STAT215: Homework 3

Due: Monday, March 6

- 1. (20 pt) For each of the following distributions, let X_1, \dots, X_n be a random sample. Is there a function of θ , say $g(\theta)$, for which there exists an unbiased estimator whose variance attains the Cramér-Rao Lower Bound? If so, find it. If not, show why not.
 - (a) $f(x|\theta) = \theta x^{\theta-1}, \ 0 < x < 1, \ \theta > 0$
 - (b) $f(x|\theta) = \frac{\log(\theta)}{\theta-1}\theta^x$, 0 < x < 1, $\theta > 1$
- 2. (15 pt) Let X_1, \dots, X_n be iid Bernoulli(p). Show that the variance of \bar{X} attains the Cramér-Rao Lower Bound, and hence \bar{X} is the best unbiased estimator of p.
- 3. (15 pt) Let X_1, \dots, X_n be a random sample from a population with mean μ and variance σ^2 .

(a) Show that the estimator $\sum_{i=1}^{n} a_i X_i$ is an unbiased estimator of μ if $\sum_{i=1}^{n} a_i = 1$.

(b) Among all unbiased estimators of this form (called *linear unbiased estimators*) find the one with minimum variance, and calculate the variance.

4. (20 pt) Let X_1, \dots, X_n be iid $N(\theta, 1)$. Show that the best unbiased estimator of θ^2 is $\bar{X}^2 - (1/n)$. Calculate its variance and show that it is greater than the Cramér-Rao Lower Bound.

(Hint1: use Stein's Identity Let $X \sim \mathsf{N}(\theta, \sigma^2)$, and let g be a differentiable function satisfying $\mathbf{E}[|g'(X)|] < \infty$. Then $\mathbf{E}[g(X)(X - \theta)] = \sigma^2 \mathbf{E}[g'(X)]$.)

(Hint2: ust Theorem: Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value. In normal case, \bar{X} is complete and sufficient for the mean when variance is known.)

5. (30pt) Let X_j be a sequence of independent $\mathsf{Po}(\lambda)$ random variables.

(1). Find the MLE $\hat{\lambda}_n$ on the basis of the first *n* observations and show $\hat{\lambda}_n$ is sufficient for λ

(2) Find the Fisher information $I(\lambda)$.

(3) On the basis of the n = 6 observations $\mathbf{x} = \{1, 0, 2, 4, 3, 0\}$, find the 10% Likelihoodist Interval for λ (i.e., the set of points λ where the LH function attains at least 10% of its maximum value).

(4) On the basis of the same n = 6 observations as before, find the equatail 90% Confidence Interval for λ , correct to four decimal places. Show the code in your choice of S-Plus, R or Matlab needed for your answer.

(5) Find the Jeffery's prior distribution for λ , and, on the basis of the same n = 6 observations as before, find the Bayesian posterior distribution and the posterior mean $\bar{\lambda}_n = \mathbf{E}[\lambda|\mathbf{x}]$.

(6) Find the Bayesian equal-tail 90% Credible Interval for λ , using the Jeffery's prior.

6. (10 pt) BONUS question

Find the Jeffery's Prior for a location-scale family, i.e. one where f(x|a, b) = b * f((x - a) * b) for $-\infty < a < \infty$, $0 < b < \infty$ for some pdf f(z). (Hint: Write $f(z) = e^{-\phi(z)}$ and do everything in terms of $\phi(z) \equiv -\log(z)$; change variables in the expectation step to z = b(x - a).)