
Final Examination

STA 215: Statistical Inference

Thursday, 2005 May 5, 2:00 – 5:00 pm

This is a closed-book examination; please put all your books
and notes on the floor. You may use a calculator, but no other

electronic device.
A normal distribution table, a PMF/PDF handout, and a

blank worksheet are attached to the exam. Ask me if you want
more scratch paper.

If a questions seems ambiguous or confusing please ask me

instead of guessing.
You must show your work to get partial credit. Unsup-

ported answers are not acceptable, even if they are correct. It
is to your advantage to write your solutions as clearly as possi-

ble, since I cannot give credit for solutions I do not understand.
Good luck.
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Name: STA 215: Statistical Inference

Problem 1: Let {Xj} iid∼ Po(θ) be independent Poisson random variables
with unknown mean θ > 0 and p.m.f.

f(x | θ) = θx e−θ/x!, x = 0, 1, ...

and let ~x = (x1, ..., xn) ∈ X = N
n be a random sample of size n.

a). Find the likelihood function for θ upon observing ~x ∈ X .

L(θ | ~x) =

b). Find the Fisher (expected) information I(θ) for a single observation.
Show your work.

I(θ) =
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Name: STA 215: Statistical Inference

Problem 2: With the same Poisson Po(θ) model as above, and with a
single observation x ∈ X = N (a random sample of size n = 1),

a). Find the rejection region R for the most powerful test possible of the
hypotheses

H0 : θ = 1 vs. H1 : θ = 4

with size about α ≈ 0.08. Give your α exactly. Show your work.

R = α =

b). Find the power for your test, exactly or numerically to four correct
decimals:

1 − β =

Note for calculator-impaired: e−1 ≈ 0.3678794, e−4 ≈ 0.01831564
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Name: STA 215: Statistical Inference

Problem 2 (cont’d): With the same Poisson Po(θ) model as above,
with a single observation x ∈ X = N (a random sample of size n = 1),

c). Is your test uniformly most powerful for all tests of H0 : θ = 1 against
alternative H1 : θ = θ1 with θ1 > 1? Why or why not? Y N

d). Find the P -value for testing H0 : θ = 1 vs. H1 : θ > 1 if we observe
X = 4 (still with n = 1). Can you reject H0 at level α = 0.01?

P = Reject? Y N (at α = 0.01).
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Name: STA 215: Statistical Inference

Problem 3: With the same Poisson Po(θ) model as above, and with a
random sample ~x = (3, 0, 2, 1, 4) ∈ X = N

5 of size n = 5,

a). Find the MLE p̂1(~x) for the probability p1 ≡ P[X = 1] that a future
observation X would be one:

p̂1(~x) =

b). Find the posterior probability of H0 : θ = 1 with a prior distribution
assigning probability π∗(θ) = 1/2 each to the two points θ = 1 and
θ = 4:

π∗(H0 | ~x) =

c). Find the posterior mean θ̄∗ for a Bayesian analysis with prior distribu-
tion assigning probability π∗(θ) = 1/2 each to θ = 1 and θ = 4:

θ̄∗ =
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Name: STA 215: Statistical Inference

Problem 4: With the same Poisson Po(θ) model as above, and the same
random sample ~x = (3, 0, 2, 1, 4) ∈ X = N

5 of size n = 5,

a). Find the posterior mean θ̄π(~x) for a Bayesian analysis with a gamma
prior distribution θ ∼ Ga(α, β), i.e., prior p.d.f. π(θ) = θα−1βαe−βθ/Γ(α),
θ > 0:

θ̄π(~x) =

b). Find the posterior mean θ̄J(~x) for a reference Bayesian analysis using
the Jeffreys prior distribution πJ(θ).

θ̄J(~x) =
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Name: STA 215: Statistical Inference

Problem 5: Jeff wants to know whether or not upland sites have different
numbers of animal tracks than wetland sites. He counts the numbers {Xi, i =
1, 2, 3, 4, 5} of tracks seen as he walked along each of five 100 meter transects
on an upland site, and the numbers {Yj, j = 1, 2} seen walking along each
of two 100 meter transects on a wetland site, and models

{Xi}i=1:5
iid∼ Po(θ) {Yj}j=1:2

iid∼ Po(λ) {Xi, Yj} independent.

With these data he wants to determine if there is a significant difference
between the mean number of tracks per meter in the upland transects versus
the wetland transects, i.e., he wants to test the (composite) hypotheses

H0 : θ = λ vs. H1 : θ 6= λ.

a). Find sufficient statistics for this (real!) problem:

b). Find the (generalized) likelihood ratio statistic Λ against H0 for this
test:

Λ =
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Name: STA 215: Statistical Inference

Problem 6: The sample median X of (2θ+1) independent uniform ran-
dom variables has a Be(θ, θ) probability distribution, with mean EX = 1

2

(not depending on θ > 0) and variance VX = 1
8θ+4

(a decreasing function of
θ > 0) (you don’t have to prove that). Let Xj ∼ Be(θ, θ) be independent
random variables with probability density function

f(x | θ) =
Γ(2θ)

Γ(θ)2
(x)θ−1(1 − x)θ−1, 0 < x < 1

for some θ ∈ Θ = (0,∞), not necessarily an integer.

a). Find the Bayesian posterior probability distribution for θ, if we start
with a prior distribution π∗(θ) that gives probability 1/2 each to θ = 1

and θ = 4, and observe a sample ~X = ~x = (x1, ..., xn) of size n ∈ N.

Spring 2005 7 May 5, 2005



Name: STA 215: Statistical Inference

Problem 6 (cont’d): Again with Xj
iid∼ Be(θ, θ) as above, with p.d.f.

f(x | θ) = Γ(2θ) Γ(θ)−2 xθ−1 (1 − x)θ−1, 0 < x < 1,

help Pat and Chris test the hypotheses

H0 : θ = 1 vs. H1 : θ = 4

using a random sample ~x = (x1, ..., xn) ∈ X = (0, 1)n of size n.

b). Pat observes that the variance VX = 1
8θ+4

will be 1/12 under H0 and

1/36 (three times smaller) under H1, while EX = 1
2

under both hy-
potheses, and so plans to reject H0 if

~X ∈ R1 = {~x ∈ X :

n
∑

i=1

(xi − 1
2
)2 ≤ c1},

with c1 > 0 chosen such that P[ ~X ∈ R1 | H0] = 0.05.

Chris thinks it would be better to reject H0 if

~X ∈ R2 = {~x ∈ X :
n

∑

i=1

log[xi(1 − xi)] ≥ c2},

with c2 ∈ R chosen such that P[ ~X ∈ R2 | H0] = 0.05.

Do not try to implement either procedure. Just answer:

Which procedure is better, and why? 1. Pat 2. Chris

What exactly does it mean to say that one test is “more powerful”??
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Name: STA 215: Statistical Inference

Problem 6 (cont’d): Yet again with Xj
iid∼ Be(θ, θ) as above, with

f(x | θ) = Γ(2θ) Γ(θ)−2 xθ−1 (1 − x)θ−1 for 0 < x < 1,

c). Find the Fisher Information I(θ) for a single observation, possibly using
the digamma and trigamma functions

ψ(z) ≡ d

dz
log Γ(z) = Γ′(z)/Γ(z) ψ′(z) ≡ d2

dz2
log Γ(z).

I(θ) =

d). For integer arguments z ∈ N the digamma and trigamma functions
have closed-form expressions

ψ(z) = −γ +

z−1
∑

k=1

1

k
ψ′(z) =

π2

6
−

z−1
∑

k=1

1

k2
,

where γ ≈ 0.577216 is Euler’s constant. Find the exact minimum of the
squared-error risks R(T, θ) = E[(T (~x)− θ)2] for all unbiased estimators
T (~x) of θ, on the basis of a sample of size n = 9, if in fact θ = 2:

R(T, θ = 2) ≥
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Name: STA 215: Statistical Inference

Bonus Problems: If you’re using this to review (and so aren’t under
a strict time constraint), try these:

a). In Problem 4, with {Xi} iid∼ Po(θ) and observed random sample ~x =
(3, 0, 2, 1, 4) ∈ X = N

5 of size n = 5, find the posterior probability of
H0 : θ = 1 with a prior distribution assigning probability π•(θ = 1) =
1/2 to the single point θ = 1, and otherwise θ ∼ Ex(1/4) (exponential
with mean four), so π•(H0) = 1

2
and, for any A ⊂ R+,

π•(θ ∈ A) =
1

8

∫

A

e−θ/4 dθ +
1

2
1A(1), A ⊂ (0,∞)

π•(H0 | ~x) =

b). In Problem 5, compute the posterior probability P[H0] using a prior dis-
tribution that assigns probability 1/2 each to H0 and H1, with marginal
Ga(5, 1/2) distributions for θ and λ, with data ~x = (8, 12, 15, 7, 8),
~y = (1, 3).

c). In Problem 5, compute the approximate P-value for H0, again with
data ~x = (8, 12, 15, 7, 8), ~y = (1, 3). Use a normal approximation (to
the Poisson) if necessary.

d). In Problem 6b), find c1 and c2 explicitly for n = 48 (use normal ap-
proximations). You’ll need the mean and variance of Y = logX(1−X)
for X ∼ Be(θ, θ)— get them from the (log) moment generating func-
tion for Y . You’ll need the information about ψ(z) and ψ′(z) given in
parts c) and d), too. Compute the power of both tests.

Problem 5 was relayed to me by Floyd Bullard (our TA this year), from a
colleague of his at Philips Exeter Academy. The problem (but not the data
on this page) is real— even the name of the wildlife biology student.

Spring 2005 10 May 5, 2005



Name: STA 215: Statistical Inference

Extra worksheet, if needed (ask if you’d like more):
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Φ(x) =

∫ x

−∞

1√
2π

e−z2/2 dz:
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Table 5.1Area Φ(x) under the Standard Normal Curve to the left of x.

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

Φ(0.6745) = 0.75 Φ(1.6449) = 0.95 Φ(2.3263) = 0.99 Φ(3.0902) = 0.999
Φ(1.2816) = 0.90 Φ(1.9600) = 0.975 Φ(2.5758) = 0.995 Φ(3.2905) = 0.9995



Name Notation pdf/pmf Range Mean µ Variance σ2

Beta Be(α, β) f(x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1 x ∈ (0, 1) α
α+β

αβ
(α+β)2(α+β+1)

Binomial Bi(n, p) f(x) =
(n
x

)

pxq(n−x) x ∈ 0, · · · , n n p n p q (q = 1 − p)

Exponential Ex(λ) f(x) = λ e−λx x ∈ R+ 1/λ 1/λ2

Gamma Ga(α, λ) f(x) = λα

Γ(α)x
α−1 e−λx x ∈ R+ α/λ α/λ2

Geometric Ge(p) f(x) = p qx x ∈ Z+ q/p q/p2 (q = 1 − p)

f(y) = p qy−1 y ∈ {1, ...} 1/p q/p2 (y = x + 1)

HyperGeo. HG(n,A,B) f(x) =
(A

x)(
B

n−x)
(A+B

n )
x ∈ 0, · · · , n nP nP (1−P )N−n

N−1 (P = A
A+B )

Logistic Lo(µ, β) f(x) = e−(x−µ)/β

β[1+e−(x−µ)/β]2
x ∈ R µ π2β2/3

Log Normal LN(µ, σ2) f(x) = 1

x
√

2πσ2
e−(log x−µ)2/2σ2

x ∈ R+ eµ+σ2/2 e2µ+σ2(

1 − eσ2)

Neg. Binom. NB(α, p) f(x) =
(x+α−1

x

)

pα qx x ∈ Z+ αq/p αq/p2 (q = 1 − p)

f(y) =
(y−1
y−α

)

pα qy−α y ∈ {α, ...} α/p αq/p2 (y = x + α)

Normal No(µ, σ2) f(x) = 1√
2πσ2

e−(x−µ)2/2σ2
x ∈ R µ σ2

Pareto Pa(α, β) f(x) = β αβ/xβ+1 x ∈ (α,∞) α β
β−1

α2β
(β−1)2(β−2)

Poisson Po(λ) f(x) = λx

x! e
−λ x ∈ Z+ λ λ

Snedecor F F (ν1, ν2) f(x) =
Γ(

ν1+ν2
2

)(ν1/ν2)ν1/2

Γ(
ν1
2

)Γ(
ν2
2

)
× x ∈ R+

ν2
ν2−2

(

ν2
ν2−2

)2 2(ν1+ν2−2)
ν1(ν2−4)

x
ν1−2

2

[

1 + ν1
ν2

x
]− ν1+ν2

2

Student t t(ν) f(x) =
Γ( ν+1

2
)

Γ( ν
2
)
√

πν
[1 + x2/ν]−(ν+1)/2 x ∈ R 0 ν/(ν − 2)

Uniform Un(a, b) f(x) = 1
b−a x ∈ (a, b) a+b

2
(b−a)2

12

Weibull We(α, β, γ) f(x) = α(x−γ)α−1

βα e−[(x−γ)/β]α x ∈ (γ,∞) γ + βΓ(1 + α−1)


