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Doing What Comes Naturally: Interpreting a Tail

Area as a Posterior Probability or

MORRIS H. DeGROOT*

as a Likelihood Ratio

Consider a problem in which a certain statistic X has a specified dis-
tribution function F(x) if a given hypothesis H is true, and suppose that
the hypothesis H is evaluated by calculating the tail area 1 — F(x)
corresponding to the observed value x of the statistic X. Examples are
given in which this tail area is equal to the posterior probability that H
is true and in which it is equal to the likelihood ratio comparing H to
a certain class K of alternatives. The purpose of these examples is to
render the traditional statistical practice of calculating tail areas
consonant with the principles of Bayesian statistics.

1. STATISTICAL METHODS BASED ON TAIL AREAS

The following situation is common in statistical
problems: A sample of observations from a certain
population is available to the statistician and it is
desired to learn whether the probability distribution P
of this sample belongs to a certain specified class C, of
distributions. The class C, might contain just one dis-
tribution or it might contain more than one. In order to
study the hypothesis H that P & (y, a real-valued
statistic X is constructed from the sample with the
following property :

If the hypothesis H is true and the distribution P
actually does belong to Cy, then the statistic X has a
certain specified probability density function (pdf) which
we shall call f. If the distribution P does not belong to
Cy, then for a wide class of distributions outside Cy, and
possibly for all distributions outside C,, the statistic X
will tend to be larger than it would be when its pdf is f.
More precisely, the distribution of X will be stochastically
larger than the distribution for which the pdf is f, as
defined in [7, p. 737].

It should be emphasized that I am considering here
problems in which the pdf of X is the same for all dis-
tributions P € C,. In some problems f will be the exact
small sample pdf of X and in others, such as X2 or
Kolmogorov-Smirnov tests of goodness-of-fit, it will be
an asymptotic approximation that is appropriate when
the number of observations is sufficiently large.

We shall let F denote the distribution function (df)
corresponding to the pdf f, so that

F(x)=/z f@dt —0< g < ®.
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National Science Foundation under grant GS-32514. The author is indebted to
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Suppose now that the given sample of observations yields
a particular value z of the statistic X. In order to assess
the weight of evidence that the observed value z carries
against the hypothesis H, it is standard statistical prac-
tice under the conditions being assumed here to calculate
the tail area 1 — F(x) corresponding to the value z. The
value of 1 — F(z) is also called the observed p-value or
the observed significance level. A small value of 1 — F(z),
e.g., a value less than 0.01 or 0.05, is typically regarded
as strong evidence against the hypothesis H and, in
general, the smaller the value of 1 — F(z), the more
strongly one regards the evidence against H.

Because the tail area 1 — F(x) is a probability, there
seems to be a natural tendency for a scientist, at least
one who is not a trained statistician, to interpret the
value of 1 — F(z) as being closely related to, if not
identical to, the probability that the hypothesis H is
true. It is emphasized, however by statisticians applying
a procedure of this type that the tail area 1 — F(x)
calculated from the sample is distinct from the posterior
probability that H is true. In other words, although a
tail area smaller than 0.01 may be obtained from a given
sample, this result does not imply that the posterior
probability of H is smaller than 0.01, or that the odds
against H being true are 100 to 1 (or 99 to 1). Indeed,
many statisticians who believe that it is meaningful to
calculate the tail area in a given problem also believe
that it is not meaningful to even attempt to assign a
probability to the statement that H is true.

On the other hand, many statisticians who adhere to
the Bayesian philosophy and believe that it is always
possible (if not always practically feasible) to assign prior
and posterior probabilities to a hypothesis H, do not
believe that the calculation of a tail area is consonant
with the principles of Bayesian statistics. To be true to
their principles they must therefore resist the strong
intuitive appeal of a procedure such as the X2 test of
goodness-of-fit or the F test in the analysis of variance,
and attempt to develop alternative procedures based on
prior distributions over parameter spaces that are some-
times of high dimension (see, e.g., [1, Ch. 11] for a
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discussion of testing hypotheses from the Bayesian point
of view).

The purpose of this article is to present a few simple
ideas which indicate how the calculation of tail areas
can be made compatible with the principles of Bayesian
statistics. These ideas, if successful, will serve the dual
purpose of putting X® tests, F tests, and other such
procedures back into the repertory of the Bayesian
statistician and of giving all statisticians the freedom
that comes from being able to interpret the evidence
exhibited in a tail area simply as a likelihood ratio or as
a posterior probability.

The relationship between tail areas and likelihood
ratios has also been considered by Good [4, 5, 6] and
Efron [2]. Lindley [8] has shown that in many standard
significance tests, the posterior distribution of the X2, F,
or ¢ statistic, when regarded as a function of the unknown
parameters for given values of the observations in a
large sample, will be approximately the same as the
sampling distribution of the statistic. Therefore, the
calculated tail area 1 — F(x) will have a Bayesian
interpretation as a tail area of the posterior distribution.
The approach taken in this article is somewhat different.
The results that will be presented here pertain to an
arbitrary statistic based on an arbitrary sample and are,
therefore, both more abstract and more elementary.

2. THE TAIL AREA AS A LIKELIHOOD RATIO

We shall continue to consider a problem in which a
statistic X has a specified pdf f when a certain hypothesis
H is true. We shall assume also that a statistician ob-
serves the value z of X in a given sample and calculates
the tail area 1 — F(z). If this tail area is small, the
statistician regards the observed sample data as being
strong evidence against H, presumably because he has in
mind certain alternatives to H for which the observed
value z is much more likely than it is under f.

However, these alternative distributions are often not
explicitly specified. Rather, in many problems, they are
simply vaguely conceptualized by the statistician as
distributions that are stochastically larger than the
distribution for which the pdf is f. In such a problem,
the calculation of the tail area 1 — F(x) has the dual
appeal of being both intuitively reasonable and easy to
calculate.

Suppose, on the other hand, that the statistician can
specify an explicit class of alternative pdf’s fo indexed by
a parameter § whose value must belong to some given
parameter space Q. In such a problem it appears to be
reasonable to calculate the following likelihood ratio \ (x)
for the observed value z:

J(x)

Ma) = SupaEQfo(:v).

If A = 0.01, for example, it indicates that there is a value
of 6 for which the likelihood of the observed value z is
100 times larger than it is under H. (More properly, if
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the supremum in the denominator of \(x) is not actually
attained at any point § & , then this likelihood may be
only 100 — e times larger than it is under H.)

We shall now present a specific family K; of alternative
pdf’s for which A(z) = 1 — F(x). Consider the interval
Q of all numbers 6 such that 0 < F(8) < 1. Corresponding
to each value of § € @ we can define a pdf f, as follows:

f(x)
fo(z) = {1 — F(9)
0 for

for x>0,

z < 4.

In words, if fis the pdf of some random variable Y, then
fo is the conditional pdf of Y given that Y > 6. The
family K; of alternatives is defined to be the family of
all pdf’s of the form f, for 8 & Q.

For each value of § € Q, we shall let Fy denote the
df corresponding to the pdf fs. Then Fy(z) < F(z) for
— o<z <o and, if 6; < 05, then Fy,(z) < Fy,(2) for
— oo < x < ., In other words, each distribution in the
class K, is stochastically larger than the distribution for
which the pdf is f, and furthermore, the distributions in
the class K; form a stochastically increasing family of
distributions, as defined in [7, p. 2737]. Therefore, the
class K; may be a reasonable class of alternative dis-
tributions to keep in mind in a problem for which a tail
area calculation is regarded as a reasonable procedure.!
Nevertheless, with due regard for these desirable prop-
erties, our main motivation in introducing the particular
class of alternatives K, here is to illustrate how the
relation A\(z) = 1 — F(z) can be obtained.

For any observed value z such that f(z) > 0, we

now have
O O
infasg;l:l - F(O):] 1 - F(x)

It follows therefore that A(z) = 1 — F(x). Thus, for the
given class K; of alternatives, the likelihood ratio \(z)
will be equal to the tail area 1 — F(z) calculated under
the hypothesis H. Hence, if the observed value z corre-
sponds to a tail area of 0.01, it is indeed correct to state
that there is an alternative distribution for which z is
100 times more likely than it is under H.

In a Bayesian framework, a prior pdf £(6) is assigned
to @ and the overall likelihood, or average likelihood, of
the alternative class K; for the observed value x is then
defined as follows:

Li(z) = / fo(z) £(6)do.

supsea fo(r) =

Therefore, the likelihood ratio A\;(z) determined by z
will be
f(@)

Le(x)
If b denotes the left end point of the interval Q@ (it is

Ae(z) =

1 Good [3, pp. 93-94], very briefly mentions a family of alternatives similar to K1
when discussing a X2 test of the hypothesis that a particular die is fair.
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possible that b = — «), we have

M@=[[r§%5wT31—mm

Thus, N\¢(2) > 1 — F(z) and the value of \;(z) may
actually be very much greater? than 1 — F(z), depending
on the prior weight that was assigned to values of ¢
much smaller than 2. For this reason, in Bayesian
discussions of statistics, the statement is often made that
an observed tail area of 0.01 typically corresponds to a
likelihood ratio somewhat larger than 0.01 and is there-

fore not necessarily strong evidence against the hypothesisl

H (see, e.g., [1, p. 2407]).

The completion of the Bayesian approach in this
example would utilize the prior probabilities r and 1 — =
that H and K, are true, respectively, and would yield
the posterior odds, or overall likelihood ratio, =f(z)/
(1 — 7)L¢(z). However, these considerations should not
obscure the fact that N(z) = 1 — F(x) and, hence, that
a tail area of 0.01 does indicate the existence of an
alternative in K, that is 100 times more likely than H.

3. THE TAIL AREA AS A POSTERIOR PROBABILITY

We shall now present another class K, of alternatives
which, like the class K;, also comprises a stochastically
increasing family of distributions. For any given positive
integer 6, let the pdf g be defined as follows:

go(z) = (1 + 0)F(2) f(x)

The class K, of alternatives is defined to be the class of
all pdf’s of the form g for = 1,2, --..

If we let G5 denote the d.f. corresponding to the
pdf gs, then Go(x) = F**+9(z) for — o< 2 <o and
6 =1,2, ---. It can again be seen that for any positive
integer 0, Go(z) < F(z) for — o < 2 < o and, further-
more, the distributions in the class K, form a stochasti-
cally increasing family of distributions. The class K, is
therefore another reasonable class of alternative pdf’s to
keep in mind in a problem for which a tail area calcula-
tion is a reasonable procedure.

Suppose now that the pdf of the statistic X is either
f or some pdf in the class K,. It can be seen from the
definition of gy that go = f. Therefore, the pdf of X' is
assumed always to have the form gy. Under the hy-
pothesis H, the value of 6 is 0, and under any alternative
in K, the value of 6 is a positive integer.

Now consider the prior distribution of 8, and suppose
that the prior probability that § = k is proportional to
arfork =0,1,2, ---;ie., suppose that

Pr(0=k) « ax

—olr <o,

k=012 .

Then the posterior probabilities will satisfy the following
relation :

Pr (6 = k|z) « argr(2) k=0,1,2,---.

2Good [4, 5,6] has suggested that in many problems, M(z) =v[1 — F()]
where v lies in the range 10/3 < v < 30.
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Specifically, the posterior probability Pr (6 = 0|z) will
be specified by the equation

@ogo(2)

Pr(6 =0l2) = ————.
So_ ag(a)

We shall now show that there is a prior distribution
of § such that for any observed value z, the posterior
probability Pr (¢ = 0|x), which is the posterior prob-
ability that H is true, is simply equal to the tail area
1 — F(z). The prior distribution which yields this result
is as follows:

Pr(6 =Fk) «

1
E+1

Since the sum of the values 1/(k 4 1) is infinite, these
prior probabilities cannot be normalized so that their
sum is one. In this sense, the prior distribution is an
improper distribution. The use of an improper prior dis-
tribution such as this one is well established in Bayesian
statistical procedures (see, e.g., [1, Ch. 107).

The posterior distribution derived from these prior
values will be a proper probability distribution. Specifi-
cally, the posterior probabilities will have the form

Pr (0 = k|z) « F¥(z)f(x) k=0,1,2, ---.

It may be assumed that 0 < F(x) < 1 for the observed
value z, since = will satisfy this relation with probability
1. Then

T F*@) = 1/[1 — F(2)], ,
and it follows that the posterior probabilities are
Pr@=Fk|z) =[1— F(x)]JF*(x) k=0,1,2, ---.

In particular, Pr (0 = 0|z) = 1 — F(z).

Thus, if the statistician is willing to consider the class
K, of alternatives, together with the improper prior
distribution over H and K, specified here, then quite
simply, the tail area 1 — F(z) is the posterior probability
that H is true.

It is not being suggested that this particular prior
distribution is necessarily the appropriate one to use in
a given problem. In accordance with the Bayesian ap-
proach, each statistician will have his own subjective
prior distribution for 8. However, the simple and appeal-
ing form of the prior distribution specified here may make
it a convenient approximation in some problems.

4. ENLARGING THE CLASS OF ALTERNATIVES

We shall now enlarge the class K, of alternatives so
that it contains all pdf’s of the form g, for all positive
numbers 6, and not just positive integers. Let. K; denote
this enlarged class of pdf’s. It is still true that each dis-
tribution in K is stochastically larger than the distribu-
tion for which the pdf is f, and the distributions in Kj still
form a stochastically increasing family of distributions.

We can now determine the value of the likelihood ratio
A (x) when this enlarged family of alternatives is used. For
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any observed value z, it can be found by elementary
differentiation that sups ge(z) is attained when 6 has the
following value 8:

R 1

= ——— — 1
log [1/F(2)]

We shall assume that the observed value z is large enough
so that § > 0. Therefore, § belongs to the parameter
space of possible values of 6.

It is then found that

ANz) = __f_(x_)_ = eF (x) log—}—-
supe>oge()

In accordance with our assumption that the observed
value z is large, we shall assume that the tail area
e = 1 — F(z) is small. Then as a first-order approxima-
tion, obtained by ignoring terms of order ¢ and smaller
terms, we have A(z) = ¢[1 — F(x)].

Therefore, in this model, if the observed value z
corresponds to a tail area of 0.01, there is an alternative
distribution under which the likelihood of z is 100/e
times as large as it is under H. If a prior pdf £(9) is
assigned to 6, then the value of the likelihood ratio \;(z)
will be larger than the value of A (z) which has just been
derived. Hence, we again see that a tail area of 0.01 is
not necessarily strong evidence against the hypothesis H.
The actual likelihood ratio \¢(z) based on z for comparing
H with K; must be larger than (0.01)e and could be
much larger. ’

5. CONCLUDING REMARKS

In summary, the weight of evidence against the
hypothesis H that is implied by a small tail area 1 — F(z)
depends on the model and the assumptions that the
statistician is willing to adopt. If he assumes that the
alternatives to H lie in the class Kj, then the likelihood
ratio calculated from z is actually 1 — F(z). If he
assumes that the alternatives to H lie in the class K, and
he assigns a special improper prior distribution, then the
posterior probability of H is actually 1 — F(x). Finally,
if he assumes that the alternatives to H lie in the class K3,

then the likelihood ratio calculated from z is e[1 — F(x)]..

A Dbigger class of alternatives could be formed by com-
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bining all the alternatives considered in this article and
considering the class K, = K; |J K;. However, this class
will not be studied further here.

Other classes of alternatives with properties similar to
K, and Kj; can be developed as follows: For each value
of  in an interval Q, let ¢¢(f) denote a pdf on the unit
interval 0 < ¢ < 1. Then for each value of § € @, it
follows that ¢s[F(x)]f(x) will be a pdf over the real line.
If K denotes the class of alternatives containing all these
pdf’s for all values of 8 € Q, then both the likelihood
ratio A(x) and the ratio A\¢(z) for a given prior pdf ¢ will
depend on the observed value z only through the tail
area 1 — F(z). Both the classes K; and K; are obtained
by special choices of the function ¢s.

It would be interesting to learn whether any one of
the classes K;, K, or K; or some other class of the
form K, can be considered as a ‘“‘natural’”’ class of alter-
native distributions for the statistic X, in the sense that
this class of distributions can be derived from some
“natural” assumptions, when H is not true, about the
joint distribution of the random variables in the sample
from which X is computed.

[Received June 1972. Revised April 1973.]
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