
Midterm Examination

STA 215: Statistical Inference

Due Wednesday, 2006 Mar 8, 1:15 pm

This is an open-book take-home examination. You may work on

it during any consecutive 24-hour period you like; please record
your starting and ending times on the lines below.

If a question seems ambiguous or confusing, or even if you’re
just stuck and need a hint, please ask me— don’t guess, and

don’t discuss exam questions with others.

Unless a problem states otherwise, you must show your work to
get partial credit. It is to your advantage to write your solutions

as clearly as possible, since I cannot give credit for solutions I
do not understand. Good luck.

Please detatch (or copy) this sheet and staple it to the top of

your solutions before you turn them in.

Print Name:

Start Time:

End Time:

1. /20

2. /20

3. /20

4. /20

5. /20

Total: /100
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1. In independent Bernoulli trials, all with success probability p ∈ (0, 1),
the number X of failures before the first success has a Geometric dis-
tribution, X ∼ Ge(p), with probability mass function

f(x | p) = p (1 − p)x, x ∈ Z+ ≡ 0, 1, 2, · · · .

The mean and variance are E[X] = (1−p)/p and V[X] = (1−p)/p2,
respectively; in particular note that the mean is a decreasing function
of p, so large values of X are associated with small values of p. Please
answer the following questions about this Ga(p) distribution.

All parts of this question concern a single observation X from f(x | p)—
there is no repeated sampling.

(a) Is this an exponential family?
If so, write the p.d.f. in standard form

f(x | p) = eη(p)·T (x)−B(p) h(x)

for suitable q ∈ N, η(p) ∈ R
q, T (x) ∈ R

q, B(p) ∈ R, and h(x) ≥ 0
(specify q, η, T , B, and h); if not, explain why (no proof needed).

(b) Find the Maximum Likelihood Estimator p̂ = p̂(x), for the single
observation X = x.

(c) Find the Fisher Information I(p) for one observation. Simplify!

(d) Find the posterior mean p̄π for a Beta prior π = Be(α, β) with
p.d.f. π(p) ∝ pα−1(1 − p)β−1, 0<p<1 for α, β ∈ R+, for the
single observation X = x.

(e) Find the Jeffreys prior density πJ(p) and corresponding posterior
density πJ(p | x), again for a single observation X = x.

(f) Find an exact 90% confidence interval [Lx, Rx] for p on the basis
of the single observation X = x. Evaluate it numerically, to four
decimal places, for x = 4. Is L4 bigger or smaller than L7?

1



STA215 Spring 2006

2. The Kullback-Leibler divergence between two distributions on the same
space X is K(f : g) ≡ Ef{log[f(X)] − log[g(X)]}, the expectation
(under X ∼ f) of the log ratio of the p.d.f.’s or p.m.f’s, f(X) and
g(X), i.e.,

K(f : g) ≡

∫

X

−f(x) log

[

g(x)

f(x)

]

dx

for continuous distributions with p.d.f.’s f , g, or

K(f : g) ≡
∑

x∈X

−f(x) log

[

g(x)

f(x)

]

for discrete distributions with p.m.f.’s f , g. No integration is needed, just a
few moments, for each of the problems below. For example, if fj ∼ Ex(λj)
for j = 0, 1 then K(f0 : f1) = E0[− log(f1/f0)] is just:

K(f0 : f1) = log(λ0/λ1) + (λ1 − λ0)E0X = log(λ0/λ1) + (λ1/λ0) − 1.

(a) Evaluate the divergence K(f0 : f1) for two normal distributions

f0 : No(µ0, σ
2) f1 : No(µ1, σ

2)

with the same variance but (possibly) different means.

(b) Evaluate the divergence K(f0 : f1) for two normal distributions

f0 : No(µ, σ2
0) f1 : No(µ, σ2

1)

with the same mean but (possibly) different variances.

(c) Evaluate the divergence K(f0 : f1) for two Poisson distributions

f0 : Po(λ0) f1 : Po(λ1).

(d) Evaluate the divergence K(f0 : f1) for two Binomial distributions

f0 : Bi(n, p0) f1 : Bi(n, p1)

with the same n.

(e) Let λ0 = λ and λ1 = λeε for the Poisson case above. Is there a
number p ∈ R such that the limit

lim
ε→0

K(f0 : f1)/|ε|
p

is finite and non-zero? (Hint: Try a Taylor expansion)
Evaluate the limit (as a function of λ > 0), or show none exists.
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3. Let U1, · · · , Un be n ≥ 2 independent draws from the Un(a, b) distribu-
tion, uniform on some interval (a, b) ⊂ R, with a < b both unknown.
Set

X ≡ min(U1, ..., Un) Y ≡ max(U1, ..., Un) (1)

It turns out that the vector (X, Y ) is sufficient for (a, b).
(Extra credit: Prove this.)

(a) Find the joint p.d.f. f(x, y | a, b) for X and Y .
Hint: Starting by considering P{X > x, Y ≤ y} for all numbers
−∞ < x < y < ∞; be careful about the ranges of x and y.

(b) Find the M.L.E.’s â for a and µ̂ for the mean µ ≡ E[Uj] = a+b
2

.
Are either of them biased? How much?

(c) Find an exact 90% equal-tail confidence interval [L, R] for the
mean E[Uj] = a+b

2
for a sample {Uj} of size n.

Hint: How do you expect L = L(X, Y ) to depend on X and Y ?

(d) For a sample of size n ≥ 2, find the conditional probability distri-
bution of each Uj, given X, Y . Describe it in words, or give the
conditional CDF F (u | x, y) ≡ P[Uj ≤ u | X = x, Y = y] correctly
for all x, y, u. Calculate E[Uj | X, Y ] carefully. Hint: What is
P[U1 = X]?

(e) The statistic T (~U) = Ū ≡ 1
n

∑

Uj is an unbiased estimator of
µ = a+b

2
, but it is not sufficient. The Raô-Blackwell theorem

suggests a specific improvement T ∗ of T . Find T ∗ explicitly.
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4. Now let’s adopt a Bayesian perspective for the Un(a, b) problem. Again

take {Uj}
iid
∼ Un(a, b), with parameter θ = (a, b) unknown.

(a) Some might advocate the improper prior density function

π(a, b) =
1

(b − a)
, −∞ < a < b < ∞

as an expression of ignorance about a, b. How large does the sam-
ple size n have to be for the posterior distribution with density

π(a, b | ~U) ∝ π(a, b)f(U1, . . . , Un | a, b)

to be well-defined?1 You must evaluate the normalizing constant
to find π(a, b | ~U); if it turns out to be zero or infinity then the
proposed improper prior does not lead to a well-defined posterior,
but if it is finite and positive then the posterior is well-defined.

(b) Find the posterior mean estimators āπ ≡ Eπ[a | ~U ] and µ̄π ≡

Eπ[a+b
2

| ~U ] for this prior. Are they biased? How much?

(c) Others might have advocated a uniform improper prior density

πU(a, b) = 1, −∞ < a < b < ∞

How large must the sample size n be for the posterior with this

prior to be well-defined? Can you characterize the inferential dif-
ference between inference using π and inference using πU? Are
the differences smaller when n is big or small?

1Any sufficient statistic S(~U) for (a, b) can be used instead of the whole vector ~U =
(U1, . . . , Un) for evaluating posterior densities and expectations.
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5. An experiment generates n independent exponentially-distributed ran-

dom variables ξj
iid
∼ Ex(λ) (with p.d.f. f(ξ) = λe−λξ for ξ > 0); alas we

observe only truncated versions

Xj ≡ ξj ∧ 1 =

{

ξj if 0 < ξj < 1

1 if 1 ≤ ξj < ∞.

(Think of readings on a meter that only has a range of [0, 1].)

(a) Evaluate the common CDF for each of the observables {Xj}:

F (x | λ) = P[Xj ≤ x | λ]

correctly for all x ∈ R and λ > 0. You might like to consider
separately the three cases x ∈ (−∞, 0), x ∈ [0, 1), and x ∈ [1,∞).

(b) Find the likelihood function for λ on the basis of a random sample
of size n, {X1, · · · , Xn}.
Hint: Some of the Xj’s will be exactly 1, the rest will be in (0, 1).
What are some suffient statistics?

(c) Find the M.L.E. λ̂ upon observing {Xj}, j = 1 · · ·n.

(d) Find the Fisher information IX(λ) for observing {Xj}. Is it larger
or smaller than the Fisher information Iξ(λ) for the uncensored ob-
servations {ξj}? Is it larger or smaller than the Fisher information
IT (λ) for the binomially-distributed number T = #{j : Xj = 1}
of truncated observations (ξj ≥ 1)? It is enough to consider the
case of a single observation, n = 1.

Extra Credit: Use R, S-Plus or Matlab to plot all three (over-
laid) on the two ranges 0.5 < λ < 1 and 1 < λ < 4, using colors
or line type to distinguish the curves (include a legend). Describe
what happens for large λ and for small λ. Why?
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