STA 215 Spring 2005

Midterm Exam: Statistical Inference

Due: Wed Mar 6 1:15pm

The number X of failures before the α^{th} success, in independent Bernoulli trials all with success probability $p = \theta^{-1}$, has a Negative Bionomial distribution, $X \sim \mathsf{NB}(\alpha, \theta^{-1})$. For $\alpha \in \mathbb{R}_+$, $\theta \in \Theta = [1, \infty)$ and $x \in \mathbb{N} = \{0, 1, ...\}$ the probability mass function $f(x \mid \alpha, \theta) \equiv \mathsf{P}[X = x \mid \alpha, \theta]$ is given by

$$f(x \mid \alpha, \theta) = \frac{\Gamma(\alpha + x)}{\Gamma(\alpha) \ x!} \theta^{-\alpha} (1 - \theta^{-1})^x, \qquad x \in \mathbb{N}.$$
 (1)

The mean and variance are $\mathsf{E}[X] = \alpha(\theta - 1)$ and $\mathsf{V}[X] = \alpha\theta(\theta - 1)$. Please answer the following questions about this $\mathsf{NB}(\alpha, \theta^{-1})$ distribution.

- 1. Let X be a single observation from $f(x \mid \alpha, \theta)$.
 - a. If we treat $\theta \geq 1$ as fixed and known, is this an exponential family in $\alpha \in \mathbb{R}_+$? If so, write $f(x \mid \alpha) = f(x \mid \alpha, \theta)$ in standard form

$$f(x \mid \alpha) = e^{\eta(\alpha) \cdot T(x) - B(\alpha)} h(x)$$

for suitable $q \in \mathbb{N}$, $\eta(\alpha) \in \mathbb{R}^q$, $T(x) \in \mathbb{R}^q$, $B(\alpha) \in \mathbb{R}$, and $h(x) \geq 0$ (specify q, η, T, B , and h); if not, explain why (no proof needed).

- 2. Let X be a single observation from $f(x \mid \alpha, \theta)$.
 - a. If we treat $\alpha > 0$ as fixed and known, is this an exponential family in $\theta \in \Theta$? If so, write $f(x \mid \theta) = f(x \mid \alpha, \theta)$ in standard form

$$f(x \mid \theta) = e^{\eta(\theta) \cdot T(x) - B(\theta)} h(x)$$

for suitable $q \in \mathbb{N}$, $\eta(\theta) \in \mathbb{R}^q$, $T(x) \in \mathbb{R}^q$, $B(\theta) \in \mathbb{R}$, and $h(x) \geq 0$. If not, explain why (no proof needed).

- b. Find the Fisher Information $I(\theta)$.
- 3. For fixed $\alpha > 0$, with $\theta \in \Theta$ unknown let $\vec{x}_n = (x_1, ..., x_n)$ be a simple random sample of size $n \in \mathbb{N}$ from $f(x \mid \theta) = f(x \mid \alpha, \theta)$.
 - a. Find a sufficient (for $\theta \in \Theta$) statistic $S(\vec{x}_n)$. Verify that your S is sufficient. Find its mean and variance, as functions of θ .

STA 215 Spring 2005

- b. Find the *observed* information $i(\theta, \vec{x}_n)$. Does it depend on \vec{x}_n at all? If so, is it only as a function of your sufficient statistic S?
- 4. With a random sample \vec{x}_n from $f(x \mid \theta) = f(x \mid \alpha, \theta)$ with known $\alpha > 0$,
 - a. Find the maximum likelihood estimator $\hat{\theta}_n(\vec{x}_n)$.
 - b. Evaluate or approximate the squared-error risk function

$$R(\theta, \hat{\theta}_n) = \mathsf{E} [|\hat{\theta}_n - \theta|^2 | \theta].$$

Is $\hat{\theta}_n$ consistent? Why? Plot $R(\theta, \hat{\theta}_n)$ for $\alpha = 3$ and n = 4.

- c. Find the bias $\beta(\theta) = \mathsf{E}[\hat{\theta}_n \theta]$.
- d. Find the (absolute) efficiency

$$\operatorname{Eff}(\hat{\theta}_n) = \left\{ n \, I(\theta) \, R(\theta, \hat{\theta}_n) \right\}^{-1}$$

for each $n \in \mathbb{N}$ and $\theta \in \Theta$. Is $\hat{\theta}_n$ asymptotically efficient? Why?

- e. Evaluate the MLE for n = 4, $\alpha = 3$ with data sets $\vec{x}_4 = (25, 35, 22, 18)$ and $\vec{x}_4 = (0, 0, 0, 0)$.
- 5. Now let's adopt a Bayesian perspective, with fixed $\alpha > 0$.
 - a. If θ has prior distribution given by

$$\pi_{ab}(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{-a-b} (\theta - 1)^{b-1}, \qquad \theta \in \Theta = [1, \infty)$$

for some a,b>0, verify that for p< a the prior p^{th} mean of θ is $\mathsf{E}_{ab}[\theta^p]=\frac{\Gamma(a+b)\Gamma(a-p)}{\Gamma(a)\Gamma(a+b-p)},$ and for p=1 in particular, $\mathsf{E}_{ab}[\theta]=1+b/(a-1).$

- b. For this prior distribution $\pi_{ab}(\theta)$, find the posterior distribution $\pi_{ab}(\theta \mid \vec{x}_n)$ for a sample $\vec{x}_n = (x_1, ..., x_n)$ of size n and the posterior mean (Bayes estimator) $\bar{\theta}_n^{ab}(\vec{x}_n) = \mathsf{E}_{ab}[\theta \mid \vec{x}_n]$.
- c. Does the MLE $\hat{\theta}_n$ coincide with $\bar{\theta}_n^{ab}(\vec{x}_n)$ for any a, b > 0, or limit as a, b tend to extremes?
- d. Find the squared-error risk function

$$R(\theta, \bar{\theta}_n^{ab}) = \mathsf{E}_{ab} \big[\, |\bar{\theta}_n^{\pi} - \theta|^2 \mid \theta \, \big].$$

Is $\bar{\theta}_n^{ab}$ consistent? Why? Plot $R(\theta, \bar{\theta}_4^{ab})$ for $\alpha{=}3, n{=}4, a{=}b{=}2.$

STA 215 Spring 2005

e. Find the efficiency

$$\mathsf{Eff}(\bar{\theta}_n^{ab}) = \left\{ n \, I(\theta) \, R(\theta, \bar{\theta}_n^{ab}) \right\}^{-1}$$

for each $n \in \mathbb{N}$, $\theta \in \Theta$, $\alpha > 0$, and $a, b \geq 0$. Is $\bar{\theta}_n^{ab}$ asymptotically efficient? Why?

- 6. With $\alpha > 0$ known, find the Jeffreys prior $\pi_J(\theta)$ and posterior $\pi_J(\theta \mid \vec{x}_n)$ distributions, and the posterior mean $\bar{\theta}_n^J(\vec{x}_n) = \mathsf{E}^J[\theta \mid \vec{x}_n]$.
 - a. Does the Jeffreys posterior distribution coincide with that from any of the priors π_{ab} from Problem 5a. above? For which a, b?
- 7. In the past three problems you have computed three estimators for θ above $(\hat{\theta}_n, \bar{\theta}_n^{ab}, \bar{\theta}_n^J)$ and their risk functions $R(\theta, \cdot)$. Let $n = 4, \alpha = 3$.
 - a. For which θ is $\bar{\theta}^J$ better than $\hat{\theta}$? For which θ is $\bar{\theta}_n^{ab}$ better than $\hat{\theta}$, for a = b = 2?
 - b. **Briefly**, how would you choose among these estimators for a particular problem? If any features of the problem would be relevant, identify them and explain.
- 8. With a random sample \vec{x}_n from $f(x \mid \theta) = f(x \mid \alpha, \theta)$ with $\alpha > 0$ known,
 - a. Does the MLE $\hat{\theta}_n$ have an asymptotically normal distribution? If so, find the mean $\mu_n(\theta)$ and variance $\sigma_n^2(\theta)$ of $\hat{\theta}_n$ and their maximum likelihood estimates $\hat{\mu}_n(\vec{x}_n)$ and $\hat{\sigma}_n^2(\vec{x}_n)$.
 - b. Assuming asymptotic normality find an asymptotic 90% confidence interval based on these estimators, *i.e.*, find **statistics** $L_n(X)$, $R_n(X)$ satisfying $P[\theta \in [L_n, R_n]] \approx 0.90$ for large n.
 - c. Calculate the intervals for the two data sets $\vec{x}_4 = (25, 35, 22, 18)$ and $\vec{x}_4 = (0, 0, 0, 0)$, with n = 4, $\alpha = 3$. Are they reasonable?