} \frac{\lambda^x}{x!} e^{-\lambda}$

and Gamma distribution

$$Y \sim \mathsf{Ga}(\alpha, \lambda): \qquad \mathsf{P}[Y \in A] = \int_{A \cap \mathbb{R}_+} \frac{\lambda^{\alpha} y^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda y} \, dy$$

we have the probability mass function (pmf) and density function (pdf)

dpois(x,lambda)
$$=rac{\lambda^x}{x!}e^{-\lambda}$$
dgamma(y,alpha,lambda) $=rac{\lambda^lpha\,y^{lpha-1}}{\Gamma(lpha)}e^{-\lambda y}$

and the cumulative distribution functions (CDF's)

$$\begin{split} \texttt{ppois(z,lambda)} &= \mathsf{P}[X \leq z] = \sum_{x=0}^z \frac{\lambda^x}{x!} e^{-\lambda} \\ \texttt{pgamma(z,alpha,lambda)} &= \mathsf{P}[Y \leq z] = \int_0^z \frac{\lambda^\alpha \, y^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda y} \, dy \end{split}$$

and the inverse CDF's, the quantile functions

 $qpois(q,lambda) = z \Leftrightarrow ppois(z,lambda) = q$

```
qgamma(q,alpha,lambda) = z \Leftrightarrow pgamma(z,alpha,lambda) = q
```

These are related (in class we used a fish ("poisson") process to motivate this) through (for every $k \in \mathbb{N}, t \ge 0, \lambda > 0$)

ppois(k,lambda*t) = 1 - pgamma(t,k+1,lambda)

There are also functions rpois(n,lambda) and rgamma(n,alpha,lambda) to generate random samples of any size $n \in \mathbb{N}$ from the distributions.

Warning: The open-source work-alike product R has similar functions and syntax, but R parameterizes the Gamma distribution a little differently from S-Plus— it uses a *scale* parameter $\beta = 1/\lambda$ instead of a *rate* parameter λ . If you use R, just remember to replace lambda with beta=1/lambda in the arguments for dgamma, pgamma, qgamma, and rgamma.